This application is a continuation of International Patent Application No. PCT/JP2017/022401 filed in Jun. 16, 2017 and designated the U.S., the entire contents of which are incorporated herein by reference.
The present invention relates to a powder bed fusion apparatus.
In recent years, for fabricating prototypes, high-mix low-volume products, and so on, various powder bed fusion methods of fabricating an object's model have been drawing attention which involve sequentially laminating solidified layers each corresponding to the shape of a thin layer which would be obtained by slicing the object (slice data).
In one powder bed fusion method, a carrying member carries a powder material into a modeling container while planarizing its surface to thereby form a thin layer of the powder material on a lifting table.
Then, based on slice data, a particular region in the thin layer of the powder material is selectively heated with an energy beam to be sintered or melted and then solidified to thereby form a bonded layer.
Subsequently, the above operations are repeated while lowering the lifting table to laminate several hundred to several thousand bonded layers to fabricate a three-dimensional model.
Such a method is performed using a dedicated powder bed fusion apparatus.
Meanwhile, after the particular region in the thin layer of the powder material is melted, the melted powder material is solidified. If there is a temperature difference between the melted region and the region around it at the time of the solidification, the solidified layer warps or shrinks. The larger the temperature difference, the larger the warpage or the shrinkage, thereby making it impossible to obtain a model with the desired shape and dimensions.
To address this, for example, a heater is provided around the modeling container and an infrared heater is disposed above the modeling container to preheat the powder material in the modeling container and the thin layer of the powder material at the front plane of the modeling container such that the temperature of at least the uppermost thin layer of the powder material can be close to the melting temperature of the powder material before the application of the energy beam.
Further, the temperature of the thin layer of the powder material in a modeling region is measured with an infrared temperature sensor and a control device adjusts the heating by the heaters based on the measured temperature when necessary.
However, the temperature measurement region in the thin layer temporarily becomes hot in the case where the energy beam is applied to the temperature measurement region in the thin layer and also in the case where thin layers irradiated with the laser beam have been piled under the thin layer. Consequently, the control device erroneously recognizes that the entire modeling region has become hot although the temperature of the region around the application region is actually low. This leads to a problem of not properly adjusting the heating by the infrared heater.
Meanwhile, to solve this problem, one may consider, when the laser beam is applied to the temperature measurement region, fixing the power to be supplied to the infrared heater to the power immediately before the application of the laser beam to thereby prevent the temperature from dropping. However, this leads to further problems, as described below.
Specifically, the problems are that the temperature is not measured after the application of the laser beam, so that precise temperature control cannot be performed for the modeling region, that in the case where the thin layers under that thin layer have been irradiated with the laser beam, heat has been accumulated under the thin layer, so that the accurate temperature cannot be figured out even if the measurement is started again after the end of the application of the laser beam, and so on.
The present invention has been made in view of the above problems and provides a powder bed fusion apparatus capable of performing proper temperature control of a modeling region with a heater based on temperatures measured by temperature sensors.
To solve the above problems, an aspect provides a powder bed fusion apparatus for fabricating a model by applying an energy beam to a thin layer of a powder material to thereby melt the thin layer, solidifying the thin layer to thereby form a bonded layer, and laminating a plurality of the bonded layers, comprises: an energy beam emission device that applies the energy beam to a surface of the thin layer; an infrared heater that is provided above the thin layer and heats the thin layer; a first temperature sensor that measures a first temperature of the surface of the thin layer; a second temperature sensor that measures a second temperature of a surface of a region in the thin layer to which the energy beam is not applied; and an infrared heater heating control circuit that switches to control based on the second temperature sensor upon detection of an abnormal temperature rise during control based on the first temperature sensor, and outputs a data signal on adjusted power to be supplied to the infrared heater.
According to the present invention, the powder bed fusion apparatus comprises: the infrared heater; the first temperature sensor, which measures the first temperature of a surface of a thin layer; the second temperature sensor, which measures the second temperature of a surface of the thin layer to which an energy beam is not applied; and the infrared heater heating control circuit, which switches to the control based on the second temperature sensor upon detection of an abnormal temperature rise during the control based on the first temperature sensor, and outputs a data signal on adjusted power to be supplied to the infrared heater.
Thus, when a laser beam is applied to the temperature measurement region during the control based on the first temperature sensor, the infrared heater heating control circuit detects an abnormal temperature rise and thus switches from the control based on the first temperature sensor to the control based on the second temperature sensor and outputs a data signal on adjusted power to be supplied to the infrared heater. Hence, proper temperature control is performed.
As a result, a model is obtained with warpage and shrinkage suppressed. Accordingly, the accuracy of the model is improved.
An embodiment of the present invention will be described below with reference to the drawings.
