Pourable, plastic-bound explosive charges and method of making the same

Information

  • Patent Grant
  • 6589374
  • Patent Number
    6,589,374
  • Date Filed
    Monday, November 26, 2001
    22 years ago
  • Date Issued
    Tuesday, July 8, 2003
    20 years ago
Abstract
A pourable, plastic-bound explosive charge has a crystalline explosive substance embedded in a polymer matrix which includes a binder, a softener and a metal powder. The metal powder which is added in a proportion of 0.1 to 10 weight % has substantially spherical grains and is one or more of the following materials: vanadium, niobium, tantalum, chromium, molybdenum or tungsten.
Description




CROSS REFERENCE TO RELATED APPLICATION




This application claims the priority of German Application No. 100 58 705.4 filed Nov. 25, 2000, which is incorporated herein by reference.




BACKGROUND OF THE INVENTION




This invention relates to pourable, plastic-bound explosive charges and a method of making the same, wherein a crystalline explosive material is embedded in a polymer matrix composed of a binder, a softener and further auxiliary substances.




Plastic-bound explosive charges have, despite their high efficiency, a relatively elevated insensitivity. They are composed of reaction polymers in which, prior to setting, crystalline explosive substances such as octogen, hexogen, pentaerythrite tetranitrate and the like are included. The polymer proportion is approximately 10-20 weight %.




It is a difficulty involving the manufacture of plastic-bound explosive charges that with the increase of the proportion of the explosive material, the viscosity of the mixture may increase to such an extent that pouring such a mixture is not possible. The theoretical limit for a pourable mixture lies at 92 weight %. It has been nevertheless found that the practical limit for a pourable mixture is at approximately 90 weight %. Further, explosive charges having a solid material proportion of such an extent are pourable only when the grain size of the explosive substance crystals used for the charge is within a predetermined diametral range; thus, as a result, a relatively cost-intensive sifting of the grains by screening has been necessary.




As discussed on pages 9 and 185 in the work entitled “Explosive Substances” authored by J. Köhler and R. Meyer (7


th


Edition, Weinheim, Basel, Cambridge, N.Y., VCH 1991), it is known to add aluminum powder to plastic-bound explosive charges. Such an addition results in a significant increase of calories by virtue of the intense heat generated by aluminum oxide. The cited work, however, is mute concerning an improvement of the viscosity of the explosive charge.











SUMMARY AND DESCRIPTION OF THE INVENTION




It is an object of the invention to provide an improved method of making insensitive, pourable, plastic-bound explosive charges which have a high (for example, 90 weight %) solid substance proportion and which further have a substantially low viscosity for making the explosive material pourable without the need of sifting the grains.




This object and others to become apparent as the specification progresses, are accomplished by the invention, according to which a crystalline explosive substance is embedded in a polymer matrix including a binder, a softener and a metal powder. The metal powder which is added in a proportion of 0.1 to 10 weight %, has substantially spherical grains and is one or more of the following materials: vanadium, niobium, tantalum, chromium, molybdenum or tungsten.




When using such a metal powder which, by virtue of the spherical form of the powder grains has a very small specific outer surface, it has been surprisingly found that the spherical powder grains behave similarly to liquid lubricants between the coarse-grained explosive substance particles (tribological effect). As a result, a relatively low viscosity between 400 and 1200 Pas is obtained at 50° C.




By virtue of the invention, explosive charges may be manufactured without difficulty since, despite a 90 weight % of solid substance proportion, the explosive charges have a viscosity which equals that of conventional explosive charges having a solid substance proportion of 85 weight %.




Spherical aluminum powder for decreasing the viscosity has, by itself, not been successful in practice because such powders are, on the one hand, difficult to obtain and, on the other hand, ignite easily and therefore may readily lead to dust explosions during manufacture.




Similarly to explosive charges to which aluminum powder is added, the explosive charges according to invention also have an increased blast effect by virtue of the exothermal reaction of the metal powder with the oxygen present in air. Such an effect contributes to the destruction of structures and constructions by excess pressure. The obtained metal oxides sublimate, that is, they change directly from the solid phase into the gaseous phase.




The weight % range of the metal powder used according to the invention depends from the specific surface of the metal powder and the grain size; it is empirically preferably between 2-5 weight %, while the grain size is preferably between 0.1 and 5 μm.




Octogen (HMX), hexogen (RDX) and pentaerythrite tetranitrate (PETRIN) have been found as advanteous explosive substances.




The manufacture of the explosive charges according to the invention may be carried out based on the following typical recipe:






















80-88




weight %




crystalline explosive material









such as RDX or HMX







5-10




weight %




binder, for example, HTPB







5-10




weight %




softener







0.01-0.2




weight %




coupling agent







0.05-0.5




weight %




pouring aids







0.1-1.0




weight %




antioxidants and







0.1-10




weight %




metal powder according to the









invention, having spherical









grains and selected from









vanadium, niobium, tantalum,









chromium, molybdenum or









tungsten.















It will be understood that the above description of the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.



Claims
  • 1. A method of making a pourable, plastic-bound explosive charge; comprising the step of embedding a crystalline explosive substance in a polymer matrix including a binder, a softener and a metal powder in a proportion of 0.1 to 10 weight %; said metal powder having substantially spherical grains and being selected from at least one of the materials of the group consisting of vanadium, niobium, tantalum, chromium, molybdenum and tungsten.
  • 2. The method as defined in claim 1, wherein said proportion is 2 to 5 weight %.
  • 3. The method as defined in claim 1, wherein the grain size of said metal powder is between 0.1 and 5 micron.
  • 4. A pourable, plastic-bound explosive charge comprising a crystalline explosive substance and a polymer matrix embedding said crystalline explosive substance; said polymer matrix including a binder, a softener and a metal powder in a proportion of 0.1 to 10 weight %; said metal powder having substantially spherical grains and being selected from at least one of the materials of the group consisting of vanadium, niobium, tantalum, chromium, molybdenum and tungsten.
  • 5. The explosive charge as defined in claim 4, wherein said proportion is 2 to 5 weight %.
  • 6. The explosive charge as defined in claim 4, wherein the grain size of said metal powder is between 0.1 and 5 micron.
Priority Claims (1)
Number Date Country Kind
100 58 705 Nov 2000 DE
US Referenced Citations (9)
Number Name Date Kind
2969638 Sammons Jan 1961 A
3255281 Alexander Jun 1966 A
3865035 Munson et al. Feb 1975 A
4363679 Hagel et al. Dec 1982 A
4405534 Deisenroth Sep 1983 A
4747892 Spencer May 1988 A
5404813 Wong Apr 1995 A
5472531 Turci et al. Dec 1995 A
5942720 Doll et al. Aug 1999 A
Foreign Referenced Citations (3)
Number Date Country
3804396 May 1989 DE
4324739 Aug 1994 DE
19616627 Nov 1997 DE
Non-Patent Literature Citations (1)
Entry
J. Köhler, et al., “Explosive Substances”, 7th Edition, Weinheim, Basel, Cambridge, New York, VCH 1991, pp. 9 and 185.