Potting method

Information

  • Patent Grant
  • 9533261
  • Patent Number
    9,533,261
  • Date Filed
    Wednesday, June 26, 2013
    12 years ago
  • Date Issued
    Tuesday, January 3, 2017
    8 years ago
Abstract
Disclosed herein are aspects and embodiments of filtration membrane modules including porous membranes and methods and structures associated with potting ends of the porous membranes in the membrane modules. In one example, there is provided a method of forming a filtration module. The method comprises securing a portion of a porous membrane in a pre-pot, positioning at least a portion of the pre-pot in a potting mold, introducing a pot forming substance into the potting mold, the pot forming substance surrounding at least a portion of the pre-pot and at least a portion of the porous membrane, curing the second pot forming substance to form a membrane pot, and separating the membrane pot from the potting mold.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is U.S. national stage application and claims the benefit under 35 U.S.C. §371 of International Application No. PCT/US2013/47848, filed on Jun. 26, 2013, titled A POTTING METHOD, which claims priority to Australian Patent Application No. 2012902751, filed on Jun. 28, 2012, titled A POTTING METHOD, each of which is entirely incorporated herein by reference for all purposes, and to which this application claims the benefit of priority.


BACKGROUND

1. Technical Field


Aspects and embodiments disclosed herein relate to filtration membrane modules including porous membranes and to methods and structures associated with potting ends of the porous membranes in the membrane modules.


2. Discussion of Related Art


Membrane filtration devices are used to separate particles, solids, and micro-organisms from liquids such as water. In membrane filtration devices, the liquid is driven through the membrane, while the particles are excluded from passing through the membrane, largely on the basis of size. The driving force for moving liquid through the membrane is typically fluid pressure, with the membrane pores excluding the particles from passing through the membrane wall.


A barrier is typically formed between an incoming liquid stream to be filtered, typically referred to as feed, and the filtered liquid stream, typically referred to as filtrate by sealing the ends of a porous hollow membrane in a module pot. To accomplish effective filtration it is typically desirable that the integrity of the barrier is maintained. Any compromise of the barrier integrity may result in undesirable contamination of the filtrate stream.


SUMMARY

According to one aspect, there is provided a method of producing a porous membrane having a potted end. The method comprises potting the porous membrane in a first pot to produce a pre-pot and securing the pre-pot in a second pot to produce the porous membrane having the potted end. Producing the pre-pot may comprise positioning at least a portion of the porous membrane in a first mold having a first passage forming formation therein, filling the first mold with a first pot forming substance, curing the first pot forming substance, and separating the cured first pot forming substance from the first mold and first passage forming formation. Producing the pre-pot secured in the second pot may comprise positioning at least a portion of the pre-pot in a second mold having a second passage forming formation therein, filling the second mold with a second pot forming substance, curing the second pot forming substance, and separating the cured second pot forming substance from the second mold and second passage forming formation.


In some embodiments, positioning of the pre-pot in the second mold provides for contact between the second pot forming substance and the pre-pot.


In some embodiments, an annular disc is provided for positioning the pre-pot in the second mold.


According to another aspect, there is provided a potting assembly for potting an end of a porous membrane. The assembly comprises means for producing a pre-potted end of the porous membrane. The means for producing a pre-potted end of the porous membrane comprises means for positioning at least a portion of the porous membrane in a first mold having a first passage forming formation therein, means for filling the first mold with a first pot forming substance, and means for separating the first pot forming substance from the first mold and first passage forming formation. The assembly further comprises means for producing a second potted end of the porous membrane. The means for producing a second potted end of the porous membrane comprises means for positioning at least a portion of the pre-potted end of the porous membrane in a second mold having a second passage forming formation therein, means for filling the second mold with a second pot forming substance, and means for separating the second pot forming substance from the second mold and second passage forming formation.


In some embodiments, the cross-sectional area of the second passage forming formation is smaller than the cross-sectional area of the first passage forming formation.


In some embodiments, the first mold is statically filled with the first pot forming substance and the second mold is centrifugally filled with the second pot forming substance.


In some embodiments, the second pot encapsulates the pre-pot.


In some embodiments, the first and second pot forming substances comprise the same substance.


In some embodiments, the first and second pot forming substances comprise resins.


In some embodiments, the porous membrane comprises a hollow fiber membrane.


In some embodiments, the means for positioning the pre-pot in the second mold provides for contact between the second pot forming substance and the pre-pot.


In some embodiments, the means for positioning the pre-pot in the second mold comprises an annular disc.


According to another aspect, there is provided a porous membrane having a potted end produced by the method as described above.


According to another aspect, there is provided a method of forming a filtration module. The method comprises positioning a portion of a porous membrane in a first potting mold, introducing a first pot forming substance into the first potting mold, the first pot forming substance surrounding the portion of the porous membrane, curing the first pot forming substance to form a pre-pot, separating the pre-pot from the first potting mold, positioning at least a portion of the pre-pot in a second potting mold, introducing a second pot forming substance into the second potting mold, the second pot forming substance surrounding at least a portion of the pre-pot and at least a portion of the porous membrane, curing the second pot forming substance to form a membrane pot, and separating the membrane pot from the second potting mold.


In some embodiments, the method further comprises forming an aperture in the pre-pot.


In some embodiments, forming the aperture in the pre-pot comprises forming the aperture in the pre-pot with a finger member extending upwardly from a base of the first potting mold.


In some embodiments, the method further comprises positioning an annular disc including a plurality of apertures in the first potting mold prior to introducing the first pot forming substance into the first potting mold and introducing a sufficient amount of the first pot forming substance into the first potting mold to cover at least a portion of an inner circumference of the annular disc with the first pot forming substance.


In some embodiments, separating the pre-pot from the first mold comprises pushing the pre-pot out of the first mold with a de-molding device disposed in the base of the first mold.


In some embodiments, the method further comprises forming an aperture in the second pot forming substance.


In some embodiments, forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance coaxial with the aperture formed in the pre-pot.


In some embodiments, forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance with a cross sectional area less than a cross sectional area of the aperture formed in the pre-pot.


In some embodiments, forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance with a finger member extending upwardly from a base of the second potting mold.


In some embodiments, the method further comprises disposing a peripheral region of an outer circumferential portion of the annular disc in a supporting grove defined in a side wall of the second mold.


In some embodiments, the method further comprises coupling a membrane shell to the membrane pot, the membrane shell surrounding at least a portion of the porous membrane.


