The invention relates generally to powder coating spray systems which use powder containment spray booths. More particularly, the invention relates to a powder spray booth that facilitates cleaning and quick color change by the operation of a rotating floor and a powder overspray extraction duct, which results in very little powder remaining in the spray booth and minimizes the amount of powder in process during a spraying operation.
Powder coatings are commonly applied to objects by powder spray guns that may be manually operated or automatic. In an automatic system, one or more spray guns are controlled to spray powder onto the objects as the objects are conveyed past the guns. In a manual gun operation, typically the object is suspended or otherwise positioned near a spray gun and the operator controls when the gun starts and stops spraying. A powder spray gun may be selected from a wide variety of gun designs. Since a spraying operation is intended to coat an object evenly, a common technique for spraying powder is to apply an electrostatic charge to the powder particles which causes the powder to better adhere to the object and also results in a more uniform application. Electrostatic spray guns include corona guns and tribocharging guns. In a corona type spray gun, a high voltage electrode is positioned in or near the powder flow path, either within the gun itself or just outside the gun near or at the gun nozzle. In a tribocharging type gun, the powder flow path through the gun body is made of suitable materials that impart an electrostatic charge to the powder as it is forced through the gun body.
The object being sprayed is electrically grounded such that the charged powder is attracted to and adheres to the object. This electrostatic attraction increases the transfer efficiency by increasing the amount of powder that adheres to the object. Transfer efficiency refers to the relationship between the amount of powder that adheres to the object being sprayed versus the amount of powder sprayed from the gun.
In most electrostatic spray systems, the powder is ejected from the gun nozzle as a cloud. This permits the powder spray to envelope the object to coat all the surfaces of the object, even when the object is irregular in geometric shape. Multiple guns may be positioned on different sides of the object and/or directed at different angles to increase the uniformity of the powder applied thereto. However, due to the inherent nature of the powder spray pattern, there is a substantial amount of powder that does not adhere to the object and ends up either falling to the floor or collecting on other objects and structures in the immediate area. This non-adherent powder residue is generally referred to as powder overspray.
Because powder overspray is generated during each spraying operation, spraying operations typically are performed within a spray booth. The spray booth is used for powder containment and may only be partially enclosed. Most spray booths have an air flow system that contains the powder overspray within the structure of the booth by producing a negative pressure zone that draws air from the powder booth along with powder overspray that is entrained in the air flow. The powder laden air is then transferred to a cartridge filter system or cyclone separator system outside the spray booth to recover the powder. However, in known spray booth systems, the powder overspray still tends to collect on the booth walls, ceiling and the booth floor. In electrostatic systems especially, the powder overspray will also tend to be attracted to and collect on any structure that is electrically grounded. The powder particles tend to be very small and well dispersed and therefore can collect in the smallest of recesses, seams and crevices and irregular spray booth wall structures.
Powder overspray presents a two-fold challenge. First, if possible it is usually desirable to try to reclaim or recover powder overspray so that the powder can be re-used during subsequent spraying operations. Known powder recovery systems typically work on the basis of a large air volume that entrains the powder overspray. These air flow volumes are routinely generated by conventional high volume exhaust fans. The powder laden air is then filtered, such as for example using cartridge type air filters or cyclone separators. The separated powder is then sieved to remove impurities and returned to a hopper or powder feed center where it is supplied once again to the spray guns. In known systems the actual reintroduction of recovered powder to the powder spray application system is usually accomplished by a positive air pressure conveyance system back to a powder feed center through a series of hoses, valves and pumps.
Besides the challenge of recovering powder overspray for subsequent use or disposal, powder overspray that collects within the spray booth must be removed from the booth when changing over the powder coating color. In order to switch from one color to another the guns, booth and powder recovery system must be as completely purged of the previous colored powder as possible to prevent contamination of the subsequent colored powder. The operation of changing from one color to another is generally known as a “color change” operation and it is an ongoing challenge in the art to make spraying systems that are “quick color change” meaning that the goal is to keep reducing the down time when the spraying system is off line in order to clean the spraying apparatus and system. Thus, the amount of in-process powder, as well as the amount of powder overspray that remains in the spray booth, have a significant impact on the amount of time and effort it takes to perform a color change operation.
