The present invention relates to a pouring insert for insertion into a container outlet, for example a bottleneck, for aerating liquids pored from the container. The invention furthermore relates to a bottle pourer with a spout, the bottle pourer comprising the pouring insert of the present invention. The invention also relates to a use of the pouring insert and of the bottle pourer for aerating wine. Finally, the present invention relates to a method of manufacturing the pouring insert by injection moulding.
When drinking wine, it is often desirable to expose the wine to ambient air prior to consumption. This is known as aeration or breathing of the wine. Wine that has been aerated typically obtains a better aroma and softer flavour. This is especially true for younger red wines with high tannin levels. Tannins are plant polyphenols occurring in the skin and seeds of grapes, and often conveying a bitter, undesired taste.
The simplest known approach for aeration of wine is to uncork the wine bottle and let it rest at ambient conditions for a certain amount of time, say half an hour, prior to consumption. This, however, often results in poor aeration due to the inherent rate limitation of air diffusion into stagnant liquid. Furthermore, the air-liquid-interface is typically located within the bottleneck leaving only a comparatively small surface area for diffusion. Compared to the dimension of the surface area, the liquid body is large and deep limiting also diffusion and mixing within the wine. In addition, this technique may entail undesired changes in wine temperature as well as unwelcome waiting time.
Another known technique contributing to wine aeration is decantation. This involves careful transfer of the wine from its bottle into a receptacle such as a carafe. Apart from the aesthetic effect it is an additional aspect of decantation to separate the wine from sediments such as bitartrate precipitates. A drawback of this approach is the obvious need of an additional container.
Many known wine pourers achieve a limited degree of aeration simply by way of a wide spout. Again, this type of arrangement does little for maximising the interface between wine and air.
International Patent Application WO 2006/007638 discloses a wine pourer device with a closure device for a bottleneck, the device comprising an aerator. The aerator consists of a circular disk with a series of apertures therethrough and a downwardly directed central spigot, which is fitted with a tube. This arrangement enables air/liquid flow through the central tube as well as through the apertures in the disk. However, the air-liquid interface is only slightly increased compared to the above approaches since the apertures simply split the liquid flow into a number of smaller flows, but do not introduce any additional means for achieving turbulence and mixing.
More advanced systems provide for active aeration of bottled wine by means of an electric compressor and a delivery device, for example a tube, that can be inserted into the bottle for actively pumping air into the liquid body. An example of this is given in European Patent Application EP 0245664. The obvious disadvantages of this technique are energy consumption, increased expense and space requirements.
Accordingly, there is a need for a pouring insert that does not possess the disadvantages of known devices. This is now provided by the present invention.
Thus, it is a first aspect of the present invention to provide a pouring insert which maximizes the liquid-air interface while pouring liquid from a bottle.
It is a second aspect of the present invention to provide a pouring insert which is simple, cost-effective, and may be used with a variety of different container outlets.
It is a third aspect of the present invention to provide a pouring insert which is combinable with a variety of different spouts or other discharging means.
It is a fourth aspect of the present invention to provide a pouring insert which contributes to a significant improvement of the aroma of wine poured through the insert.
The new and unique way in which the present invention fulfils one or more of the above-mentioned aspects is to provide a pouring insert for insertion into a liquid container outlet, the pouring insert comprising a hollow jacket with a distal jacket end and a proximal jacket end, the jacket tapering towards its distal jacket end, a hollow pipe axially disposed within the jacket and having a distal pipe end and a proximal pipe end, the distal pipe end defining a first opening, wherein the jacket comprises a plurality of elongated slots penetrating the jacket, the slots defining a plurality of second openings.
The invention also relates to a bottle pourer that includes a spout and one of the pouring inserts described herein.
Another embodiment of the present invention is a method for aerating wine which comprises pouring wine through one of the pouring inserts described herein. This method may further comprise providing the wine in a container having a liquid outlet; inserting the pouring insert into the liquid outlet, and tilting the container to effect outflow of liquid through the outlet and through the pouring insert. Preferably, the method further comprises providing the pouring insert with one or more openings through which the wine passes and providing one or more of the openings with means for filtering solid particles so as to remove such particles from the wine when pouring the wine from the container.
Finally, the invention also relates to a method of manufacturing one of the pouring inserts described herein by injection moulding the insert from food grade plastic material.
The invention will be explained in greater detail below where further advantageous properties and example embodiments are described with reference to the drawing, in which:
The terms “distal” and “proximal” as used herein refer to the location of elements relative to the user, who inserts the pouring insert into a liquid container outlet, for example a bottleneck of a wine bottle. The distal jacket end will therefore be located closer to the bottle's base whereas the proximal jacket end will be located further up the bottleneck and more distant from the bottle's base. The jacket may be pipe-shaped, which should be understood as comprising a cylindrical shape as well as pipe-shapes that have a quadrangular, oval or any otherwise shaped cross section.