According to another aspect, there is provided a method of forming a filtration module. The method comprises positioning at least a portion of a porous membrane in a first mold having a first passage forming formation therein, at least partially filling the first mold with a first pot forming substance, curing the first pot forming substance, separating the cured first pot forming substance from the first mold and first passage forming formation to form a pre-pot, positioning at least a portion of the pre-pot in a second mold having a second passage forming formation therein, at least partially filling the second mold with a second pot forming substance, curing the second pot forming substance, and separating the cured second pot forming substance from the second mold and second passage forming formation.


In some embodiments, the method further comprises providing the second passage forming formation with a cross-sectional area smaller than a cross-sectional area of the first passage forming formation.


In some embodiments, the first mold is statically filled with the first pot forming substance.


In some embodiments, the second mold is centrifugally filled with the second pot forming substance.


In some embodiments, filling the second mold with the second pot forming substance comprises filling the second mold with a sufficient quantity of the second pot forming substance such that the second pot forming substance encapsulates the pre-pot.


In some embodiments, filling the first mold with the first pot forming substance and filling the second mold with the second pot forming substance comprises filling the first mold and the second mold with the same substance.


In some embodiments, filling the first mold with the first pot forming substance and filling the second mold with the second pot forming substance comprises filling the first mold and the second mold with the different substances.


In some embodiments, the method further comprises sealing an annular disc in the pre-pot.


In some embodiments, the method further comprises positioning the pre-pot in the second mold by disposing a portion of the annular disc in a supporting grove defined in a side wall of the second mold.


According to another aspect, there is provided a membrane filtration module. The membrane filtration module comprises a porous membrane having an end secured in a pre-pot formed of a first potting material and at least partially enclosed in a second potting material, an annular disc having an internal circumferential portion secured in the first potting material and an external circumferential portion in contact with the second potting material, and a membrane shell coupled to the second potting material and in contact with the external circumferential portion of the annular disc, the membrane shell surrounding at least a portion of the porous membrane.


In some embodiments, the membrane filtration module further comprises at least one aperture defined in the pre-pot.


In some embodiments, the membrane filtration module further comprises an aperture defined in the second potting material and disposed within the at least one aperture defined in the pre-pot.


In some embodiments, the first potting material is a same material as the second potting material.


In some embodiments, the first potting material is a different material than the second potting material.


According to another aspect, there is provided a system for potting a porous filtration membrane. The system comprises a first mold configured to form a pre-pot and a second mold configured to receive the pre-pot formed in the first mold. The first mold includes a first side wall, a first base plate coupled to the first side wall, and a first passage forming formation coupled to the first base plate. The second mold includes a second side wall, a second base plate coupled to the second side wall, and a second passage forming formation coupled to the second base plate.


In some embodiments, a cross sectional area of the second passage forming formation is smaller than a cross sectional area of the first passage forming formation.


In some embodiments, the system further comprises a de-molding device coupled to one of the first base plate and the second base plate.


In some embodiments, the system further comprises an annular disc configured and arranged to position and secure the pre-pot in the second mold.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 is a simplified schematic cross-sectional side elevation view of a porous membrane having a potted end secured in a pre-pot according to one embodiment;



FIG. 2 is a perspective cross-sectional view illustrating a first mold having a first passage forming formation therein according to one embodiment;



FIG. 3 is a plan view of an annular disc according to one embodiment;



FIG. 4 is a perspective view of a second mold having a second passage forming formation and a pre-pot therein according to one embodiment;



FIG. 5 is a simplified schematic cross-sectional side elevation view of a second mold having a second passage forming formation and a pre-potted porous membrane according to one embodiment;



FIG. 6 is a perspective view illustrating a second passage forming formation according to one embodiment;



FIG. 7 is a cross-sectional side elevation view illustrating a pre-potted porous membrane in a second pot according to one embodiment; and



FIG. 8 is a perspective cross-sectional view illustrating a pre-pot in a second pot (membranes not shown) according to one embodiment.





DETAILED DESCRIPTION

Aspects and embodiments of filtration membrane modules and of methods and structures associated with potting ends of the porous membranes in membrane modules as disclosed herein overcome or ameliorate disadvantages of the prior art and provide useful alternatives.


The aspects and embodiments disclosed herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosed aspects and embodiments are capable of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Potting assemblies provide means for producing module pots for use in securing and sealing porous membranes in membrane filtration modules. The angle at which the porous membranes are secured within, and exit from, the module pots is an important design factor. Tangled or non-uniform potted membranes can be a precursor for compromise of the integrity of the barrier between feed and filtrate provided by the membranes and potting assembly.


In addition to sealing the ends of porous hollow membranes, a filtration module pot is often designed to perform further functions which may be facilitated by the creation of passages within the pot. For example, passages may formed in the pot for securing structural support elements for the membrane module, or for providing a route for introducing gas into the membrane module. The passages, often containing feed in use, may in some systems be in close proximity to the secured membranes. Penetration of the passages by open ends of hollow fiber membranes can breach the integrity of a barrier between feed and filtrate leading to undesirable contamination of the filtrate stream. Similarly, sections along the length of the fiber membranes may be at risk of damage if they are adjacent a passage forming device when it is removed from the potting assembly during formation of the module pot. Such damage may compromise the integrity of hollow membrane fibers leading to undesirable contamination of the filtrate stream during use. Aspects and embodiments disclosed herein provide apparatus and methods for reducing the probability that open ends of hollow filtration membranes may be exposed to feed in a passage in a membrane pot in which the membranes are secured.


There are numerous methods for producing a porous membrane having a potted end. Static potting and centrifugal potting of membranes in a mold are two common techniques. In a static potting technique, potting material is introduced into a membrane potting mold while the mold is substantially stationary. In centrifugal potting methods, potting material is introduced into a membrane potting mold while the mold is being rotated such that the rotation of the mold forces the potting material toward an end of the rotating mold by centrifugal force.


Referring to the drawings, FIG. 1 is a cross-sectional side elevation view of a plurality of porous membranes 1 disposed in a pre-pot 3. Specifically, FIG. 1 depicts a plurality of linear vertically oriented porous hollow fiber membranes 1 having proximal ends 2 extending into a cured first pot forming substance 20. It will be appreciated that other forms of porous membrane such as sheets, mats, or tubes may be also used in various embodiments. The pre-pot 3 approximates the shape of a thick disc derived from the contours of a cup shaped mold 10 (FIG. 2). The pre-pot 3 is illustrated with a lower wall that slants downward toward the center of the pre-pot, however, in other embodiments, the lower wall may be substantially planar or may slant downward from a center portion to edge portions of the pre-pot.