A powder coating booth and application system must be completely cleaned and purged of one color of powder coating material prior to a successive coating operation using a different powder color. Cleaning a powder coating spray booth can be a labor-intensive effort. Powder coating materials, in varying degrees, tend to coat all the internal surfaces of the spray booth during a powder coating spray operation, which directly impacts color change time. In a production powder coating environment, minimizing the system down time to change from one color of powder coating material to another is a critical element in controlling operational costs. Seams between booth panels and recessed ledges, such as where access doors or automatic or manual spray application devices may be located, are typically hard to clean areas and tend to hold concentrations of oversprayed powder coating material that could present a contamination risk after a color change. In addition to seams and ledges and other recesses within the booth, charged powder can adhere to booth interior surfaces.
In typical powder coating booth construction, an outer steel framework is provided for supporting individual panel members which form the roof, side and end walls of the booth. These panel members are known to be made of a fabricated or thermoformed plastic, such as polypropylene, polyvinyl chloride (PVC), polyvinyl carbonate or polycarbonate. The floor may also be of thermoformed plastic or stainless steel construction. In other known embodiments, powder coating spray booths can have metallic walls, ceilings and vestibule ends, as well a metallic floor and exterior support framework.
U.S. Pat. No. 5,833,751 to Tucker is an example of a powder coating spray booth intended to reduce powder particle adhesion to the interior surfaces of the booth during an electrostatic powder spray operation. Tucker discloses a booth chamber comprising a pair of thermoformed plastic shells with smooth curvilinear interior surfaces that are intended to inhibit oversprayed powder particle adhesion. Two identical ends connect with the shells and an external support frame is disclosed, but not shown. Possible booth materials disclosed include polycarbonate.
Known booth materials are available in limited sizes requiring some method of seaming to generate the overall size. These seams require much effort and cost to achieve a virtually uninterrupted, seamless surface.
In addition, known powder coating spray booths have numerous features that reduce operational efficiencies. These sub-optimal features are evidenced during powder coating color changes between successive runs of different coating colors and during assembly and maintenance of the booth itself. Known powder coating spray booths use metallic external support frames and stainless steel or thermoplastic, floors, walls and ceilings. During an electrostatic powder spray coating operation, oversprayed powder material can actually be attracted and adhere to these booth interior surfaces. Higher concentrations of oversprayed powder coating material are typically seen in the immediate vicinity of the highly conductive steel frame members, which are typically grounded. Although thermoformed plastics are typically thought of as insulators, their insulation properties vary and powder particle adhesion can vary with the conductance and resistance of these materials. With age, physical properties of the thermoformed plastic materials can change with corresponding increases in powder particle adhesion, as they can absorb moisture from the ambient air over time. Ultraviolet light is also known to change the physical properties of thermoplastics over time.
In addition, typical booths have numerous design features that act to increase accumulated oversprayed powder coating materials in the spray booth, thus increasing cleaning times during color change operations. In booths using panel members connected with each other and supported by an external frame, numerous seams exist throughout the booth interior that entrap oversprayed powder coating material, thereby making the booth harder to clean during a color change or routine booth maintenance. In addition to the seams, ledges are present in some powder coating spray booths on which spray gun application devices rest and are mounted, and where openings for doors and other access portals are reinforced and secured, for example. These ledges can either extend into the booth or, more typically, extend away from the inner surface of the booth. Even if otherwise angled or curved toward the floor from the typically vertical side walls, oversprayed powder coating material still tends to accumulate in these areas, thus making them more difficult to clean, as well.
Known prior systems for removing powder overspray from a spray booth include active systems in which floor sweepers and other mechanical devices are used to mechanically contact the powder and push it off the floor into a receiving device. These systems however tend to be cumbersome and are not thorough in the amount of powder removed from the booth. A substantial effort by one or more operators is still required to completely remove powder from the booth. Thus there can be a large amount of in-process powder and powder overspray on the booth structure.
In passive removal systems, powder is removed from the floor in a non-contact manner. In one known system, a rectangular floor in the form of a continuous linearly moving belt transports powder over to a collection device such as a vacuum system that removes powder from the belt. Such systems are very complicated mechanically and do not do an adequate job in removing powder from the belt, so much so that in some cases a color change requires a change of the belt itself.
It is desired therefore to provide a spray booth that is easy to clean as part of a color change operation and operates so as to minimize the amount of in-process powder and the amount of powder overspray remaining in the spray booth after a spraying operation is completed.