A powder bed fusion apparatus according to an embodiment of the present invention will be described with reference to
In
In a powder bed fusion apparatus 100 according to this embodiment, as illustrated in
Next, detailed configurations of the modeling chamber 103, the housing chamber 102, and the control device 104 will be described in this order.
As illustrated in
The modeling part 201 is separated from outside by a partition of the chamber 101. In particular, a partition not illustrated separates the front side of the modeling part 201 and comprises a mechanism like a door that can be opened to and closed from outside.
The container housing part 202 is also separated from outside by a partition of the chamber 101. A partition 13 separates the front side of the container housing part 202 and comprises a mechanism like a door that can be opened to and closed from outside, like the partition for the modeling part 201.
Further, a partition 14 separates the modeling part 201 and the container housing part 202, and the partition 14 serves also as a platform for the modeling part 201. Also, a partition 15 separates the modeling part 201 and the recoater driving part 203.
As illustrated in
By opening and closing the partition 13, these containers 17a, 16, and 17b can be put into the container housing part 202 from outside and taken out of the container housing part 202.
In the platform 14, first to third opening portions 19a, 18, and 19b having the same sizes as quadrangular opening end planes of the containers 17a, 16, and 17b are provided in an order corresponding to the order in which the containers 17a, 16, and 17b are arranged.
A region situated inside the opening end plane of the modeling container 16 from its outer edge by predetermined distances is a modeling region to which a laser beam can be applied. In this embodiment, as illustrated in
The containers 17a, 16, and 17b are attached to the platform 14 by inserting the upper edges of the containers 17a, 16, and 17b into grooves provided in edges in the platform 14 along the peripheries of the first to third opening portions 19a, 18, and 19b from the near side of the platform 14. The containers 17a, 16, and 17b can be detached from the platform 14 by doing the reverse of the above.
Also, as illustrated in
Though not partly illustrated, the recoater driving part 203 comprises a driving mechanism that holds one end of the recoater 27 and translates the recoater 27 in the left-right direction with a motor.
In addition to that driving mechanism, an endless belt 28 separating the modeling part 201 and the recoater driving part 203 is further provided. The endless belt 28 is disposed with its one belt surface facing the modeling part 201 and moves in the left-right direction along with the recoater 27. Thus, the endless belt 28 functions as a partition separating the modeling part 201 and the recoater driving part 203 with the partition 15.
With the above configuration, the recoater 27 is moved rightward across the first opening portion 19a to take a powder material 29 from the first powder material storage container 17a, across the second opening portion 18 to carry the taken powder material 29 into the modeling container 16 and form a thin layer 29a of the powder material, and across the third opening portion 19b to put the powder material 29 remaining after the formation of the thin layer 29a into the second powder material storage container 17b.
Also, the recoater 27 is moved leftward across the third opening portion 19b to take the powder material 29 from the second powder material storage container 17b, across the second opening portion 18 to carry the taken powder material 29 into the modeling container 16 and form a thin layer 29a of the powder material, and across the first opening portion 19a to put the powder material 29 remaining after the formation of the thin layer 29a into the first powder material storage container 17a.
During the above, in the first or second powder material storage container 17a or 17b on the supply side, the first or third lifting table 24a or 24b is raised with the powder material 29 placed thereon to supply the powder material 29. In the second or first powder material storage container 17b or 17a on the reception side, the third or first lifting table 24b or 24a is lowered to receive the powder material 29 remaining after the formation of the thin layer 29a on the third or first lifting table 24b or 24a.
In the modeling container 16, each time a thin layer 29a of the powder material is formed, the thin layer 29a is melted with the energy beam and solidified to form a bonded layer 29b. Further, each time a bonded layer 29b is formed, the second lifting table 23 is lowered and a new bonded layer 29b is subsequently laminated. As a result, a necessary number of bonded layers 29b are laminated, so that a model is produced. Further, in the embodiment of the present invention, the modeling container 16 includes heaters in partitions for the container and the second lifting table 23 in order to preheat the powder material 29 and its thin layer 29a to near the melting temperature of the powder material 29 before the application of the laser beam.
Also, heaters and infrared heaters 31 are disposed around the containers 16, 17a, and 17b. Among the heaters around the containers 16, 17a, and 17b, heaters 30a and 30b are disposed under the platform 14 between the powder material storage containers 17a and 17b on both sides of the modeling container 16. Though not illustrated, the other heaters are provided around the outer walls of the containers 16, 17a, and 17b. As illustrated in
In particular, in the present invention, the infrared heaters 31 are operated to maintain the surface temperature of the thin layer 29a at a target temperature by constantly adjusting power supplied to the infrared heater 31. The power supplied to the four infrared heaters 31 is adjusted by a control device to be described later. In this embodiment, the power supplied to the other heaters is fixed, but the supplied power may be adjusted if necessary, like the power for the infrared heaters 31.