Five passageways 21 are visible in the pre-pot 3, evenly spaced apart, and extending between and in the same vertical direction as the porous fibers 1. The passageways 21 have different sized bores, being larger towards the middle of the pre-pot 3. The central passageway 16 has a widened base as a result of the impression left by a de-molding device 15 (FIG. 2). In other embodiments, a greater or lesser number of passageways 21 may be present and the passageways may be spaced and sized in manners other than illustrated. Embodiments disclosed herein are not limited to any particular number, spacing, shape, or sizing of passageways 21.


In FIG. 1 the porous membranes 1 are depicted as not touching one another, and would appear, if positioned in the first mold 10 of FIG. 2, to not touch any other element of the potting assembly. In other embodiments, however, in use, the porous membranes 1 may make contact with other porous membranes 1 and/or elements of the potting assembly. For ease of handling, a bundle of porous membranes 1 can be formed in which the porous membranes 1 touch one another along their length. In various embodiments, the porous membranes 1 are not linear as depicted in FIG. 1, but may be twisted or curved. The porous membranes 1 may assume a non-linear shape when disposed as a bundle and/or when displaced by the plurality of fingers 31 of the first passage forming formation 30, described below.



FIG. 1 depicts an annular disc 25 partially embedded in the periphery of the pre-pot 3. The annular disc 25 includes an outer circumferential portion 26 extending radially outside the pre-pot 3 and an inner circumferential portion 27 extending radially inside the pre-pot 3. An aperture 29 is displayed positioned in the inner circumferential portion 27 of the annular disc. Apertures 28 defined in the outer circumferential portion 27 (FIG. 3) are not visible in FIG. 1 because the apertures 28 and 29 are positioned in an offset arrangement within the annular disc 25.



FIG. 2 depicts an apparatus for securing the porous membrane 1 in the pre-pot 3. A first mold 10, also be referred to as a pre-pot mold, is depicted as generally cup shaped and having a side wall 11, a base-plate 13, and circular open top 12. It will be appreciated that the first mold 10 can be any shape provided it adequately receives the additional elements of the potting assembly. For example, the first mold 10 may be substantially square, rectangular, or shaped as any other regular or irregular polygon desired. A first pot forming substance 20 may be introduced to the first mold 10 at any physical location with the provision of a suitable entry point (not shown). Suitable entry points could, for example, be positioned in the side wall 11 or the base-plate 13. Additionally or alternatively, the first pot forming substance 20 may be introduced to the first mold 10 through the open top 12 of the first mold 10.



FIG. 2 depicts a first passage forming formation 30 including a plurality of linear fingers 31 having externally tapered ends 32 extending upwardly from the base-plate 13 within the mold 10. The fingers 31 are positioned in three evenly distributed concentric circles with a single centrally located finger 31. The fingers 31 have a range of circumferences namely large 35, small 36, and medium 37. The large circumference fingers 35 are assigned to the innermost concentric circle and the single central location. The small circumference fingers 36 are assigned to the middle concentric circle, and the medium circumference fingers 37 to the peripheral concentric circle. It will be appreciated that although the passage forming formation are illustrated as including linear fingers or needles the fingers or needles may be of any suitable shape, configuration, and/or cross-sectional shape which provides for forming passages in the pot forming substance. Further, the fingers or needles are in some embodiments arranged and sized differently than illustrated. In some embodiments, the fingers or needles may be arranged in other than concentric circles, for example, in a regular array. In some embodiments, the fingers or needles may have substantially the same circumferences, and in other embodiments, the circumferences of the fingers or needles may decrease (or in other embodiments, increase) with increasing radial distance from a center of the mold 10.



FIG. 2 depicts the first mold side wall 11, base-plate 13, and the first passage forming formation 30 as three separable elements. Such a configuration allows for practical handling of each element when in use, and for the ability to insert alternate designs of the elements when required. It will be appreciated that alternative configurations are applicable in different embodiments. For example, in some embodiments, the first mold side wall 11, base-plate 13, and the first passage forming formation 30 can exist as one or more integral elements. Such a measure would reduce the number of parts of the potting assembly.


A plan view of the annular disc 25 is seen in FIG. 3. The annular disc 25 has an outer circumferential portion 26 and an inner circumferential portion 27, each including a plurality of apertures 28 and 29, respectively. The plurality of apertures 28, 29 are positioned orthogonally to the planar axis of the annular disc 25, are evenly spaced apart, and are arranged in patterns concentric to the annular disc 25. The apertures 28, 29 provide means to enhance the strength of attachment between the first pot forming substance 20 (and in some embodiments, a second pot forming substance 22) and the annular disc. In other embodiments, the apertures may be shaped differently than illustrated in FIG. 3, for example, as substantially circular or oval apertures. In some embodiments, the apertures may be arranged differently than illustrated in FIG. 3, for example in a single ring or in greater than two concentric rings. Embodiments disclosed herein are not limited to any particular number, shape, or arrangement of apertures in the ring 25.


It will be appreciated that alternative means to facilitate attachment between the annular disc 25 and the first pot forming substance 20 may be utilized in different embodiments. These alternative means may include, for example, one or more of grooves or protuberances on the annular disc 25, or ensuring that an effective chemical bond exists between the materials that make up the annular disc 25 and the first pot forming substance 20 and/or the second pot forming substance 22.



FIG. 2 depicts the annular disc 25 positioned concentric to the first mold 10. The outer circumferential portion 26 of the annular disc 25 is positioned between the separable elements of the side wall 11 and the base-plate 13 of the mold 10 whereas the inner circumferential portion 27 extends radially into the void afforded by the mold 10.


The side wall 11 and the base-plate 13 of the mold 10 are clamped together by screws or bolts 18, 19 extending vertically through the side wall 11 and the base-plate 13. The outer circumferential portion 26 of the annular disc 25 is clamped between the side wall 11 and the base-plate 13 when the screws or bolts 18, 19 are tightened. It will be appreciated that any suitable clamping arrangement may be used, such as by the action of gravity alone or using clipping arrangements. In some embodiments, protrusions jutting from the pre-pot 3 may be clamped to hold the side wall 11 and the base-plate 13 together.



FIG. 2 depicts a disc shaped de-molding device 15 located centrally in the base-plate 13 of the first mold 10. The central passage forming formation passes through the center of the de-molding device 15. In other embodiments, a de-molding device may be alternatively configured. For example, the de-molding device 15 may be located in a region or regions of the base plate 13 which are free of the fingers 31. In some embodiments, the de-molding device may include multiple plates or pins which may be extended upward from the upper surface 14 of the base plate 15 to remove a cured mold from the pre-pot mold. The multiple plates or pins may be individually displaceable, or in some embodiments, may be coupled to a common base.