The present invention is directed to improved spray booth designs that are particularly suited for electrostatic spraying operations, although the various aspects of the invention may be incorporated into spray booths that do not utilize electrostatic spraying apparatus. According to one aspect of the invention, a powder extraction system is contemplated in which powder overspray can be continuously extracted from the booth even during a spraying operation. In one embodiment of the invention, a powder spray booth includes a booth canopy wall and ceiling arrangement to contain powder during a spraying operation; and a booth floor that is rotatable relative to the booth wall during a spraying operation. The booth may be generally cylindrical in shape with a round floor. The floor can be rotated about a vertical axis that is also the longitudinal axis of the spray booth. The booth canopy and ceiling are supported on a base frame separately from the floor. By this arrangement, the floor can be rotated relative to the booth canopy. By continuously removing powder overspray in a real-time manner during a powder spraying operation, the amount of in-process powder is substantially reduced and the time and effort required to clean the booth as part of a color changeover is dramatically and significantly reduced.
In accordance with another aspect of the invention, a powder extraction mechanism is provided for removing powder overspray from the booth floor. In one embodiment, the extraction mechanism is a duct that extends across the booth floor and supported just off the floor. A negative pressure source is connected to the duct to cause a suction effect by which powder overspray is removed from the floor and transported via the extraction duct to a collection device that is disposed outside the booth. In a preferred form, the extraction mechanism is stationary with respect to the rotating floor and extends diametrically across the floor.
In accordance with another aspect of the invention, the booth floor can be translated as well as rotated. In one embodiment, the booth floor can be axially translated along the axis of rotation. The floor can be moved to a first axial position in which the floor is free to rotate during a spraying operation, and a second axial position where the floor sealingly contacts the bottom of the booth canopy or wall during a color change operation. A source of pressurized air is positioned to blow powder from the seal as part of a color change operation.
Still a further aspect of the invention concerns a mechanism for effecting the axial translation of the floor. In one embodiment the floor is moved by a floor lifter mechanism that moves the floor between the first and second axial positions. In one embodiment the lifter mechanism is a pneumatic actuator that acts on a rocker arm to raise and lower the booth floor.
In accordance with another aspect of the invention, a cyclone system is used to separate the powder overspray from the air drawn in by the extraction duct. A fan is connected to the cyclone system which in turn is connected to the extraction duct. The air flow that is pulled through the duct creates a negative air pressure flow that draws up powder that has collected on the booth floor into the extraction duct and also provides containment air flow within the booth canopy. In one embodiment, the cyclone system is provided with a by-pass valve for selecting between powder overspray reclaim and non-reclaim operating modes.
Still a further aspect of the invention relates to the use of composite materials for the spray booth and floor that are very low in conductivity to minimize powder adhering to the booth and floor, while possessing significant structural properties that enable the configuration to be mechanically sound. In one embodiment, the booth canopy is made of two composite half cylinders that are entirely self-supporting so that the canopy and ceiling can be suspended over an underlying rotatable floor. In this embodiment the floor is also made of very low conductivity composite materials with sufficient structural strength to permit a floor design whereby the floor can be rotated on a central hub.
In accordance with another aspect of the invention, powder overspray containment is augmented by eliminating powder escaping through the conveyor slot. In one embodiment, an air curtain is realized in the form of a pair of passageways having air jets formed therein that direct a flow of air into the booth proximate the conveyor slot. In another embodiment, the passageways are used to direct an air stream across a spray booth floor.
A still further aspect of the invention relates to reducing the cost and improving the cleanability of the extraction duct by eliminating a portion of the duct. In one embodiment, a half-duct configuration is utilized in which an extraction duct extends about halfway across the spray booth floor. This also increases the ease of movement within the booth for an operator during a color change or cleaning operation.
In accordance with another aspect of the invention, surface charge on the outside surfaces of the extraction duct are substantially eliminated by disassociating the powder particles from electrostatic charge applied to the powder particles during a spraying operation. In one embodiment, an extraction duct is formed using a non-conductive outer layer and a conductive inner layer.
These and other aspects and advantages of the invention will be readily appreciated and understood by those skilled in the art from the following detailed description of exemplary embodiments of the invention with reference to the accompanying drawings.