The pouring insert may be inserted into a bottleneck with the distal ends of the jacket and the pipe entering the bottleneck first. When inserted, the longitudinal axis of the pouring insert will usually be aligned with the longitudinal axis of the bottleneck.
The jacket advantageously tapers towards its distal jacket end, thereby ensuring that the insert will fit several sizes of bottlenecks. The jacket may have a circular cross section along its entire longitudinal extent. As an example the outside diameter of the cross section at the proximal jacket end may be around 18-20 mm, while the outside diameter of the cross section at the distal jacket end, i.e. its tapered end, may be around 5-8 mm.
Typically, the hollow pipe axially disposed within the jacket will be placed centrally within the jacket, so that the jacket receives the pipe in a co-axial arrangement. However, other arrangements are conceivable, for example the longitudinal axis of the pipe being offset from the longitudinal axis of the jacket.
The pipe is preferably a cylinder with two open ends where the distal pipe end, that is the end that is closer to the base of the bottle when inserted into a bottle, defines a first opening. Through this opening liquid may flow from inside of the bottle to the outside.
The jacket comprises a plurality of elongated slots penetrating the jacket. The slots allow for movement of air into, and movement of liquid out of, the bottle. The slots define a plurality of second openings, which, owing to the combination of the tapered design of the jacket and the longitudinal extent of the slots, considerably increase the contact surface, or interface, between liquid and air while pouring liquid. This is especially true when, during pouring, both liquid and air are present in one or more slots. Also, the slots may define narrow flow channels, thus increasing turbulence and mixing of water and air.
Preferably, the slots are formed close to the distal jacket end. Advantageously, the slots' longitudinal extent is longer than the respective transverse extension.
According to an expedient embodiment of the present invention, at least one of the elongated slots has a sinuous shape. Preferably, all the slots have a sinuous shape. This shape contributes to an even better mixing between liquid and air due to the creation of a swirling, sinusoidal and/or helical flow path. By this arrangement, a full, 360 degrees rotational movement and aeration may be achieved. This may apply both to liquid leaving the bottle through the sinuous-shaped slots as well as to air entering the bottle through the sinuous-shaped slots.
In another embodiment of the present invention, at least one of the elongated slots has a longitudinal alignment that is axial with respect to the jacket. Thereby, the slots are substantially parallel to the longitudinal axis of the jacket, subject to possible sinuosity of the slots. This has the effect that both air and liquid are expediently guided into a sinuous, curved flow path.
In a preferred embodiment of the pouring insert, the jacket has the same longitudinal extent as the hollow pipe. By this it is achieved that the first opening as defined by the distal pipe end is at least as close to the base of the bottle as the second openings, i.e. the longitudinal slots. Usually, the slots will be placed at a distance higher up the bottleneck, i.e. further away from the base of the bottle, as compared to the first opening.
The proximal end of the insert of the present invention will typically comprise a circular edge placed centrically within another, larger circular edge, provided both the jacket and the pipe have a circular cross section.
In another embodiment of the present invention, the longitudinal extent of the slots is between 30 and 60% of the longitudinal extent of the jacket. By making the slots comparatively long, say 50% of the length of the jacket, advantageous flow guidance is achieved, especially when using sinusoidal slots.
In another embodiment of the present invention, each of the elongated slots comprises a first and a second end, where the first end is closer to the distal jacket end than the second end, and where the first end is angularly displaced relative to the second end with respect to the cross section of the jacket. This arrangement will contribute to a circular flow as created by the slot since the liquid or the air is forced to be angularly displaced when flowing through the slots.
In another embodiment of the present invention, the hollow pipe is disposed coaxially within the jacket, and the elongated slots are arranged concentrically around the hollow pipe. Such an arrangement ensures an expedient utilisation of available flow cross section, and also contributes to a well-regulated flow-pattern.
In another embodiment of the present invention, the distal pipe end is merged with the distal jacket end. In this embodiment, the jacket tapers to such an extent that its outer diameter coincides with the outer diameter of the hollow pipe at both elements' respective distal ends. This results in a torpedo-shaped design, which is space-efficient and contributes to a well-regulated flow-pattern.
In another embodiment of the present invention, the hollow pipe is fixed to the jacket by means of one or more ribs extending axially between the pipe and the jacket along at least part of the longitudinal extent of the pipe and the jacket. The ribs may thus compartmentalise part of the inner volume of the jacket. The ribs may furthermore separate one or more flow paths through the slots for at least part of the longitudinal extent of the jacket. The ribs may be made of the same material as the jacket and the pipe. Optionally, the jacket, the ribs and the pipe may be manufactured as one piece, for example by injection-moulding, from a plastic or polymer material of the type that is suitable for handling food or beverage products.