An embodiment of a method for making the pre-pot 3 comprises positioning at least a portion of one or more porous membranes 1 in the first mold 10 having the first passage forming formation 30 therein, filling the first mold 10 with the first pot forming substance 20, curing the first pot forming substance 20 to form a pre-pot 3, and separating the pre-pot 3 from the first mold 10 and first passage forming formation 30.


When positioned in the potting assembly of FIG. 2, the porous membranes 1 (not shown in FIG. 2) extend downwardly into the first mold 10. The proximal fiber ends 2 become submerged with the addition of the first pot forming substance 20. It will be appreciated that the amount of the first pot forming substance 20 introduced into the mold 10 may be different in different embodiments. In some embodiments it is preferred that the pre-pot 3 includes an amount of the first pot forming substance 20 such that sufficient coverage of the proximal porous membrane ends 2 is provided to achieve a secure anchor and seal of the membranes in the pre-pot. In some embodiments, a secure anchor and seal of the membranes in the pre-pot is achieved when the proximal porous membrane end 2 is covered by the first pot forming substance 20 to a minimum height of approximately 2-5 mm. In other embodiments, the thickness of the layer of the first pot forming substance 20 may be greater than or less than approximately 2-5 mm. In other embodiments, the thickness of the layer of the first pot forming substance 20 may vary from one region to another. In some embodiment s where the porous membranes comprise hollow fiber membranes, the first pot forming substance 20 seals open ends of the hollow fiber membranes which are disposed in the first mold 10.


The porous membranes 1 are not shown in FIG. 2 however the position in which they would be positioned during the formation of the pre-pot 3 can be inferred from the corresponding position of the porous membranes 1 in FIG. 1. The plurality of linear fingers 31 of the first passage forming formation 30 extend amongst and parallel to the porous membranes 1 when positioned in the first mold 10. The proximal ends 2 of the plurality of porous membranes 1 extend in the opposite direction to the plurality of linear fingers 31. The linear fingers 31 assume positions between the porous membranes 1, laterally displacing the porous membranes 1 as the porous membranes 1 are introduced into the pre-pot mold, or alternatively, as the linear fingers are introduced into the pre-pot mold subsequent to positioning the porous membranes 1 in the pre-pot mold 10. Portions of the plurality of linear fingers 31 rise above the level of the added first pot forming substance 20 to form the passageways 21 through the first pot forming substance 20.


The passageways 21 depicted in the pre-pot 3 in FIG. 1 are provided to distribute cleaning gas amongst the porous membranes 1 and/or to introduce liquid to be filtered into a membrane module including the porous membranes 1 during use. In some embodiments, the passageways 21 located in the vicinity of the middle of the pre-pot are larger in bore size than passageways 21 located in the vicinity of the periphery of the pre-pot, thereby affording greater air and/or liquid flow through the central region of the finished pot during use. More air flow achieves a more rigorous cleaning effect in a region having a greatest density of porous membranes 1, which is in some embodiments, a region at or proximate a center of a membrane module.


In some embodiments, the first pot forming substance 20 is introduced into the first mold 10 while the first mold 10 is maintained under static conditions as opposed to by centrifugal means. In some embodiments, a number of advantages may be achieved by potting the porous membranes 1 in the first mold 10 under static conditions. For example, the liberation of small air bubbles from the proximal fiber ends 2 may be reduced when the first pot forming substance 20 is introduced into the first mold 10 under static conditions as compared to when the first pot forming substance 20 is introduced into the first mold 10 under centrifugal conditions. In some embodiments, potting the porous membranes 1 in the first mold 10 under static conditions may eliminate the liberation of small air bubbles from the proximal fiber ends 2. Such bubbles may be problematic if present in the first pot forming substance 20 as they can lead to cracking or general breaches of integrity in the cured pot which may contribute to undesirable contamination of the filtrate stream during use. Further, the porous membranes 1 may be maintained in a uniform fashion when potted statically. Some centrifugal potting methods may result in undesirable non-linear, non-level fiber ends 2, or twisted or curved fibers disposed in the pot. Such undesirably positioned fibers can penetrate the passageways 21 formed within the cured pot and contribute to undesirable contamination of the filtrate stream during use.


When the first pot forming substance 20 has become solid, semi-solid, or has cured it is removed from the first mold 10 and the first passage forming formation 30, resulting in the structure including the porous membranes 1 retained in the pre-pot 3 as illustrated FIG. 1. The de-molding device 15 aids in this separation process by means of its detachability from the base-plate 13 of the mold 10. A disengaging force may be exerted on the cured pre-pot 3 by the de-molding device 15 to push the cured pre-pot out of the pre-pot mold and achieve separation between the cured pre-pot 3 and the pre-pot mold.


An embodiment of a method of securing the pre-potted porous membranes 1 in the second pot 4 is described in FIGS. 4 to 8. The method comprises positioning at least a portion of the pre-pot 3 in a second mold 40 having a second passage forming formation 50 therein, filling the second mold 40 with a second pot forming substance 22, curing the second pot forming substance 22, and separating the cured second pot forming substance 22 from the second mold 40 and second passage forming formation 50.



FIGS. 4 and 5 depict a second mold 40 as a cup shaped structure having a side wall 41, a base-plate 43, and a circular open top 42. It will be appreciated that the second mold 40 can be any shape provided it is configured to adequately receive the additional elements of the potting assembly. For example, the second mold 40 may be substantially square, rectangular shaped, or shaped with a cross section of any other regular or irregular polygon instead of being circular in cross section as illustrated. The second mold 40 may have a cross sectional shape similar to that of the first mold 10, or may be shaped differently than the first mold 10.


In some embodiments, the circular open top 42 of the second mold 40 may be utilized for introducing a second pot forming substance 22 into the second mold. In other embodiments, the second pot forming substance 22 may be introduced to the second mold 40 at any physical location with the provision of a suitable entry point. In some embodiments, the second pot forming substance 22 is introduced by centrifugal means via an entry point (not shown) in the base-plate 43.



FIGS. 4 and 5 do not show the second mold 40 having a de-molding device corresponding to the de-molding device 15 located centrally in the base-plate 13 of the first mold 10. It will be appreciated, however, that such a device could equally be applied to the second mold 40.