With reference to
The system 1 generally includes a spray booth 10. Note in
In the illustrated embodiment, the booth 10 is generally cylindrical in shape, including a vertically extending canopy or wall structure 12, a ceiling, cover or top 14 and a floor 16. In this example, the canopy 12 is realized in the form of two generally hemispherical halves that are joined together by mating flanges (not shown). The halves can be joined by non-conductive fasteners or adhesive so that the basic cylindrical shell is non-conductive. It is preferred although not necessary that the ceiling 14 and the floor 16 also be seamless and made from the same non-conductive composite materials as the canopy. The above-cited patent application discloses a composite booth structure with sufficient strength to permit humans to walk on the floor 16. The canopy 12 is also self-supporting such that no exterior frame is needed to support the booth 10. The canopy 12 and the ceiling 14 may be integrally formed if so desired.
Although the booth 10 is generally cylindrical in shape, it is not a fully enclosed structure. Access doors and other openings are provided to facilitate a spraying operation. For example, a plurality of gun slots 18 are provided on opposite sides of the booth 10 to permit a corresponding plurality of spray guns 20 to extend into and be withdrawn from the spray booth 10. The guns 20 may be of any suitable design, including a gun design as disclosed in co-pending U.S. patent application Ser. No. 09/667,663 filed on Sep. 22, 2000 for POWDER SPRAY GUN, the entire disclosure of which is fully incorporated herein by reference.
For clarity and ease of illustration, the spray guns 20 are only illustrated on one side of the booth 10 in
The spray booth 10 however may also be used for manual spraying operations, and therefore may be equipped with an optional vestibule assembly 28 (
Continuing with the general description of the system 1, the booth 10 is supported off the shop floor F by a support frame or base 30. The base 30 is supported on the floor F by a pair of parallel rigid bars 32 (only one shown in
The upper portion of the canopy 12 and the ceiling 14 are provided with a conveyor slot 34 that extends diametrically across the entire booth 10. Objects that are to be sprayed are suspended (not shown) from the conveyor C (
An extraction duct 40 is installed in the booth 10 in close proximity to the floor 16. This extraction duct 40 has a discharge end is in fluid communication with a dual or twin cyclone separator system 42. In accordance with one aspect of the invention, a substantial negative pressure is produced in the extraction duct 40 via air drawn by operation of the cyclone system 42 and an after-filter system assembly 60 (
In general, the present invention is described herein with reference to an embodiment in which powder overspray is removed from the booth 10 and fed to a powder collection system. In the described embodiments, the powder collection system includes either a powder reclaim system through operation of a cyclone system and apparatus for conveying powder from the cyclone back to the feed center. Alternatively, in the present application we describe a powder collection system in which the powder is not reclaimed but rather is diverted past the cyclone system directly to an after-filter or other arrangement for the powder to be disposed. The present invention therefore does not depend on the particular powder collection system used outside but rather is directed to extracting powder overspray from within the spray booth, and the term “powder collection” should be construed in its broadest sense to encompass any post-spraying disposition of the powder overspray outside the booth, whether the powder overspray is reclaimed or not.
In
The air flow that is drawn through the extraction duct 40 also provides a containment air flow within the booth 10 interior. Substantial volume of air is drawn into the booth 10 via various openings and access doors provided in the canopy 12.
The extraction duct 40 is supported at each end by the base 30, not the booth floor 16. The canopy 12 and installed ceiling 14 are also supported by the base 30 and not the booth floor 16. In accordance with another aspect of the invention, the booth floor 16 is rotatable about the central longitudinal axis X of the booth 10. The extraction duct 40 in this case is stationary relative to the rotating floor 16 so as to provide a sweeping action between the extraction duct 40 and the floor 16 surface. In this manner, the floor is cleaned of powder overspray as it collects on the floor even during a spraying operation. Of particular note is that the overspray may be extracted during or after a spraying operation.
