The field relates generally to medication management and, more particularly, to management of pouch-package-type medication packages.
Prescription medications, over-the-counter (OTC) products, nutriceutical products and other products are frequently required to be packaged in unit-of-use packages referred to as “pouch packages.” For convenience and brevity these products will be referred to herein simply as “medication.” Each pouch package may include one or more medication, typically in the form of a tablet or capsule.
The pouch packages containing the medication are typically formed in a continuous web of film-type packaging material resulting in formation of a pouch package web. The pouch packages may be arranged and organized in the pouch package web in various ways to facilitate compliance with the patient's prescription regimen. For example, the pouches could be arranged in the order in which the medication is to be taken by the patient. As a specific example, four serially-arranged pouch packages could include different types of medication to be taken, respectively, in the morning, afternoon, evening, and at bedtime.
Medication is frequently packaged in pouch packages without regard to any specific patient, simply to provide the medication in a convenient form for subsequent use. For example, it may be desirable for a pharmacy to package and have available a quantity of a frequently-used medication. Packaging of such medication in pouch packages formed in a continuous pouch package web represents a convenient way to manage and administer such medications.
Most typically, packaging of the medication into the pouch packages is accomplished by means of an automatic tablet packager which includes medication dispensers and a packaging apparatus. Typically, the medication dispensers used by the automatic tablet packager are a plurality of cassettes, each holding one type of prescription medication. The packaging apparatus is typically a form-fill-seal machine specialized for use in packaging medication dispensed from the dispensers. The cassettes are activated in coordination with the packaging apparatus so that the appropriate medication is packaged according to a patient's prescription order or according to other instructions provided by a pharmacy technician.
The medication is dropped onto the packaging material web in the appropriate order and the packaging apparatus fuses or welds the packaging material to form a discrete pouch for the medication. A continuous pouch package web including the pouch packages formed one-after-the-other therein is created by the automatic tablet packager during this dispensing and packaging process.
The pouch package web including the pouch packages is output from the automatic tablet packager. In many pharmacies, the pouch package web output from the automatic tablet packager simply falls in a heap onto the floor adjacent the packager or into a tote or box in a long, continuous web. A technician must then cut or otherwise sever the pouch package web into separate segments for each prescription order being filled or otherwise separate the web into segments as heeded. The segments are then delivered to the patient or are otherwise distributed as required.
As can be easily appreciated, management of many linear feet of a continuous pouch package web can be inconvenient and inefficient. The technician is typically required to separate the pouch packages either adjacent the automatic tablet packager, or the technician must gather the mass of pouch packages and take them to a workstation in order to perform this work. Performing this work adjacent the automatic tablet packager, rather than at a workstation, is not optimally efficient. Handling a potentially tangled mass of pouch packages at a workstation is also not optimally efficient. Carrying of a long, continuous mass of pouch packages to a hospital ward or other location for administration to patients is also inconvenient and can be completely impractical.
It would be an advance in the art to provide apparatus and methods for managing pouch package webs, which would improve the organization and delivery of medication and other products, which would improve efficiency and generally improve the quality of patient care.
Apparatus and methods for management of pouch package webs are shown and described. In one aspect, a spooler for taking up a pouch package web is provided. The web may be output from a pouch package web source, such as an automatic tablet packager. Preferably, the spooler comprises a support structure, a rotatable spindle secured with respect to the support structure, a drive apparatus in power-transmission relationship with the spindle for powering spindle rotation and control apparatus. The spindle receives a spool mounted thereon. Pouch package web output from the pouch package web source is wound onto the spool, providing a convenient and efficient means for managing the pouch package web. It is preferred that the spool is removable from the spindle so that an unloaded spool may be substituted in place of a spool loaded with pouch package web.
In preferred embodiments, control apparatus may be provided to stop spool rotation automatically. Preferably, the control apparatus automatically stops spool rotation if the pouch package web source stops output of the pouch package web. In embodiments, the control apparatus automatically stops spool rotation responsive to other conditions, such as severing of the web, or lack of tension on the web. Other control apparatus embodiments may be utilized.
In another aspect, there is described a method for management of a pouch package web output from a pouch package web source. The method comprises positioning a spooler adjacent to the pouch package web source, associating the pouch package web from the pouch package web source with a spool mounted on the spooler, outputting the pouch package web from, the pouch package web source and rotating the spool with the spooler to wind the pouch package web into a roll on the spool.
Additional steps which may be performed include severing of the pouch package web output from the pouch package web source once an amount of the pouch package web is wound onto the spool and removing the spool from the spooler. In aspects of the method, the loaded spool may be placed on a rack for ease of delivery or subsequent handling of the pouch package web.