FIG. 6 depicts a second passage forming formation 50 including a plurality of linear fingers 51, each having tapered ends 52, extending upwardly from the second mold base-plate 43 which is disposed within the second mold 40 as illustrated in FIG. 4. The positioning of the fingers 51 of the second passage forming formation 50 correspond with the positioning of the fingers 31 of the first passage forming formation 30 but are respectively smaller in circumference. Consequently, the fingers 51 extend concentrically through the passageways 21 of the pre-pot 3 when the pre-pot 3 is introduced into the second mold 40. The radius or cross-sectional length of the passageways 21 is in some embodiments approximately 1 mm greater than that of the fingers 51, although in other embodiments the radius or cross-sectional width of the passageways 21 may be greater or less than 1 mm greater than that of the fingers 51. In some embodiments, the fingers 51 of the second passage forming formation 50 have a range of circumferences, namely large 55, small 56, and medium 57. The arrangement and size distribution of the fingers 51 will in some embodiments correspond to the arrangement and size distribution of the fingers 31 in a first mold 10 used to form the passageways 21 in a pre-pot 3 which is to be potted in the second mold 40.



FIG. 5 depicts the plurality of linear fingers 51 of the second passage forming formation 50 extending amongst and parallel to the porous membranes 1 in the second mold 40. The linear fingers 51 rise above the level of the second pot forming substance 22 (not shown), to form the radially reduced passageways 23 seen in FIGS. 7 and 8.


It will be appreciated that alternative second passage forming formation 50 designs may be utilized to form a desired number of passageways 21 in the pre-pot 3 while maintaining a means to effectively secure the pre-pot 3 in the second pot 4. For example, in some embodiments, fewer fingers 51 of the second passage forming formation 50 are provided than passageways 21. In some embodiments, one or more of the linear fingers 51 may have the same or substantially the same circumference as the corresponding passageways 21 though which they pass. Replacing a portion or all of the linear fingers 51 with a means for blocking the entry to the passageways 21 is acceptable if the second pot forming substance 22 adequately secures the pre-pot through contact with a sufficient portion of the outer surface of the pre-pot 3. Any combination of these alternatives may be present in different embodiments.



FIGS. 4 and 5 depict the second mold side wall 41, base-plate 43, and the second passage forming formation 50 existing as three separable elements. Such a configuration allows for practical handling of each element when in use, and for the ability to insert alternate designs of the elements when required. It will be appreciated that in different embodiments, the second mold side wall 41, base-plate 43, and the second passage forming formation 50 may exist as one or more integral elements. Such a measure would reduce the number of parts of the potting assembly.



FIGS. 4 and 5 depict a peripheral region of the outer circumferential portion 26 of the annular disc 25 extending into a supporting groove 44 defined within the side wall 41 of the second mold 40. The pre-pot 3, by means of the embedded annular disc 25, is supported by the groove 44 such that the arrangement is stable within a centrifuge during the addition of the second pot forming substance 22. The groove 44 may be disposed at a height on the side wall 41 of the second mold 40 which affords the deposit of a sufficient quantity of the second pot forming substance 22 to achieve a desired level mechanical stability for the potted arrangement. In some embodiments, the groove 44 may be disposed at a height on the side wall 41 of the second mold 40 approximately 10 mm from the lower end of the side wall 41. In other embodiments, alternative heights can be effective given alternative mold configurations and pot forming substances.


The annular disc 25 in the embodiment illustrated in FIGS. 4 and 5 has the additional function of providing a means of support for a membrane shell or screen 17. The membrane shell or screen 17 may comprise a hollow cylinder or a conduit having an alternate shape which may match that of the second mold 40 in embodiments in which the second mold 40 has a non-circular cross section. The membrane shell or screen 17 may include a proximal end disposed on an upper surface of the annular disc 25 and abutting the peripheral surface of the pre-pot 3. The membrane shell or screen 17 may be porous or solid depending upon the requirements of the filtration system.



FIGS. 7 and 8 depict the porous membranes 1 secured in the pre-pot 3 and in a second pot 4. In some embodiments, the second pot forming substance encloses or surrounds at least a portion of the pre-pot 3. In some embodiments, the second pot forming substance is present on both an upper and a lower surface of the pre-pot 3, and may also coat the internal walls of the passages 21 in the pre-pot 3. In some embodiments, the second pot forming substance 22 completely surrounds the pre-pot 3. In some embodiments, the second pot forming substance 22 completely surrounds the pre-pot 3 except for portions of the periphery of the pre-pot abutting the membrane shell or screen 17. The second pot forming substance 22 may also surround portions of the porous membranes 1 which extend upwardly from the pre-pot 3, and may contact a portion of the membrane shell or screen 17. In some embodiments, the second pot forming substance 22 extends to a level approximately 50 mm above the annular disc 25, although the second pot forming substance 22 may extend to a level greater or less than 50 mm above the annular disc 25 in different embodiments. The second pot forming substance 22 may adhere to and secure the membrane shell or screen 17 to the pre-pot 3. It will be appreciated that in some embodiments, it is not necessary for the second pot forming substance 22 to completely encase the pre-pot 3 to mechanically stabilize the second pot 4.



FIGS. 7 and 8 depict passageways 23 extending coaxially through the pre-pot 3 passageways 21, the former being radially smaller than the latter. In some embodiments the passageways 23 may be about 1 mm radially smaller than the respective passageways 21 through which they pass. In other embodiments, the passageways 23 have the same radial or cross sectional dimensions as the corresponding passageways 21 or may have radial or cross sectional dimensions greater or less than 1 mm smaller than the corresponding passageways 21. Such an arrangement provides an adequate means of access for the second pot forming substance 22 to surround the pre-pot 3 during the potting process. In addition, in some embodiments, the second pot forming substance 22 provides a second means of sealing damaged or exposed open ends of porous membranes 1 thereby reducing the potential for undesirable contamination of a filtrate stream during use of the finished filtration module. For example, if an open end of a membrane 1 is exposed to an internal volume of a passageway 21, the second pot forming substance 22 may seal the open end of the membrane 1, ensuring a seal between feed and filtrate during use of a module including the membrane 1.


The porous membranes 1 in FIGS. 7 and 8 are depicted in the same configuration as those within the pre-pot 3 of FIG. 1. It will be appreciated that the explanation of the variations in porous membrane 1 positioning and the porous membrane 1 interaction with the first passage forming means 30 is equally applicable to the porous membranes 1 and the second passage forming means 50.


In some embodiments, it may be advantageous to add the second pot forming substance 22 to the second mold 40 centrifugally rather than statically. Adding the second pot forming substance 22 to the second mold 40 with a centrifugal potting process, through greater forces, may achieve a more effective distribution of the second pot forming substance 22 throughout any voids afforded by the elements within the second mold 40. Undesirable air pockets in the second pot forming substance 22 may be reduced in size or quantity or eliminated when the second pot forming substance 22 is added to the second mold 40 with a centrifugal potting process. However, it will be appreciated that the second pot forming substance 22 could equally be introduced with the second mold 40 maintained under static conditions.