Completing the general description of the system 1, the cyclone system 42 may be conventional in design and separates the entrained powder from the drawn air. The system 1 also includes a powder feed center 46 that supplies powder to the spray guns 20 through an appropriate system of a feed hopper, feed hoses and powder pumps, as is well known to those skilled in the art. A control console or system 48 is also provided that controls the operation of the guns 20, the cyclone system 42, the gun movers 26, the conveyor C, floor 16 rotation and position, and the feed center 48. The control system 48 may be conventional in design. Suitable control systems are described in U.S. Pat. Nos. 5,454,256 and 5,718,767; a suitable cyclone system is disclosed in U.S. Pat. No. 5,788,728; and a suitable feed center is disclosed in U.S. provisional patent application Ser. No. 60/154,624 which corresponds to copending PCT application number 00/25383 filed on Sep. 15, 2000 and published on Mar. 22, 2001 (WO 01/19259 A2) for QUICK COLOR CHANGE POWDER COATING SYSTEM, the entire disclosures all of which are fully incorporated herein by reference. Powder that is separated by the cyclone system 42 may be returned to the feed center 46 for reuse (not shown in
In accordance with another aspect of the invention, the floor 16 not only can rotate, but also can be axially translated along the axis of rotation X. This permits the floor 16 to have at least two axial positions, the first being a lowered position in which the floor 16 is free to rotate during a spray coating operation, and a second position in which the floor 16 is raised and is sealed against the lower edge of the canopy 12 walls during a color change operation. By moving the floor 16 into the sealed or raised position, an operator can use an air wand or other suitable device to blow down powder overspray that may have collected on the canopy 12, the ceiling 14 or the outside of the extraction duct 40, into the extraction duct 40. For example, the extraction duct 40 is preferably at least partly made of metal to act as an ion collector for electrostatic spraying systems. Consequently, powder will adhere and collect on the outer surface of the extraction duct 40, but this small amount of powder can quickly and easily be blown off and will be quickly swept up into the duct 40. The blower assembly 60 preferably remains on at all times during spraying and cleaning/color change operations.
In its raised position, the floor 16 is fully supported (as will be described herein) so that one or more operators may walk across the floor as required for air cleaning the booth 10, usually as part of a color change operation. The floor 16 is then lowered and rotated while operating the cyclone system 42, thereby removing the last remaining quantities of overspray. Color change therefore is a very fast and simple procedure in terms of cleaning out the spray booth 10. The preferred use of the composite materials for the booth 10 substantially eliminates powder collecting on the canopy 12 and ceiling 14, and permits the extraction duct 40 to easily and efficiently remove powder from the floor 16. The floor 16 is non-conductive except at the drive hub assembly (not shown in
The outside surfaces of the housings or bodies of the guns 20 may be cleaned by air jets 21 (
A significant aspect of the system 10 is that it can be realized as part of a retrofit on an existing system without the need for major changes to the shop area. For example, in the illustrated embodiment, the booth floor 16 is a mere 12 inches above the shop floor F. This permits the booth 10 to be interconnected if required with preexisting cyclone and feed systems, as well as fitting under existing conveyor systems.
With reference to
With reference to
The dashed lines W represent where the booth vertical canopy 12 walls align with the frame. The circle FL indicates the outer perimeter of the booth floor 16. Thus it is apparent that the floor 16 diameter is greater than the diameter of the canopy. In a typical booth, the canopy may be about 10 feet for example in diameter and the floor 16 may be about 11 feet in diameter. There is no practical restriction on the booth size however. The floor 16 extension past the canopy 12 wall acts as a fall-out pan so that powder that escapes through the gap between the floor 16 and the canopy 12 will alight on the extension. This amount of powder is typically going to be very small and consist mainly of fines and thus will tend to be drawn in by operation of the extraction duct 40, as well as a seal blow-off jet that will be described hereinafter.
A parallel pair of floor hub supports 82 extend across the inner perimeter of the frame 30. These hub supports are rigidly mounted to the frame 30. As will be further explained hereinafter, the floor 16 is mounted on the supports 82 via a hub assembly 84. Thus, the floor 16 is fully supported on the frame 30 as a unit separate from the canopy 12 to permit rotation and vertical movement of the floor 16 relative to the canopy 12.
The frame 30 supports a number of floor lifter units 76, which in this embodiment there are four lifters 76 evenly spaced around the frame 30. The basic function of the lifters 76 is to raise and lower the floor 16 vertically relative to the bottom edge of the canopy 12 walls. When the floor is raised, it is sealed against the bottom edge of the canopy 12. When in the lowered position, the floor 16 is free to rotate about the longitudinal axis X of the canopy, which is also the translation axis for the vertical movement of the floor 16.
As noted hereinbefore, the frame 30 also supports the ends of the extraction duct 40, and more specifically in this embodiment the transition duct to the cyclone system and the access door assembly at the opposite end. This permits the extraction duct to be supported in a position that is just above the top surface of the floor 16 when the floor 16 is rotating. The extraction duct 40 is not shown in
With reference next to
Each lifter 76 comprises three basic elements, namely a pneumatic actuator 90, a rocker arm 92 and a roller 94. In this embodiment, the pneumatic actuator 90 is realized in the form of a conventional air cushion shock commonly found in pneumatic suspension applications. The actuator 90 includes an inflatable bladder 96 that is supported by a pinned flange 98 on one of the trusses 70 of the frame 30. Pressurized air is supplied to the bladder 96 via an appropriate fitting and air hose assembly 97. The lower end of the bladder is attached or otherwise displaces a flange 100 that is pinned to a first end 92a of the rocker arm 92. The roller 94 is pinned to the opposite end 92b of the rocker arm and engages the underside of the floor 16 at the region of the floor flange portion 16b.