It is preferred that the method further include stopping spool rotation responsive to stoppage of pouch package web outputting. In a highly preferred embodiment, the stopping of spool rotation is responsive to an increase in pouch package web tension which occurs when output from the pouch package web source stops, yet the spool continues to rotate. It is also highly preferred that the stopping of spool rotation is responsive to a decrease in pouch package web tension which occurs, for example, when a technician severs the pouch package web after the spool is fully loaded.
Exemplary spooler apparatus and methods may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements throughout the different views. For convenience and brevity, like reference numbers are used for like parts amongst the embodiments. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the accompanying drawings:
An exemplary spooler 11 is illustrated in
The pouch package web 17 may be output from an automatic tablet packager 19, an example of which is shown schematically in
With the pouch package web 17 wound conveniently onto spool 21, the pouch package web 17 may be handled or processed as desired. For example, the spool 21 may be loaded with all medications, required by all patients in an entire hospital or long-term-care facility ward and the spool 21 and pouch package web 17 may be taken to the ward for convenient administration of the medication. As illustrated in
By way of further example, spool 21 and pouch package web 17 could simply be taken to a pharmacy workstation for convenient separation of each patient's pouch packages 15 from web 17 by a pharmacy technician.
As yet another example, multiple spools 21 could be loaded and temporarily stored on mobile rack 23 for processing or medication administration at a future point in time. This would permit automatic tablet packager 19 to package medication 13 at off-peak times. These and other uses of spooler 11 desirably contribute to overall pharmacy efficiency, contribute to the control of costs and improve the quality of patient care.
The automatic tablet packager 19 shown is an ATP Model 320 available from The Chudy Group, LLC of Powers Lake, Wis. Persons of skill in the art will appreciate that other types of pouch-packaging apparatus may be utilized to package products in pouch packages.
Turning then to the example of
In the embodiment, spooler 11 is equipped with a pair of front wheels 39, 41 secured to front end portion 33 by wheel mounts 43, 45 and associated bolts and lock nuts as shown in
Exemplary tensioner assembly 51 is provided to place tension on pouch package web 17 during take up of web 17 onto spool 21. In the embodiment, tensioner assembly 51 and an associated micro-switch 157 serve as a control apparatus 52 for spooler 11. Such exemplary control apparatus 52 automatically deactivates spooler 11 when automatic tablet packager 19 stops output of web 17 (
Referring to
To facilitate ease of spooler 11 movement, a handle 71 with a sphere-shaped gripping end knob may be affixed to an upper end of post 29.
Referring to
Spindle 73 has a rotational axis 75 with a generally cylindrical spool-mounting portion 77 and a co-axial drive-engagement portion 79. In the embodiment, spindle 73 rotational axis 75 is generally horizontal. Drive-engagement portion 79 is seated in bushings 81, 83 with lateral movement limited by retainer 85 clipped to annular groove 87 to support spindle 73 on post 29. Bushings 81, 83 are secured to post 29 by bolts 89 and lock washers 91. In the embodiment, bushings 81, 83 may be made of any low-friction material, such as nylon 6-6, because spindle 73 rotates at a relatively low rate of revolutions per minute (rpm). For example, a rate of about 27 rpms has been found to be satisfactory for a broad range of spooler 11 applications. Bearings may be used in place of bushings 81, 83. Set screws 93 are provided on spindle drive-engagement portion 79. Set screws 93 are extended into slot 151 of drive apparatus 107 output shaft 147 so that rotation of output 147 shaft positively rotates spindle 73 and any spool 21 mounted thereon.
Referring further to
As illustrated in
Referring next to
Exemplary drive apparatus 107 is secured to spooler support structure 25 by mount 109. Mount 109 is secured to an upper end of post 29 by a pair of bolts 111 threaded into corresponding weld nuts (one shown 113) attached to mount 109. Handle 115 is secured to upper mount portion 117 in a slightly spaced-apart manner by a pair of fasteners 119 inserted through standoffs 121. Printed circuit board 123 is fastened above lower mount portion 125 by screws 127 seated in standoffs 129. Power cord receptacle 131 is secured to mount lower portion 125 with conductors 133 in electrical power-transmission relationship With an AC to DC voltage power supply 135 mounted on circuit board 123. In the example, power supply 135 supplies 5 Volts DC power to motor 137 through an appropriate wiring harness (not shown). Power cord 138 connected to power cord receptacle 131 may be connected to a standard. 120V AC power source, such as a wall outlet, to supply electrical power to drive apparatus 107 power supply 135.
Motor 137 is preferably a DC 15 Watt permanent magnet motor mated to a reduction gear head 139 providing an 18 to 1 gear reduction in this example. SPG Co., Ltd. of Korea is a source of such motors 137. Motor 137 and gear head 139 are spaced from mount 109 by standoffs 141 and are secured with respect to mount 109 by bolts 143 inserted through standoffs 141 and lock nuts 145.