The pot forming substances 20, 22 desirably include substances which adhere well to the porous membranes which are secured in the finished membrane pot. The pot forming substances also desirably include substances which impart rigidity and strength to the finished membrane pot and which cure within a reasonable amount of time. The pot forming substances are desirably chemically inert and are not degraded by contact with liquids which a filtration module including the pot may be utilized to filter or by chemical cleaning solutions which may be utilized to clean the porous membranes. Further, the pot forming substances desirably do not significantly expand or contract with changes in temperature or when contacted by liquids which a filtration module including the pot may be utilized to filter or by chemical cleaning solutions which may be utilized to clean the porous membranes so that delamination of the potting materials from each other or from other portions of the membrane module including the membrane pot does not occur. When multiple pot forming materials are used to form the membrane pot, the multiple pot forming materials desirably expand and contract at substantially the same rate with changes in temperature or exposure to various liquids so that the multiple pot forming materials do not delaminate from one another. Also, when multiple pot forming materials are used to form the membrane pot, the multiple pot forming materials desirably form strong chemical bonds with each other so that the multiple pot forming materials do not delaminate from one another. In some embodiments, the pot forming material surrounding the portions of the membranes entering into the pot exhibits at least some flexibility to accommodate swaying or lateral movement of the membranes during use without causing shearing of the membranes from the pot.


In some embodiments, the pot forming substances may be made up of resins, for example, polyurethanes or epoxy, however, it will be appreciated any suitable substance may be used. The pot forming substances may include additives, for example, to increase the flexibility of the pot forming substances. The first pot forming substance 20 may comprise a different or the same material as the second pot forming substance 22. For example, in some embodiments, the first pot forming substance 20 includes a material which more strongly adheres to the porous membranes 1 than the second pot forming substance 22. Further, in some embodiments, the second pot forming substance 22 includes a material which is more flexible than the first pot forming substance 20. For example, the first pot forming material may include an epoxy or a urethane, and the second pot forming material may include a silicone material or a urethane which is more flexible than the epoxy or urethane of the first pot forming material. Providing for the second pot forming substance 22 to be flexible may reduce the probability that the porous membranes 1 may shear from the first pot forming substance 20 due to lateral mechanical forces which the porous membranes 1 may be subject to during use.


Having thus described several aspects of at least one embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. Accordingly, the foregoing description and drawings are by way of example only.

