This patent application is based on and claims priority pursuant to 35 U.S.C. §119(a) to Japanese Patent Application No. 2015-126744, filed on Jun. 24, 2015, in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
Technical Field
Embodiments of the present invention generally relate to a powder container and an image forming apparatus, such as a copier, a printer, a facsimile machine, or a multifunction peripheral having at least two of copying, printing, facsimile transmission, plotting, and scanning capabilities.
Description of the Related Art
Image forming apparatuses such as copiers use a powder container to store powdered toner (i.e., developer or powder for image formation) and a powder supply device to supply the toner from the powder container to a developing device.
There are powder containers that include a rotatable powder storage to store toner and a conveyor to transport the toner inside the powder storage and configured, as the powder storage rotates, to scoop up the toner inside the powder storage and cause the toner to flow to an opening disposed in a downstream portion of the powder storage in the direction in which the conveyor transports the toner.
An embodiment of the present invention provides a powder container that includes a rotatable powder storage to store powder for image formation, a conveyor to transport the powder inside the powder storage, and a scooping portion to scoop the powder inside the powder storage. The conveyor transports the powder in a powder conveyance direction parallel to a rotation axis of the powder storage toward an opening at one end of the powder storage. The scooping portion causes the powder to flow to the opening. The scooping portion includes a scooping face extending from an inner face of the powder storage toward the rotation axis of the powder storage, and a rim disposed along an inner end of the scooping face in a diameter direction of the powder storage. On a cross section perpendicular to the rotation axis of the powder storage, at least a portion of the rim projects downstream beyond the scooping face in a rotation direction of the powder storage.
In another embodiment, an image forming apparatus includes the powder container described above, a powder supply device to transport the powder from the powder container; and an image forming unit including an image bearer. The image forming unit is configured to form an image on the image bearer using the powder transported from the powder container by the powder supply device.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
It is to be noted that spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, term such as “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views thereof, and particularly to
With reference to
The copier 500 includes a toner container holder 70 disposed in an upper section of the printer body 100. Four toner containers 32Y, 32M, 32C, and 32K (also collectively “toner containers 32”) to contain yellow, magenta, cyan, and black toners, respectively, are removably installable in the toner container holder 70. That is, the toner containers 32 are replaceable.
An intermediate transfer unit 15 is disposed below the toner container holder 70. The intermediate transfer unit 15 includes an intermediate transfer belt 8 serving as an intermediate transfer member. The intermediate transfer member is not limited to an intermediate transfer belt but can be an intermediate transfer drum. The printer body 100 includes four image forming units 6Y, 6M, 6C, and 6K (collectively “image forming units 6”) disposed side by side, facing the intermediate transfer belt 8 from below the intermediate transfer belt 8.
Toner supply devices 60Y, 60M, 60C, and 60K (collectively “toner supply devices 60”) are disposed below the respective toner containers 32Y, 32M, 32C, and 32K (replaceable components) containing yellow, magenta, cyan, and black toners. Each toner supply device 60 (i.e., a powder supply device or a toner conveying device) supplies the toner contained in the corresponding toner container 32 to a developing device 5 of the corresponding image forming unit 6.
Descriptions are given below of the image forming units 6 and the toner supply devices 60. The image forming units 6 are similar in structure and the toner supply devices 60 are similar in structure although the color of toner is different. Thus, the suffixes Y, M, C, and K are omitted below.
Referring to
As the photoconductor drum 1 is rotated clockwise (indicated by arrow Y1) in
When the photoconductor drum 1 reaches a position to receive a laser beam L emitted from an exposure unit 7 (illustrated in
Then, the photoconductor drum 1 reaches a position facing the developing device 5, where the latent image is developed with toner into a toner image (i.e., a developing process). Subsequent to the developing process, surface of the photoconductor drum 1 reaches a position facing a primary-transfer bias roller 9 (9Y, 9M, 9C, and 9K in
When the surface of the photoconductor drum 1 reaches a position facing the cleaning device 2, a cleaning blade 2a of the cleaning device 2 mechanically collects the untransferred toner from the photoconductor drum 1 (i.e., a cleaning process).
Further, when the surface of the photoconductor drum 1 reaches a position facing the discharger, residual potentials on the surface thereof are removed.
Thus, a sequence of image forming processes performed on each photoconductor drum 1 completes.