As illustrated in
For the laser beam, a carbon dioxide laser, a YAG laser, an excimer laser, a He—Cd laser, a diode-pumped solid-state laser, and so on can be used. Also, besides a laser beam, an energetic particle beam such as an electron beam can be used as the energy beam, and an energy beam emission device 32 designed for such is used.
The laser beam emission device 32 includes a laser beam source, beam scanning means, and an optical system such as a lens.
Also, in this embodiment, the laser window 12, which is fitted in the partition 11, is made of a special disc-shaped glass capable of transmitting laser beams and is disposed above a center portion of the modeling region.
A laser beam emitted from the laser beam source travels through the beam scanning means and the optical system, such as a lens, and passes through the laser window 12 to be emitted into the modeling part 201 and applied to the thin layer 29a of the powder material in the modeling container 16.
The two infrared temperature sensors 33a and 33b measure a temperature in the modeling region 20 (first temperature) and a temperature in the region 22 around the outer periphery of the modeling region (second temperature) through sensor windows 34a and 34b fitted in the partition 11. The one that measures the temperature in the modeling region 20 is the first temperature sensor 33a while the one that measures the temperature in the region 22 around the outer periphery of the modeling region is the second temperature sensor 33b. The first temperature sensor 33a is disposed near the laser beam emission device 32 while the second temperature sensor 33b is disposed near a space above the region 22 around the modeling region. In the regions 20 and 22, temperature measurement regions 35a and 35b and target temperatures are set, respectively. The control device 104 adjusts the power to be supplied to the four infrared heaters 31 based on temperature information measured by one of the first temperature sensor 33a and the second temperature sensor 33b so as to bring the temperature of the corresponding temperature measurement region 35a or 35b to the corresponding target temperature. The configuration of the control device 104 will be described later.
A study was carried out on the temperature control in the embodiment of the present invention. The study will be described next before describing the control device 104.
(iii) Study on the Present Invention
The auxiliary infrared temperature sensor (second temperature sensor) 33b is additionally provided, which measures the temperature in the region 22 other than the modeling region 20, which is in the thin layer 29a of the powder material but not at all likely to be irradiated with the energy beam. Further, the present inventor conceived of switching from power control based on the temperature measured by the main infrared temperature sensor (first temperature sensor) 33a (hereinafter referred to as the control based on the first temperature sensor) to power control based on the temperature measured by the auxiliary infrared temperature sensor 33b (hereinafter referred to as the control based on the second temperature sensor) when the laser beam is applied to the temperature measurement region 35a for the main infrared temperature sensor 33a in the modeling region 20.
Meanwhile, normally, the region 22 around the modeling region is not at all likely to be irradiated with the energy beam. The region 22 is within the thin layer 29a but is located at its periphery. Thus, it has been empirically found that the temperature in the region is significantly different from the temperature of a center portion of the modeling region 20.
This led the present inventor to conceive of figuring out the correlation between the temperature in the region 22 around the modeling region and the temperature of the center portion of the modeling region 20 and controlling the temperature of the center portion of the modeling region 20 based on the temperature in the region 22 around the modeling region.
In other words, it was necessary to figure out how the temperature in the region 22 around the modeling region would be changed with time by adjusted power supplied to the infrared heaters 31 to maintain the temperature of the center portion of the modeling region 20 within a target temperature range.
First, the present inventor studied a method of detecting application of a laser beam to the temperature measurement region 35a for the first temperature sensor 33a.
A single pulse in the temperature change in the graph corresponds to a single cycle for processing a single thin layer 29a, that is, the time from the formation of a thin layer 29a, followed by the application of the laser beam, until immediately before the formation of the next thin layer 29a. The same applies to similar graphs below.
Also, each cycle in which the temperature is above the upper limit of the graph indicates that the laser beam was applied to the temperature measurement region 35a.
As illustrated in
Next, the present inventor studied on how the temperature in the region 22 around the modeling region would be changed with time by the adjusted power supplied to the infrared heaters 31 to maintain the temperature of the center portion of the modeling region 20 within the target temperature range.
Also, the white curve is obtained by linking spots where many of the plotted points in the temperature distribution in the region 22 around the modeling region along the elapsed time are present, and is a correction curve considered to be likely to occur. This can be expressed as a correction equation as below.
Ti2tc=Ts−((Ts−Ti)/Csit) (1)
where Ti2tc is a target temperature for the second temperature sensor 33b (second target temperature (° C.)),
Ts is a saturation temperature (a temperature at which the temperature in the region 22 around the modeling region stops changing (° C.); 186° C. in the test),
Ti is a start temperature (the temperature in the region 22 around the modeling region at the point of switching from the control based on the first temperature sensor 33a to the control based on the second temperature sensor 33b (° C.)),
Csi is a saturation coefficient (the magnitude of the slope of behavior from the start temperature toward the saturation temperature; 1.025 in the test), and
t is the elapsed time (the length of time measured from the time point corresponding to the start temperature (minute)).