The rocker arm 92 is bent approximately at its middle and pinned at 102 to the frame 30 so as to be able to pivot about the axis of the pin 102. The control system 48 may be used to control the air pressure applied to the bladder 97, or this may be a manual control operation. In either case, all four lifters 76 are preferably but not necessarily actuated at about the same time in order to maintain the floor 16 generally level. When the bladder 96 is inflated by the application of pressurized air, the bladder 96 expands thus pushing down the flange 100 which pushes down the first end 92a of the rocker arm 92. This causes the rocker arm to pivot in a counterclockwise direction (as viewed from the illustration in
At least one air jet nozzle 80 is positioned on the frame 30 at the perimeter of the floor 16 to direct pressurized air at the seal 104 when the floor 16 is in its lowered position. This air jet 80 cleans the seal 104 of any overspray powder after cleaning activities inside the booth 10 are completed in preparation for a color changeover. The air jet 80 is not otherwise turned on as it is typically not needed. The nozzle 80 is preferably positioned near one end of the extraction duct 40 so as to blow powder from the seal 104 directly into the duct 40. The small air movement induced by the nozzle 80 will be sufficient to draw powder that has alighted on the floor 16 extension 16c outside the canopy 12 wall to be swept into the duct 40.
The circumferential elastomeric floor seal 104 is affixed to the floor 16 or carried on the bottom of the canopy 12 and forms an air tight seal between the floor 16 and the canopy 12 when the floor is in the raised position. Any suitable seal or gasket material may be used for the floor seal 104. This permits an operator to enter the booth 12 when the floor is in its raised position and use an air wand or other mechanism to blow powder off the canopy walls, ceiling and the extraction duct 40 without blowing powder out the booth between the floor 16 and the canopy 12 or having powder get trapped between the floor 16 and the canopy 12. This cleaning operation will typically be performed as part of a color change operation.
When the air pressure in the bladder 96 is relieved, the bladder 96 contracts and pulls up the first end 92a of the rocker arm, thus causing the rocker arm 92 to pivot clockwise (as viewed in
Each knee 110 is bonded to its respective portion of the canopy 12 outer wall surface. Any suitable bonding agent may be used and will be determined based on the materials of the knee 110 and the canopy 12. By this arrangement, the canopy 12 and ceiling 14 are fully supported just above the floor 16 (which extends under the canopy 12 wall as in
In an alternative embodiment illustrated in
With reference to
With reference to
The spline shaft 148 meshes with a track ball spline 154 that has an inner spline for the spline shaft 148 and an outer spline that meshes with a coupling 156. The coupling 156 is mounted on an aluminum hub plate 158 by a cap 160 that is attached to the coupling 156 by bolts 162, and a collar 164 that is attached to the coupling 156 by bolts 166. The floor 16 is mounted on the hub plate by bolts 168 that pass through the floor hub flange 122 bolt holes 124 (
By this arrangement, the motor 74 turns the drive shaft 150 through a gear reducer 170, with the drive shaft turning the spline shaft 148 through the gear reducer 144 that is mounted on the frame 30 via the support bars 82. The spline shaft 148 rotation thus rotates the floor 16 via the coupling 156. By use of the spline arrangement between the drive shaft 150 and the hub plate 158, the floor 16 can be axially translated along the axis X a limited distance as previously described herein under operation of the floor lifters 76. The control system 48 may be programmed to set or adjust the motor 74 speed and hence the floor 16 rotation speed.
With reference to
The extraction duct 40 includes a lower skirt 174 that tapers downwardly towards the floor 16 along the longitudinal axis of the duct 40. This taper is defined by an angle β. The extraction duct 40 is supported about two inches above the floor 16, and the small optional taper β is used to maintain a constant air flow pattern through the duct 40. Without the taper, the higher negative air pressure closest to the cyclone inlet 52 would cause an uneven flow pattern within the booth. When the floor is in the raised position, there is only a very small or zero gap between the duct 40 and the floor 16 at the cyclone duct 52 end, and about two inches at the opposite end. Thus at its maximum when the floor 16 is lowered, the opposite end has about a four inch or less gap between the bottom of the duct 40 and the floor 16.