Claims
  • 1. A method of forming a filtration module, the method comprising: positioning a portion of a hollow fiber membrane in a first potting mold;positioning an annular disc including a plurality of apertures in the first potting mold;introducing a sufficient amount of the first pot forming substance into the first potting mold to cover at least a portion of an inner circumference of the annular disc with the first pot forming substance, the first pot forming substance surrounding the portion of the hollow fiber membrane;curing the first pot forming substance to form a pre-pot;separating the pre-pot from the first potting mold;positioning at least a portion of the pre-pot in a second potting mold;introducing a second pot forming substance into the second potting mold, the second pot forming substance surrounding at least a portion of the pre-pot and at least a portion of the hollow fiber membrane;curing the second pot forming substance to form a membrane pot;and separating the membrane pot from the second potting mold.
  • 2. The method of claim 1, further comprising forming an aperture in the pre-pot.
  • 3. The method of claim 2, wherein forming the aperture in the pre-pot comprises forming the aperture in the pre-pot with a finger member extending upwardly from a base of the first potting mold.
  • 4. The method of claim 1, wherein separating the pre-pot from the first mold comprises pushing the pre-pot out of the first mold with a de-molding device disposed in the base of the first mold.
  • 5. The method of claim 4, further comprising forming an aperture in the second pot forming substance.
  • 6. The method of claim 5, wherein forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance coaxial with the aperture formed in the pre-pot.
  • 7. The method of claim 6, wherein forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance with a cross sectional area less than a cross sectional area of the aperture formed in the pre-pot.
  • 8. The method of claim 7, wherein forming the aperture in the second pot forming substance comprises forming the aperture in the second pot forming substance with a finger member extending upwardly from a base of the second potting mold.
  • 9. The method of claim 8, further comprising disposing a peripheral region of an outer circumferential portion of the annular disc in a supporting grove defined in a side wall of the second mold.
  • 10. The method of claim 9, further comprising coupling a membrane shell to the membrane pot, the membrane shell surrounding at least a portion of the porous membrane.
  • 11. A method of forming a filtration membrane module, the method comprising: positioning at least a portion of a hollow fiber membrane in a first mold having a first passage forming formation therein;at least partially filling the first mold with a first pot forming substance;curing the first pot forming substance;separating the cured first pot forming substance from the first mold and first passage forming formation to form a pre-pot;positioning an annular disc including a plurality of apertures in the pre-pot;positioning at least a portion of the pre-pot in a second mold having a second passage forming formation therein;at least partially filling the second mold with a second pot forming substance;curing the second pot forming substance; andseparating the cured second pot forming substance from the second mold and second passage forming formation.
  • 12. The method of claim 11, further comprising providing the second passage forming formation with a cross-sectional area smaller than a cross-sectional area of the first passage forming formation.
  • 13. The method of claim 12, wherein the first mold is statically filled with the first pot forming substance.
  • 14. The method of claim 13, wherein the second mold is centrifugally filled with the second pot forming substance.
  • 15. The method of claim 14, wherein filling the second mold with the second pot forming substance comprises filling the second mold with a sufficient quantity of the second pot forming substance such that the second pot forming substance encapsulates the pre-pot.
  • 16. The method of claim 15, wherein filling the first mold with the first pot forming substance and filling the second mold with the second pot forming substance comprise filling the first mold and the second mold with a same substance.
  • 17. The method of claim 15, wherein filling the first mold with the first pot forming substance and filling the second mold with the second pot forming substance comprise filling the first mold and the second mold with different substances.
  • 18. The method of claim 11, further comprising positioning the pre-pot in the second mold by disposing a portion of the annular disc in a supporting grove defined in a side wall of the second mold.
  • 19. A membrane filtration module comprising: a hollow fiber membrane having an end secured in a pre-pot formed of a first potting material and at least partially enclosed in a second potting material;an annular disc including a plurality of apertures and having an internal circumferential portion secured in the first potting material and an external circumferential portion in contact with the second potting material; anda membrane shell coupled to the second potting material and in contact with the external circumferential portion of the annular disc, the membrane shell surrounding at least a portion of the porous membrane.
  • 20. The membrane filtration module of claim 19, further comprising at least one aperture defined in the pre-pot.
  • 21. The membrane filtration module of claim 20, further comprising an aperture defined in the second potting material and disposed within the at least one aperture defined in the pre-pot.
  • 22. The membrane filtration module of claim 21, wherein the first potting material is a same material as the second potting material.
  • 23. The membrane filtration module of claim 21, wherein the first potting material is a different material than the second potting material.
Priority Claims (1)
Number Date Country Kind
2012902751 Jun 2012 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/047848 6/26/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/004656 1/3/2014 WO A
US Referenced Citations (598)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
403507 Bode May 1889 A
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3246761 Bryan et al. Apr 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3563860 Henderyckx Feb 1971 A
3591010 Pall et al. Jul 1971 A
3592450 Rippon Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3628775 McConnell et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3827566 Ponce Aug 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3912624 Jennings Oct 1975 A
3937015 Akado et al. Feb 1976 A
3955998 Clampitt et al. May 1976 A
3962095 Luppi Jun 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4016078 Clark Apr 1977 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4130622 Pawlak Dec 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4169873 Lipert Oct 1979 A
4183890 Bollinger Jan 1980 A
4187263 Lipert Feb 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4371427 Holler et al. Feb 1983 A
4384474 Kowalski May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4545862 Gore et al. Oct 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702830 Makino et al. Oct 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4752421 Makino Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4769140 van Dijk et al. Sep 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4812235 Seleman et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4828696 Makino et al. May 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4888115 Marinaccio et al. Dec 1989 A
4889620 Schmit et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4908114 Ayers Mar 1990 A
4911838 Tanaka Mar 1990 A
4919815 Copa et al. Apr 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4980066 Slegers Dec 1990 A
4988444 Applegate et al. Jan 1991 A
4990251 Spranger Feb 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075044 Augem Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5080770 Culkin Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5102550 Pizzino et al. Apr 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5156738 Maxson Oct 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5180407 DeMarco Jan 1993 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5244579 Horner et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531900 Raghavan et al. Jul 1996 A
5552047 Oshida et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
5786528 Dileo et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6036030 Stone et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083381 Connelly et al. Jul 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine Oct 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha Dec 2000 A
6162020 Kondo Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6217770 Haney et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6224767 Fujiwara et al. May 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Guibert et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755894 Bikson Jun 2004 B2
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790347 Jeong et al. Sep 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6840251 Gill et al. Jan 2005 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863816 Austin et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6936085 DeMarco Aug 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7279215 Hester et al. Oct 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7507274 Tonkovich et al. Mar 2009 B2
7510655 Barnes Mar 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7931463 Cox et al. Apr 2011 B2
8002246 Eguchi et al. Aug 2011 B2
8197688 Sakashita Jun 2012 B2
8287923 Hsu Oct 2012 B2
8372282 Zha Feb 2013 B2
8506806 Beck Aug 2013 B2
8518256 Cox Aug 2013 B2
8679337 Ishibashi Mar 2014 B2
20010035092 Hachimaki et al. Nov 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020027111 Ando et al. Mar 2002 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20030038075 Akimoto Feb 2003 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030062301 Merrie et al. Apr 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030075504 Zha et al. Apr 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030173706 Rabie Sep 2003 A1
20030196955 Hughes Oct 2003 A1
20030205519 Zha Nov 2003 A1
20030226797 Phelps Dec 2003 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040118779 Rawson et al. Jun 2004 A1