This correction equation (1) and the correction coefficient were derived by hypothesizing various equations and selecting one suitable for the test. Other suitable methods such as polynomial interpolation are usable.
On the other hand,
Also, the white curve is obtained by linking spots where many of the plotted points in the temperature distribution in the region 22 around the modeling region along the elapsed time are present, and is a curve considered to be likely to occur.
According to
From this test, it is found that it is possible to switch back to the control based on the first temperature sensor 33a after successively processing at least 9 layers and preferably about 20 layers in the state where the applied laser beam does not cross the temperature measurement region 35a for the first temperature sensor 33a. Note that the number of layers with which the control can be switched back varies depending the type of powder material, the size of the powder bed fusion apparatus, and so on and can therefore be changed as appropriate.
The control device 104 comprises a central processing unit (CPU), an energy beam application control circuit, a powder material thin layer formation control circuit, an infrared heater heating control circuit, and a storage device.
The energy beam application control circuit controls the energy beam emission device 32.
Specifically, the energy beam application control circuit turns on or off the energy beam source to emit or stop emitting an energy beam. The energy beam application control circuit also controls the beam scanning means, such as a mirror, which reflects the energy beam to scan the energy beam in X and Y directions, to move the energy beam to necessary spots on the modeling region 20. The energy beam application control circuit also controls the optical system, such as a lens, to focus the energy beam at the surface of the thin layer 29a.
This control circuit needs to perform the above control with suitable timing relative to the control by the powder material thin layer formation control circuit to be described next.
The powder material thin layer formation control circuit controls the recoater 27 and the lifting tables 23, 24a, and 24b.
Specifically, the powder material thin layer formation control circuit vertically moves the first and third lifting tables 24a and 24b of the two powder material storage containers 17a and 17b and the second lifting table 23 of the modeling container 16 by predetermined distances, and moves the recoater 27 leftward or rightward with suitable timing relative to these movements.
The infrared heater heating control circuit controls the infrared temperature sensors 33a and 33b, a power supply source 36, and the infrared heaters 31.
Specifically, the infrared heater heating control circuit performs: temperature measurements with the first temperature sensor 33a and the second temperature sensor 33b; a power adjustment for adjusting the power to bring the temperature of the surface of the thin layer 29a closer to the target temperature based on the temperatures measured by the temperature sensors 33a and 33b; and a control selection for selecting the control based on one of the temperature sensors 33a and 33b.
In the above control by the energy beam application control circuit and the above control by the powder material thin layer formation control circuit, a single cycle is equal to the time taken to process a single thin layer 29a, which is about 20 to 60 seconds. In the above control by the infrared heater heating control circuit, a single cycle is equal to 200 msec.
The storage device stores energy beam application control data, powder material thin layer formation control data, and infrared heater heating control data.
The energy beam application control data includes data on the timing to turn on and off the laser beam source, data on the angle, rotational speed, and timing of rotation of the mirror in the beam scanning means, data on the amount and timing of forward-backward movement of the optical system, such as a lens, slice data (data on the laser beam application region for each thin layer, and the like), and so on.
The powder material thin layer formation control data includes data on the amounts of vertical movements of the lifting tables 24a and 24b, the distance and timing of leftward-rightward movement of the recoater 27, slice data (data on the thickness of each thin layer 29a, the number of thin layers 29a to be laminated, and the like) and so on.
The infrared heater heating control data includes a first target temperature (T1tc) for the first temperature sensor 33a, an abnormal temperature rise derivative threshold value (DTlim), the saturation temperature (Ts), the saturation coefficient (Csi), the maximum number of successively laminated thin layers (Clim) representing a timing to switch back to the control based on the first temperature sensor 33a after switching to the control based on the second temperature sensor 33b, and so on. The maximum number of successively laminated thin layers is the number of thin layers 29a successively laminated without application of the energy beam to the temperature measurement region 35a for the first temperature sensor 33a during the control based on the second temperature sensor 33b.
Control signals and data are communicated between control circuit components and the CPU in the control device 104 and between the storage device and the CPU, and control signals and data are communicated also between control circuit components and their corresponding apparatus components.
Next, the infrared heater heating control circuit will be specifically described with reference to
The infrared heater heating control circuit comprises a first power adjustment circuit, an abnormal temperature rise detection circuit, a control selection signal generation circuit, a control selection signal transmission circuit, an elapsed time calculation circuit, a second target temperature calculation circuit, a second power adjustment circuit, and a control selection circuit.
The first power adjustment circuit constantly receives a first measured temperature (T1m) from the first temperature sensor 33a, receives the first target temperature (T1tc) from the storage device, performs a PID (Proportional Integral-Differential) calculation based on T1tc−T1m, and outputs adjusted-power data signal.