In another embodiment of the present invention, the jacket is conically or frustoconically shaped. This contributes to a flexible, space-efficient design, which furthermore results in a beneficial flow regime. Also, this design contributes to a pouring insert which may fit bottlenecks of various sizes.
In yet another embodiment of the present invention, one or more of the openings comprise filtering means for filtering solid particles from a liquid. This may be of particular relevance when pouring wine with a high level of precipitates. The filtering means may include any type of sieve, membrane or the like.
In another embodiment of the present invention, the insert is preferably made of one or more polymers such as silicone. Other polymers are conceivable. Most importantly, the choice of polymers should be suitable for the liquid at hand, and for contact with foodstuffs in general, implying that it should be non-toxic. Advantageously, the polymer is elastic.
The insert of the present invention is of particular use when combined with one or more elements of known bottle pourers, for example with a spout. Thus, in another embodiment of the present invention, there is provided a bottle pourer with a spout, the bottle pourer comprising a pouring insert according to the present invention. A spout may be attached to the proximal jacket end. The spout may have any shape, for example funnel-shaped, and may be made of various materials. Additional features may be provided for such a bottle pourer, for example a lid, or other appropriate sealing means. The spout may be received in the jacket in a core-sheath arrangement where the spout is releasably plugged into the proximal jacket end. Other releasable or permanent fastening means for attaching the spout to the jacket are conceivable. These include clips, adhesives, fastening braces, rings or similar arrangements.
The present invention further relates to the use of the bottle pourer for aerating wine.
The present invention also relates to the use of the pouring insert according to the present invention for aerating liquid when pouring it from a container, the use comprising insertion of the pouring insert into the outlet of a liquid container, and tilting the container to effect outflow of liquid through the outlet and through one or more of the openings of the pouring insert placed within the outlet.
The present invention also relates to a method of manufacturing the pouring insert of the present invention by injection moulding. This is especially advantageous, but not limited to, embodiments where the jacket, the ribs and the pipe are provided as one piece.
Although the term “container” as used herein is often equated with a bottle, it goes without saying that any other container and its respective outlet may be used in connection with the pouring insert of the present invention. This includes cups, cans, packs, or canisters, provided they have a suitable outlet. Having said that, the container that will be typically used with the pouring insert of the present invention is a wine bottle.
Similarly, while the present application repeatedly refers to wine as a liquid that may be poured in connection with the pouring insert of the present invention, it should be noted that the pouring and aeration of any other liquid, such as water, soft drinks or tea, may be improved by using the insert of the present invention.
Turning now to the drawings, in the embodiment shown in
As best seen in
Similarly, air entering the insert at the proximal jacket end 2b may travel through annular space 8 and slots 3, 3′ into the bottle, where it replaces liquid that has been poured out. Air travelling this way may also be set into a sinusoidal or rotating movement, which may contribute to a better aeration of the liquid.
In
The rear view of
It should be noted that the figures illustrate the invention by way of example, and not limitation. Other shapes of the jacket are conceivable such as cylindrical, conical or similar. Any appropriate number of slots may be chosen, for example two, five, or ten slots. The slots need not necessarily be located concentrically around the pipe. Likewise, the arrangement of jacket and pipe is not necessarily centrical, but may be eccentric instead.
Number | Date | Country | Kind |
---|---|---|---|
08166486 | Oct 2008 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2642207 | Renzi | Jun 1953 | A |
3198393 | Kitterman | Aug 1965 | A |
3321113 | Conry | May 1967 | A |
3323693 | Miller | Jun 1967 | A |
4298145 | Iida | Nov 1981 | A |
4407435 | Harmon | Oct 1983 | A |
5799836 | Lee | Sep 1998 | A |
6568660 | Flanbaum | May 2003 | B1 |
7527180 | Allen et al. | May 2009 | B2 |
D643721 | Blinn | Aug 2011 | S |
8205541 | Barberio et al. | Jun 2012 | B2 |
20030198406 | Bibbo et al. | Oct 2003 | A1 |
20050184026 | Haley | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
12 93 051 | Apr 1969 | DE |
201 19 154 | Feb 2002 | DE |
0 245 664 | Nov 1987 | EP |
WO 0056620 | Sep 2000 | WO |
WO 2006007638 | Jan 2006 | WO |
Entry |
---|
European Search Report, EP 08 16 6486, mailed Apr. 8, 2009, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20100091605 A1 | Apr 2010 | US |