20040129637 Husain et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178136 Taniguchi Sep 2004 A1
20040188339 Murkute et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050000885 Stockbower Jan 2005 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050053878 Bruun et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050161389 Takeda et al. Jul 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194305 Vido et al. Sep 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060021929 Mannheim et al. Feb 2006 A1
20060033222 Godfrey et al. Feb 2006 A1
20060049093 Chikura et al. Mar 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060091074 Pedersen et al. May 2006 A1
20060151373 Szabo Jul 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070095741 Berends May 2007 A1
20070102339 Cote et al. May 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070163942 Tanaka et al. Jul 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20080011675 Kedziora Jan 2008 A1
20080093297 Gock et al. Apr 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090194477 Hashimoto Aug 2009 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110049047 Cumin et al. Mar 2011 A1
20110049048 Benner et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110147298 Kennedy et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20120074053 Collignon et al. Mar 2012 A1
20120091602 Cumin et al. Apr 2012 A1
20120097601 Lee et al. Apr 2012 A1
20120285885 James et al. Nov 2012 A1
20130037467 Biltoft et al. Feb 2013 A1
20130056426 Barnes Mar 2013 A1
20130168307 Drivarbekk et al. Jul 2013 A1
20150136686 Chen May 2015 A1
Foreign Referenced Citations (416)
Number Date Country
3440084 Apr 1985 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
2531764 Mar 2005 CA
2204898 Aug 1995 CN
2236049 Sep 1996 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
19718028 Jun 1998 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
10045227 Feb 2002 DE
10209170 Aug 2003 DE
202004012693 Oct 2004 DE
0012557 Jun 1980 EP
0050447 Apr 1982 EP
0053833 Jun 1982 EP
0090383 Oct 1983 EP
126714 Nov 1984 EP
194735 Sep 1986 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
407900 Jan 1991 EP
0464321 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
627255 Dec 1994 EP
395133 Feb 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
0937494 Aug 1999 EP
1034835 Sep 2000 EP
1156015 Nov 2001 EP
1236503 Aug 2004 EP
1466658 Oct 2004 EP
0038612 Feb 2008 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53-5077 Jan 1978 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58088007 May 1983 JP
60019002 Jan 1985 JP
60206412 Oct 1985 JP
60260628 Dec 1985 JP
61097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62004408 Jan 1987 JP
62068828 Mar 1987 JP
62114609 May 1987 JP
62140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62179540 Aug 1987 JP
62237908 Oct 1987 JP
62250908 Oct 1987 JP
62187606 Nov 1987 JP
62262710 Nov 1987 JP
63-93307 Apr 1988 JP
63097634 Apr 1988 JP
63099246 Apr 1988 JP
63143905 Jun 1988 JP
63-1602 Jul 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
S63-38884 Oct 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03-086529 Apr 1991 JP
03110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
4-256425 Sep 1992 JP
04250898 Sep 1992 JP
04256424 Sep 1992 JP
04265128 Sep 1992 JP
04293527 Oct 1992 JP
04310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05-4030 Jan 1993 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05137977 Jun 1993 JP
05157654 Jun 1993 JP
05161831 Jun 1993 JP
05184884 Jul 1993 JP
05285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
06170364 Jun 1994 JP
06190250 Jul 1994 JP
06218237 Aug 1994 JP
06238273 Aug 1994 JP
06-292820 Oct 1994 JP
06277469 Oct 1994 JP
06285496 Oct 1994 JP
06343837 Dec 1994 JP
07000770 Jan 1995 JP
07024272 Jan 1995 JP
07068139 Mar 1995 JP
07136470 May 1995 JP
07136471 May 1995 JP
07155564 Jun 1995 JP
07155758 Jun 1995 JP
7-39921 Jul 1995 JP
07178323 Jul 1995 JP
07185268 Jul 1995 JP
07185270 Jul 1995 JP
07185271 Jul 1995 JP
07185272 Jul 1995 JP
07204635 Aug 1995 JP
07236819 Sep 1995 JP
07251043 Oct 1995 JP
07256253 Oct 1995 JP
07275665 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08010585 Jan 1996 JP
8039089 Feb 1996 JP
08197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09038648 Feb 1997 JP
09072993 Mar 1997 JP
09075689 Mar 1997 JP
09099227 Apr 1997 JP
09103655 Apr 1997 JP
09103661 Apr 1997 JP
9117647 May 1997 JP
9138298 May 1997 JP
09141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09220569 Aug 1997 JP
09271641 Oct 1997 JP
09313902 Dec 1997 JP
09324067 Dec 1997 JP
10015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10066972 Mar 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10249171 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028339 Feb 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11076769 Mar 1999 JP
11076770 Mar 1999 JP
11090189 Apr 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11165200 Jun 1999 JP
11179171 Jul 1999 JP
11300177 Nov 1999 JP
11302438 Nov 1999 JP
11309351 Nov 1999 JP
11319501 Nov 1999 JP
11319507 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
200051670 Feb 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000093758 Apr 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000157845 Aug 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001212587 Aug 2001 JP
2001232160 Aug 2001 JP
2001-269546 Oct 2001 JP
2002011472 Jan 2002 JP
2002143849 May 2002 JP
2002177746 Jun 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004008981 Jan 2004 JP
2004050011 Feb 2004 JP
2004073950 Mar 2004 JP
2004-230287 Aug 2004 JP
2004216263 Aug 2004 JP
2004230280 Aug 2004 JP
2004249168 Sep 2004 JP
2004322100 Nov 2004 JP
2004337730 Dec 2004 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006116495 May 2006 JP
2007547083 Aug 2010 JP
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
20030066271 Aug 2003 KR
20030097167 Dec 2003 KR
2005-063478 Jun 2005 KR
1006390 Dec 1998 NL
1020491 Oct 2003 NL
1021197 Oct 2003 NL
216773 Dec 1993 TW
347343 Dec 1998 TW
8501449 Apr 1985 WO
8605116 Sep 1986 WO
8605705 Oct 1986 WO
8800494 Jan 1988 WO
8801529 Mar 1988 WO
88001895 Mar 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
9302779 Feb 1993 WO
9315827 Aug 1993 WO
9323152 Nov 1993 WO
9411094 May 1994 WO
9511736 May 1995 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
9629142 Sep 1996 WO
9641676 Dec 1996 WO
9706880 Feb 1997 WO
9710046 Mar 1997 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
9906326 Feb 1999 WO
9908773 Feb 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
0018498 Apr 2000 WO
0021890 Apr 2000 WO
0030740 Jun 2000 WO
0030742 Jun 2000 WO
0100307 Jan 2001 WO
0105715 Jan 2001 WO
0108790 Feb 2001 WO
0119414 Mar 2001 WO
0132299 May 2001 WO
0136075 May 2001 WO
0143856 Jun 2001 WO
0145829 Jun 2001 WO
0204100 Jan 2002 WO
0211867 Feb 2002 WO
0226363 Apr 2002 WO
0230550 Apr 2002 WO
0238256 May 2002 WO
0240140 May 2002 WO
0247800 Jun 2002 WO
03000389 Jan 2003 WO
03013706 Feb 2003 WO
03024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
03095078 Nov 2003 WO
2004018084 Mar 2004 WO
2004024304 Mar 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005023997 Mar 2005 WO
2005028085 Mar 2005 WO
2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005070524 Aug 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2006017911 Feb 2006 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006066319 Jun 2006 WO
2006066350 Jun 2006 WO
2006126833 Nov 2006 WO
2007022576 Mar 2007 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007073080 Jun 2007 WO
2007135087 Nov 2007 WO
2008025077 Mar 2008 WO
2008034570 Mar 2008 WO
2008071516 Jun 2008 WO
2008141080 Nov 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
Non-Patent Literature Citations (36)
Entry
Berg et al., “Flux Decline in Ultrafiltration Processes,” Desalination, 77 (1990) pp. 101-133.
Almulla et al., “Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems,” Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon™ THV and Dyneon™ HTE Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Cote et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis,” Desalination, 139 (2001), pp. 229-236.
Cote et al., “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater,” Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442.
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364.
Crawford et al., American Water Works Association Membrane Technology Conference, “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications,” (2003).
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91.
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Delgrange-Vincent et al., “Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production,” Desalination 131 (2000) pp. 353-362.
Dow Chemical Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
EPA, Membrane Filtration Guidance Manual, Nov. 2005.
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication.
Jones, Craig, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999, Chapters 2 and 5.
Judd, “The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment,” (2006), pp. 174-178.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system,” Water Research, 37(5) Mar. 2003, pp. 1192-1197, Elsevier, Amsterdam, NL.
Lloyd, D.R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation/Solid-Liquid Phase Separation,” Journal of Membrane Science, 52(3) (1990), pp. 239-261, Elsevier Scientific Publishing Company, Amsterdam, NL.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic,” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, to Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Miller et al., “Side Stream Air Lift MBR Development and Successful Application of a New Generation of MBR,” Pollution Solutions Brochure, NORIT, The Netherlands, Apr. 2008.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via Thermally Induced Phase Separation”, Journal.
Rosenberger et al., “Filterability of activated sludge in membrane bioreactors,” Desalination, 151 (2002), pp. 195-200.
Schematic of 4″ Geyser Pump, Geyser Pump Tech. Co., Nov. 13, 2005.
U.S. Appl. No. 60/278,007, filed Mar. 23, 2001.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
White et al., “Optimisation of intermittently operated microfiltration processes,” The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Yamamoto et al., “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank,” Water Science Technology, 21 (1989), pp. 43-54.
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production” Water Research, 37 (2003), pp. 1921-1931, Elsevier, Amsterdam, NL.
Zenon, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Related Publications (1)
Number Date Country
20150136687 A1 May 2015 US