The abnormal temperature rise detection circuit constantly receives the first measured temperature (T1m) from the first temperature sensor 33a, calculates the derivative (DT1) of the first measured temperature (T1m) with a differentiation circuit, compares the derivative (DT1) and the abnormal temperature rise derivative threshold value (DTlim) received from the storage device with a comparison circuit, and outputs a signal indicating whether there is an abnormal temperature rise.
The control selection signal generation circuit sets the count value (C) of a control counter to zero upon detection of an abnormal temperature rise during the control based on the first temperature sensor 33a. In this case, the control selection signal generation circuit outputs a signal for switching to the control based on the second temperature sensor 33b. This can eliminate the effect of the abrupt temperature rise at the temperature measurement region 35a by application of the laser beam.
Also, the control selection signal generation circuit counts the number (count value) of thin layers 29a laminated and processed (C) after the switching to the control based on the second temperature sensor 33b. Then, during the control based on the second temperature sensor 33b, the control selection signal generation circuit compares the number of thin layers 29a laminated and processed (C) and the maximum number of successively laminated thin layers (Clim), which represents a timing to switch back to the control based on the first temperature sensor 33a. Then, when the count value (C) reaches or exceeds the maximum number of successively laminated layers (Clim), the control selection signal generation circuit outputs a signal for switching back to the control based on the first temperature sensor 33a. This can eliminate the effect of the abnormal temperature rise by heat accumulation.
The control selection signal transmission circuit transmits a control selection signal to the elapsed time calculation circuit and the control selection circuit. The control selection signal is a signal for selecting one of the control based on the first temperature sensor 33a and the control based on the second temperature sensor 33b. In other words, the control selection signal is a signal for selecting whether to supply power adjusted by the first power adjustment circuit or to supply power adjusted by the second power adjustment circuit to the infrared heater 31.
The elapsed time calculation circuit calculates the time (minute) elapsed since switching to the control based on the second temperature sensor upon detection of an abnormal temperature rise during the control based on the first temperature sensor.
The second target temperature calculation circuit calculates a second target temperature (T2tc) from the correction equation (1) by using the elapsed time (t) received from the elapsed time calculation circuit, the saturation coefficient (Csi) and the saturation temperature (° C.) received from the storage device, and the temperature of the thin layer 29a measured by the second temperature sensor 33b immediately after the switching to the control based on the second temperature sensor 33b (start temperature) (° C.).
The second power adjustment circuit receives a second measured temperature (T2m) from the second temperature sensor 33b, receives the second target temperature (T2tc) from the second target temperature calculation circuit, performs a PID calculation based on T2tc−T2m, and outputs an adjusted-power data signal.
The control selection circuit selects one of the adjusted power calculated by the first power adjustment circuit and the adjusted power calculated by the second power adjustment circuit based on the control selection signal received from the control selection signal transmission circuit, and transmits the corresponding adjusted-power data signal to the power supply source 36. The power supply source 36 generates the corresponding adjusted power and outputs it to the infrared heaters 31.
A powder bed fusion method according to the embodiment of the present invention will be described with reference to
Among these figures,
The first target temperature is the temperature of the center portion of the modeling region 20 and preferably remains unchanged, and is therefore not changed with time. The second target temperature, on the other hand, is a temperature set according to the actually measured temperature in the region 22 around the modeling region, and is therefore changed to gradually rise with time from a lower temperature.
Also, the second target temperature is saturated at a temperature higher than the first target temperature since the second target temperature is set according to the actual measurement. The actual temperature in the region 22 around the modeling region is dependent on the surrounding environment of the modeling container 16, the type of the powder material 29 used in the modeling, and so on, and can be high or low. The actual temperature in the region 22 around the modeling region is usually different from the temperature of the center portion of the modeling region 20.
Also,
Above the graph in
Also, among the arrows illustrated below the described number of thin layers 29a of the powder material laminated and processed, each dotted arrow indicates switching from the control based on the first temperature sensor 33a to the control based on the second temperature sensor 33b from that point, while each solid arrow indicates switching back from the control based on the second temperature sensor 33b to the control based on the first temperature sensor 33a from that point. In this embodiment, to facilitate the description, the maximum number of successively laminated layers (Clim) is a small number including the layer at the time of switching the control, and is six.
Also, the bold solid lines illustrated on the bold dashed and single-dotted lines, representing the target temperatures, each indicates performing the control based on the corresponding one of the first temperature sensor 33a and the second temperature sensor 33b.
Firstly, the infrared heater heating control will be described with reference to
First, the count value (C) of the control counter of the control selection signal generation circuit is set to a value larger than or equal to a threshold value (Clim) (CP1).