As best illustrated in
With reference to
The duct 180 is mounted above the floor 16 and may be installed in a manner similar to the all metal duct 40 embodiment. In accordance with another aspect of the invention, in some applications it may be required to apply additional force to the powder residue that adheres to the floor 16 if the suction from the duct is insufficient to thoroughly dislodge the powder. In the embodiment of
A series of air jets or orifices 188 are formed in the bottom of each rail 182 and are in fluid communication via passageways 188a with the air passageways 186 such that pressurized air is directed out of each orifice 188 against the floor but at an angle that causes powder on the floor 12 to be blown into the extraction duct 180 interior. The orifices 188 are spaced along the lower edge of each rail 182 on the approach side of the extraction duct 180, thus for each rail 182 the orifices 188 are provided only on one half of each respective rail but a complete line of orifices extend across the entire booth floor 16. This positive pressure air from the jet slots 188 augments the powder removal suction caused by the negative air pressure flow within the duct 180. The pressurized air from the orifices 180 will tend to assist in dislodging powder overspray particles that may have adhered to the floor 12 and cannot be drawn up by the negative air pressure flow from the duct 180. The alternative duct 180 embodiment need not be made of the same materials as the booth 12, however, use of such materials will result in minimal collection of powder overspray on the duct 180.
Cyclone Bypass Valve
With reference again to
With reference to
With reference to
The seals 214 and 216 are, for example, conventional D-seals. The cyclone seals 214 are installed on the plenum 56 around each of the cyclone openings 200, 202. Alternatively, the cyclone seals 214 may be installed on the valve door 212. The bypass plenum seal 216 may also be a D-seal and is installed in the plenum 56 around the opening between the bypass duct 210 and the bypass plenum 56. Again, alternatively, the duct seal 216 may be installed on the valve door 212 rather than the plenum 56 wall.
When the valve door 212 is in the upright or cyclone open position, the valve door 212 seals and isolates the bypass duct 210 from the bypass plenum 56. The cyclone exhaust outlets are also open to the bypass plenum 56 via the openings 200, 202. As a result, the powder overspray laden air from the extraction duct 40 passes into the cyclone inlets 54 whereby much of the powder is separated from the air stream and drops to the lower collection regions of the cyclones. The cyclone exhaust air, which may still contain powder fines, flows through the after-filter ductwork 58 to the after-filter assembly 60 (
When the valve door 212 is in the down or cyclone closed position (
The valve actuator mechanism 218 in this embodiment is realized in the form of a pneumatic piston type actuator 220 and a bell crank assembly 222. The bell crank assembly 222 is a lever 224 that is connected at its free end 226 to an actuator rod 228, and at its opposite or pivot end 230 is connected to the valve door 212 through the plenum 56 wall. The actuator 220 is pivotally connected to a mounting bracket 232 so that the actuator 220 is free to rotate slightly to avoid binding as it pushes and pulls on the bell crank lever 224. The actuator 220 may be controlled by the control system 48, or alternatively may be controlled by manual operation of a pressure valve. Still further, the valve door 212 could be manually moved, but an actuator is preferred to assure a good seal when the door 212 is in each position.
It should be noted that the cyclone bypass valve concept may be used in any powder spraying system that utilizes a cyclone separator system. The bypass valve arrangement is therefore not limited to use in a system that uses other aspects of the system described herein such as, for example, the embodiments of the spray booth 10.