Referring to
An on/off switch 153 and light emitting diode (LED) power indicator 155 are secured to drive apparatus housing 156. Housing 156 is secured to mount 109 by screws 171. LED indicator 155 is energized to indicate that motor 137 is energized when on/off switch 153 is closed. On/off switch 153 and LED indicator 155 are connected to DC power supply 135 through a suitable wiring harness (not shown). When switch 153 is in the “on” position, spooler 11 rotates spindle 73 and spool 21 thereon unless drive apparatus 107 is de-powered by operation of control apparatus 52. When switch 153 is in the “off” position, spooler 11 is de-powered.
Referring now to
Micro-switch 157 opens when cam surfaces 165a or 165b urge contact 163 toward switch 157 preventing electrical power from being supplied to motor 137 by power supply 135 and stopping spool 21 rotation when on/off switch 153 is in the “on” position. When micro-switch 157 contact 163 faces flat surface 169 of cam 58 and is out-of-contact with cam 58, micro-switch 157 closes permitting motor 137 to be energized when on/off switch 153 is in the “on” position.
As shown in
As shown in
As represented by
Referring to
By way of further example, a control apparatus 52″ in the form of a current-sensing or torque-sensing switch 223 may be provided to stop spooler 11 operation when packager 19 stops further output of pouch package web 17. Such a switch 223 stops spooler 11, for example, by de-powering drive apparatus 107 motor 137 thereby stopping further spool 21 rotation. Switch 223 is responsive to either an increase in motor 137 torque or current draw which occurs when output of web 17 from packager 19 is stopped yet spool 21 is driven to rotate by motor 137. Continued rotation of spool 21 places tension on web 17 and creates resistance to spool 21 rotation. Such resistance causes a motor-stall condition, increasing motor 137 current draw and torque. When current or torque approach a threshold, switch 223 may be set to open and to de-power drive apparatus 107 motor 137. A control (not shown) may be provided to periodically close switch 223, powering drive apparatus 107 motor 137. Switch 223 would remain closed if current or torque were below the threshold indicative of resumed packager 19 operation and, alternatively, switch 223 would open if current or torque were determined to be above the threshold, indicative that packager 19 had not resumed pouch package web 17 output.
While switch 157 would be unnecessary in these alternative control apparatus embodiments, tensioner assembly 51 could optionally be used, particularly as a guide to direct web 17 onto spool 21.
An exemplary spool 21 is shown in
Referring further to
As shown in
Referring again to
In the example, a pair of circular sidewalls 201, 203 extend radially outward from spool hub 105 to restrain lateral movement of package material web 13 wound onto hub 105 in a roll. A leading end of web 17 output from packager 19 may be secured to spool 21 hub 105 to commence winding of web 17 onto spool 21 by any suitable means, such as by adhesive tape or a clip (not shown) on spool 21.
Spool 21 is preferably made of lightweight materials, facilitating handling by pharmacy personnel. Hub 105, core 195 and sidewalls 201, 203 may, for example, be made of lightweight plastic materials, metal or combinations of materials.
As illustrated in
Referring now to
Operation of exemplary spooler 11 will now be described in connection with exemplary automatic tablet packager 19. A pharmacy technician first positions spooler 11 adjacent automatic tablet packager 19. Power cord 138 is plugged into a power source, such as a wall power outlet. Tensioner arm 53 will be in the home position shown in
Next, pouch package web 17 output from automatic tablet packager 19 is guided under roller 63 of tensioner assembly 51 arm 53 and the leading end of pouch packaging web 17 is attached to hub 193 by clip 205. Tensioner arm 53 will be supported by web 17 in an intermediate position such as shown in
Automatic tablet packager 19 is next activated to output pouch package web 17 through port 193.
Placement of on/off switch 153 in the “on” position with switch 157 closed, energizes motor 137 to turn spindle 73 through gear head 139 to commence winding of web 17 onto spool 21 in the direction of arrow 217 (
If automatic tablet packager 19 stops output of web 17, then tension on web 17 by continued rotation of spool 21 in the direction of arrow 217 increases, lifting tensioner arm 53 to the position shown in
When spool 21 is fully loaded with pouch package web 17, the technician severs the web 17 and removes spool 21 from spooler 11. Web 17 may be severed by, for example, tearing web 17 along a perforation line 183 between packages 15 or by cutting web 17 with scissors. Arm 53 is lowered to the position shown in
While the principles of this invention have been described in connection with specific embodiments, it should be understood clearly that these descriptions are made only by way of example and are not intended to limit the scope of the invention.