Then, the control selection signal generation circuit compares the count value (C) and the threshold value (Clim) with each other (CP2).
If C≥Clim, the control based on the first temperature sensor is selected (CP3). In the initial operation, this condition is always met since the count value (C) is set to a value larger than or equal to the threshold value (Clim).
Note that after this, the initially set count value (C) increments by one each time the processing of a single thin layer 29a is finished as long as the energy beam is not applied to the temperature measurement region 35a for the first temperature sensor 33a through processes P3, P5, and P6 in
On the other hand, if the energy beam is applied to the temperature measurement region 35a for the first temperature sensor 33a through the process P3 and a process P4 in
If C<Clim, a control selection signal is transmitted from the control selection signal transmission circuit to the control selection circuit to select the control based on the second temperature sensor 33b (CP6). During the control based on the second temperature sensor 33b, the count value (C) may possibly be set to zero repeatedly through the processes P3 and P4. In that case, the count value (C) is counted from zero repeatedly. Thus, the control based on the second temperature sensor 33b starts when the count value (C) is firstly set to zero, and continues until the count value (C) reaches Clim after it is lastly set to zero. Accordingly, a larger number of thin layers 29a than Clim need to be processed before switching back to the control based on the first temperature sensor 33a.
If C<Clim, then, the control selection signal is transmitted from the control selection signal transmission circuit to the elapsed time calculation circuit to calculate the time elapsed since the condition C<Clim was met (CP7), and also the second target temperature (T2tc) is calculated based on the elapsed time (t) with the second target temperature (T2tc) calculation circuit (CP8).
After the control processes CP3 and CP8, in accordance with the selected control based on the i-th temperature sensor (i=1 or 2) 33a or 33b, the adjusted power to be supplied to the infrared heaters 31 is calculated based on the difference between the measured temperature (T1m) and the i-th target temperature (Titc), and the corresponding data signal is outputted (CP4).
Then, whether a predetermined number of thin layers 29a of the power material all have finished being laminated (CP5). If not all thin layers 29a have finished being laminated, the processing returns to the control process of comparing the count value (C) and the threshold value (Clim) (CP2). On the other hand, if all thin layers 29a have finished being laminated, the control process is terminated. (ii) Powder Bed Fusion Method Based on Infrared Heater Heating Control
Next, a powder bed fusion method according to the embodiment of the present invention will be described with reference to
The processing of a single thin layer takes about 20 to 60 seconds (1 cycle), though it varies depending on the size of the model.
Firstly, as illustrated in
Then, the powder material 29 in the first and second powder material storage containers 17a and 17b is heated to below but close to the melting point of the powder material with the heaters around the first and second powder material storage containers 17a and 17b. Also, the modeling container 16 is heated with the heaters around the modeling container 16 and the infrared heaters 31 above the modeling container 16 to bring the temperature inside the modeling container 16 to below but close to the melting point of the powder material 29.
Then, the control device 104 is caused to operate. Thereafter, until the modeling of all thin layers 29a is finished, the infrared heater heating control circuit performs temperature control to control the heating of the infrared heaters 31 so as to bring the surface temperature of the thin layer 29a in the modeling region 20 to the first target temperature. The infrared heater heating control circuit initially performs the control based on the first temperature sensor 33a, for which the temperature measurement region 35a is set in the center portion of the modeling region 20. Note that, until the modeling of all thin layers 29a is finished, the first temperature sensor 33a and the second temperature sensor 33b are kept on, and adjusted powers to be supplied to the infrared heaters 31 are calculated based on the respective temperature measurements.
Meanwhile, six thin layers of the power material are already laminated as the model's base in
Then, as illustrated in
Then, as illustrated in
Then after the step in
During the above too, the infrared heater heating control circuit performs temperature control such that the surface temperature of the thin layer 29a in the modeling region 20 is brought closer to the first target temperature.
If the path of application of the laser beam does not cross the temperature measurement region 35a during the application of the laser beam (P3, CP2), the control based on the first temperature sensor 33a is continued (CP3). Also, if the laser beam application to the thin layer 29a is not finished yet (P5), the application of the laser beam 37 is continued (P2). Proper temperature control is performed such that the temperature of the thin layer 29a in the modeling region 20 is brought closer to the first target temperature.
On the other hand, if the path of application of the laser beam 37 crosses the temperature measurement region 35a (P3), an abnormal temperature rise occurs at the temperature measurement region 35a. When the first temperature sensor 33a detects that, the count value is reset (C =0) (P4), so that the control is switched to the control based on the second temperature sensor 33b (CP2, CP6). Thus, proper temperature control is performed such that the temperature in the region 22 around the modeling region in the thin layer 29a is brought closer to the second target temperature. As a result, proper temperature control is performed such that the surface temperature of the thin layer 29a in the modeling region 20 is brought closer to the first target temperature.