Composite Extraction Duct
With reference to
With reference to
In this embodiment, a powder extraction duct is indicated generally by the reference numeral 300. The duct 300 is similar in some respects to the embodiment of
The duct 300 includes a composite cover 308 having two halves 308a and 308b. These cover halves are joined to their respective rails 302 by a suitable hinge joint arrangement 310a and 310b to allow the covers 308 to be swung open as illustrated in phantom and the directional arrows. The covers are hinged lengthwise. Alternatively the cover halves 308a,b may be hinged at either end thereof, similar to the embodiment of
Each cover half is the same construction. The cover is distinguished from the other embodiments herein in that the covers 308 are now formed of a metal or otherwise conductive inner surface 312. In this example, the surface 312 is formed or otherwise provided on a base 314. The base 314 may be made, for example, by an arcuate stainless steel fabrication 314, however, any conductive material may be used, and alternatively the conductive surface 312 may be provided on a non-conductive base or substrate. The base 314 includes a series of support ribs 316 that support a non-conductive arcuate skin 318. The supports 316, for example, may each include a leg 316a and a conforming support plate or shelf 316b. The conductive outer layer or skin 318 overlays the supports 316b to form a generally hollow cover structure. The skin 318 may be bonded or otherwise attached to the support shelves 316b. The specific shapes of the supports 316 is not critical to the invention. Any suitable support mechanism may be used to form the hollow covers 308a and 308b. In this example, the supports 316 may be integrally formed with the conductive base 314. End risers 320 may be formed by additional partial supports and are provided to substantially enclosed the cover structures if so desired. The supports 316 may extend widthwise across each cover half (
The end risers 320 include a conforming upper plate 320a. In order to form an air tight enclosure, the end plates 320 and upper plates 320a may be welded to the base 314. As illustrated in
Although the covers 308 are illustrated herein as being hollow or air filled, they may also be filled with a material such as, for example, a low density foam or other suitable non-conductive material for added support and rigidity if required for a more robust application.
The skin 318 may be any suitable non-conductive material, such as, for example, an FR-4 material such as is commonly used for printed circuit boards.
The cover 308 improves clean-up and color change procedures within a spray booth by virtue of the fact that even though overspray powder particles may initially alight on the surface of the skin 318, any electrostatic charge associated with the powder will continue to pass through the skin and be collected on the conductive inner surface 312. The inner surface 312, like the rails 302 and the base 314 are grounded. Therefore, the inner surface 312 acts as a ground path and disassociates the powder particles from electrostatic charge associated with the powder overspray. The powder particles therefore are not influenced by any surface charge on the cover 308 and will readily fall off to be collected by the extraction duct 300 (as described herein above). The grounded conductive inner surface of the base 314 also serves to ground or dissipate tribocharging effects of the high velocity air/powder stream flowing through the duct 300.
Conductive Extraction Duct for Overspray Powder
With reference to
With reference then to
With only one half of the rotating floor 12 being swept by the half-duct 330, the same powder collection rate compared to using a full length duct can be achieved by simply doubling the rotation speed of the floor 12.
Containment Air Flow for Conveyor Slot
With reference to
With reference to
Each air channel 358 is a generally hollow structure to form an air passageway 362 therethrough. The channels 358 extend preferably across the entire length of the conveyor slot 352. Each channel 358 further includes a series of air jets or bores 364 through a wall 366 of the channel 358. These air jets 364 provide a flow of pressurized air downward and into the spray booth as indicated by the directional arrows in
The channels 358 are coupled to a source of pressurized air (not shown) such as by an appropriate air fitting mounted on respective closed ends of the channels 358.
The use of a pultrusion as set forth herein is particularly advantageous for making a multiuse structure as illustrated in
The pultrusion 368 further includes an L-shaped support 370. The L-shaped support is joined to the channel 358 portion by a bridge piece 372. When it is desired to use the channel portion 358 separately from the support portion 370, the two portions are separated by removing the bridge piece 372 such as by cutting.
The channel portion 358 is designed for a multiuse feature, as illustrated in
The L-shaped support 370 may be secured to a structural support of the spray booth (not shown). A separated L-shaped portion 380 may also be used as a wall brace for a wall 382 of the spray booth. The brace 380 is simply the remaining piece formed when the channel portion 358 is separated at the bridge 372. For example, a channel 358 may be separated from the pultrusion 368 for use as part of the air curtain manifold 356 described herein with reference to
It is intended that invention not be limited to the particular embodiments and alternative embodiments disclosed as the best mode or preferred mode contemplated for carrying out the invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a continuation in part of pending U.S. patent application Ser. No. 09/891,057 filed on 25 Jun 2001 for POWDER COATING BOOTH WITH A POWDER EXTRACTION SYSTEM, which claims the benefit of U.S. Provisional patent applications Ser. No. 60/238,277 filed on Oct. 5, 2000 for ROUND BOOTH WITH ROTATING FLOOR and No. 60/277,149 filed on Mar. 19, 2001 for QUICK CHANGE POWDER COATING SPRAY SYSTEM, the entire disclosures of which are all fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60238277 | Oct 2000 | US | |
60277149 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10145934 | May 2002 | US |
Child | 11079625 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09891057 | Jun 2001 | US |
Child | 10145934 | May 2002 | US |