This switching of the control corresponds to cases where an abnormal temperature rise is detected in the middle of the processing of the 1st, 14th, and 27th thin layers 29a in
Here, the start temperature is the temperature (° C.) measured by the second temperature sensor 33b at the time of switching to the control based on the second temperature sensor 33b upon detection of an abnormal temperature rise by the first temperature sensor 33a, that is, in
Also, if the application of the laser beam 37 to the thin layer 29a is not finished yet (P5), the application of the laser beam 37 is continued (P2). Note that there is a case where the path of application of the laser beam 37 repetitively crosses the temperature measurement region 35a for the first temperature sensor 33a during the control based on the second temperature sensor 33b. Each time this occurs, the count value is reset (C=0) (P3, P4).
When the application of the laser beam 37 to the thin layer 29a is finished (P5), the count value is incremented by one (P6), and the control process proceeds to the processing of the next thin layer 29a from the state of
Thereafter, in the modeling container 16, a specific region in the thin layer 29a of the powder material is irradiated with the laser beam in accordance with the slice data to be melted and then solidified to form a bonded layer 29b. During the above, the control based on the second temperature sensor 33b is performed. When six thin layers 29a including the above thin layers 29a are processed in this manner after the switching to the control based on the second temperature sensor 33b, the count value (C) is six, so that C≥Clim (CP2). Hence, the control is switched back to the control based on the first temperature sensor 33a (CP3). See the control based on the second temperature sensor 33b for the 14th to 19th layers in
Note that there is a case where the application path of the laser beam for the next thin layer 29a and the second next thin layer 29a also crosses the temperature measurement region 35a for the first temperature sensor 33a during the control based on the second temperature sensor 33b. In that case, the count value (C) is re-counted from zero each time (P3, P4). Thus, the control based on the second temperature sensor 33b continues until the count value (C) reaches Clim from the last thin layer with which the count value (C) is set to zero. In other words, there can be a case where the control based on the second temperature sensor 33b continues until the processing of more than six thin layers 29a is finished after the switching to the control based on the second temperature sensor 33b. See the control based on the second sensor 33b for the first to eighth layers in
Subsequently, the 20th and subsequent layers are processed in accordance with the control in
Then, the modeling container 16 is taken out of the apparatus along with the model and cooled. At the point when the modeling container 16 is taken out of the apparatus, the temperature inside the modeling container 16 is near the melting temperature, and therefore the model is not yet completely solidified but is somewhat soft. As the cooling is then continued, the model is completely solidified and becomes hard in the middle of the cooling. Further, after waiting until the temperature drops to such a point that the model can be taken out, the model is taken out.
As illustrated in
As illustrated in
Note that in this test, the power for the heaters other than the infrared heaters was fixed to bring the surface temperature of the thin layers 29a to approximately 150° C.
It can be seen from
As illustrated in
According to
This drop in temperature of the thin layers causes problems as below.
Specifically, during the drawing with the laser beam, the melted portions shrink, thereby forming a distorted model.
Also, since the melting becomes weaker, the bond to the lower layer becomes weaker, which may cause detachment of the bonded layers from each other.
Also, the amount of the melt is low in density, causing uneven solidification. This makes it impossible for the bonded layers to maintain their shape. Thus, the shape is distorted.
As described above, it can be seen that the processing of thin layers 29a in
As described above, the powder bed fusion apparatus according to the embodiment of the present invention comprises: the infrared heaters 31; the first temperature sensor 33a, which measures the temperature of a surface of a thin layer 29a; the second temperature sensor 33b, which measures the temperature of a surface of the thin layer 29a to which the laser beam 37 is not applied; and the infrared heater heating control circuit, which switches to the control based on the second temperature sensor 33b upon detection of an abnormal temperature rise during the control based on the first temperature sensor 33a, and outputs a data signal on the adjusted power to be supplied to the infrared heaters 31.
Thus, when the laser beam 37 is applied to the temperature measurement region 35a during the control based on the first temperature sensor 33a, an abnormal temperature rise is detected, and the control based on the first temperature sensor 33a is switched to the control based on the second temperature sensor 33b, and a data signal on the adjusted power to be supplied to the infrared heaters 31 is outputted. In this manner, the temperature control is performed properly without being affected by the abnormal temperature rise.
As a result, a model is obtained with warpage and shrinkage suppressed. Accordingly, the accuracy of the model is improved.
Further, the second target temperature for maintaining the first target temperature is set based on actual measurement. Thus, the temperature can be controlled without lowering the accuracy even with the control based on the second temperature sensor 33b.
Also, the control selection signal generation circuit outputs a control selection signal for switching back to the control based on the first temperature sensor 33a to the control selection circuit when the number of thin layers 29a successively laminated and processed without detection of an abnormal temperature rise after the switching to the control based on the second temperature sensor 33b reaches or exceeds a predetermined value.
This enables actual temperature measurement of the temperature measurement region 35a after its temperature returns to the normal range, and therefore further increases the accuracy of the temperature control.
Lastly, the invention described in the above embodiment will be summarized below as appendixes.
A powder bed fusion apparatus for fabricating a model by applying an energy beam to a thin layer of a powder material to thereby melt the thin layer, solidifying the thin layer to thereby form a bonded layer, and laminating a plurality of the bonded layers, comprises:
an energy beam emission device that applies the energy beam to a surface of the thin layer;
an infrared heater that is provided above the thin layer and heats the thin layer;
a first temperature sensor that measures a first temperature of the surface of the thin layer;
a second temperature sensor that measures a second temperature of a surface of a region in the thin layer to which the energy beam is not applied; and
an infrared heater heating control circuit that switches to control based on the second temperature sensor upon detection of an abnormal temperature rise during control based on the first temperature sensor, and outputs a data signal on adjusted power to be supplied to the infrared heater.
The powder bed fusion apparatus according to appendix 1, characterized in that the infrared heater heating control circuit further switches back to the control based on the first temperature sensor when the number of the thin layers successively laminated and processed without detection of the abnormal temperature rise after the switching to the control based on the second temperature sensor reaches or exceeds a set value.
The powder bed fusion apparatus according to appendix 1 or 2, characterized in that the infrared heater heating control circuit comprises:
an abnormal temperature rise detection circuit that detects the abnormal temperature rise with the first temperature sensor;
a control selection signal generation circuit that generates a control selection signal for switching to the control based on the second temperature sensor upon detection of the abnormal temperature rise during the control based on the first temperature sensor, and generates a control selection signal for switching back to the control based on the first temperature sensor when the number of the thin layers successively laminated and processed without detection of the abnormal temperature rise after the switching to the control based on the second temperature sensor reaches or exceeds a set value; and
a control selection circuit that selects one of the control based on the first temperature sensor and the control based on the second temperature sensor in accordance with the control selection signal.
The powder bed fusion apparatus according to appendix 3, characterized in that the abnormal temperature rise detection circuit comprises: a differentiation circuit that differentiates the first temperature; and a comparison circuit that compares the obtained derivative of the first temperature with a preset threshold value serving as a reference for determining the occurrence of the abnormal temperature rise.
The powder bed fusion apparatus according to appendix 3, characterized in that
the control selection signal generation circuit further comprises a control counter, and the control counter sets a value larger than or equal to the set value as a count value before start of modeling, sets the count value to zero when the abnormal temperature rise is detected, and increments the count value by one each time the thin layer is formed.
The powder bed fusion apparatus according to appendix 5, characterized in that the control selection signal generation circuit further comprises a comparison circuit, and generates the control selection signal for switching to the control based on the first temperature sensor when the count value is larger than or equal to the set value.
The powder bed fusion apparatus according to appendix 1 or 2, characterized in that the infrared heater heating control circuit generates the data signal on the adjusted power to be supplied to the infrared heater to bring the first temperature closer to a first target temperature during the control based on the first temperature sensor and to bring the second temperature closer to a second target temperature during the control based on the second temperature sensor.
The powder bed fusion apparatus according to appendix 7, characterized in that
the first target temperature is set in advance at a temperature lower than a melting point of the powder material, and
the second target temperature is calculated from a correction equation including: an elapsed time measured since the detection of the abnormal temperature rise; a start temperature measured by the second temperature sensor immediately after the detection of the abnormal temperature rise; a saturation temperature derived based on a time-series change in the temperature measured by the second temperature sensor in advance; and a saturation coefficient.
The powder bed fusion apparatus according to appendix 1, characterized in that the infrared heater heating control circuit comprises: a first power adjustment circuit that generates a data signal on adjusted power to be supplied to the infrared heater based on a difference between the measured first temperature and the first target temperature; and a second power adjustment circuit that generates a data signal on adjusted power to be supplied to the infrared heater based on a difference between the measured second temperature and the second target temperature.
The powder bed fusion apparatus according to appendix 1, characterized in that the powder bed fusion apparatus further comprises:
a first powder material storage container and a second powder material storage container disposed on opposite sides of the modeling container;
a first lifting table that is provided in the modeling container and moves up and down with the thin layer placed thereon;
a second lifting table that is provided in the first powder material storage container and moves up and down with the powder material placed thereon;
a third lifting table that is provided in the second powder material storage container and moves up and down with the powder material placed thereon; and
a carrying member that moves across the first powder material storage container, the modeling container, and the second powder material storage container to carry the powder material from the first powder material storage container or the second powder material storage container and carry the powder material into the modeling container to thereby form the thin layer.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2017/022401 | Jun 2017 | US |
Child | 16714646 | US |