As illustrated in
The four primary-transfer bias rollers 9 are pressed against the corresponding photoconductor drums 1 via the intermediate transfer belt 8, and four contact portions between the primary-transfer bias rollers 9 and the corresponding photoconductor drums 1 are hereinafter referred to as primary transfer nips. Each primary-transfer bias roller 9 receives a transfer bias in the polarity opposite the polarity of toner. While rotating in the direction indicated by the arrow illustrated in
Then, the intermediate transfer belt 8 carrying the four-color toner image reaches a position facing a secondary transfer roller 19. The secondary-transfer backup roller 12 and the secondary transfer roller 19 press against each other via the intermediate transfer belt 8, and the contact portion therebetween is referred to as a secondary-transfer nip. The four-color toner image is transferred from the intermediate transfer belt 8 onto a recording sheet P (recording medium) transported to the secondary-transfer nip (i.e., a secondary transfer process). A certain amount of toner tends to remain untransferred on the intermediate transfer belt 8 after the secondary transfer process.
When the intermediate transfer belt 8 reaches a position facing the belt cleaner, the untransferred toner is collected from the intermediate transfer belt 8 by the belt cleaner. Thus, a sequence of image forming processes performed on the intermediate transfer belt 8 completes.
The sheet feeder 26 disposed in the lower portion of the printer body 100 feeds the recording sheet P to the secondary transfer nip via a sheet feeding roller 27, a registration roller pair 28, and the like. The sheet feeder 26 contains multiple recording sheets P piled one on another. The sheet feeding roller 27 rotates counterclockwise in
Subsequently, the recording sheet P carrying the multicolor image is transported to a fixing device 20, where a fixing belt and a pressing roller apply heat and pressure to the recording sheet P to fix the multicolor toner image on the recording sheet P. Alternatively, a fixing device including a fixing roller and a pressure roller pressing each other can be used.
Subsequently, the recording sheet P is discharged by a pair of discharge rollers 29 outside the copier 500. The recording media P are sequentially stacked as output images on a stack section 30. Thus, a sequence of image forming processes performed in the copier 500 is completed.
Next, a configuration and operation of the developing devices 5 is described in further detail below with reference to
Each developing device 5 includes a developing roller 51 disposed facing the photoconductor drum 1, a doctor blade 52 disposed facing the developing roller 51, two conveying screws 55 respectively disposed in developer containing compartments 53 and 54, and a concentration detector 56 to detect the ratio of toner in developer G. A casing of the developing device 5 is divided, at least partially, into the developer containing compartments 53 and 54. The developing roller 51 includes a stationary magnet or magnet roller, a sleeve that rotates around the magnet, and the like. The developer containing compartments 53 and 54 contain two-component developer G including carrier (carrier particles) and toner (toner particles). The casing of the developing device 5 includes an opening above the developer containing compartment 54, and the developer containing compartment 54 is coupled via the opening to a toner dropping passage 64.
The developing device 5 operates as follows. The sleeve of the developing roller 51 rotates in the direction indicated by arrow Y2 illustrated in
The percentage of toner (concentration of toner or ratio of toner to carrier) in the developer G contained in the developing device 5 is adjusted within a predetermined range. More specifically, the toner supply device 60 supplies toner from the toner container 32 to the developer containing compartment 54 according to the consumption of toner in the developing device 5.
While being mixed and stirred with the developer G in the developing device 5, the supplied toner is circulated between the two developer containing compartments 53 and 54 (transported in the direction perpendicular to the surface of the paper on which
The developer G carried on the developing roller 51 is transported in the direction indicated by arrow Y2 in
Referring to
The toner container holder 70 includes, as main components, an insertion hole part 71, a container receiving section 72, and a container-cover receiving section 73. The insertion hole part 71 defines an insertion opening 71a for attachment of each of the toner containers 32Y, 32M, 32C, and 32K. The insertion hole part 71 is exposed when a front cover of the copier 500 (on the front side of the paper on which
When the toner container 32 is coupled to the toner supply device 60, the toner container 32 slides on the container receiving section 72 in the attachment direction Q. As illustrated in
The container-cover receiving section 73 is disposed on the leading side in the attachment direction Q (on the back side of the copier 500), which opposite the insertion hole part 71 across the container receiving section 72. The container-cover receiving section 73 rotatably supports each toner container 32. The insertion hole part 71 is on the leading side in the detachment direction Q1.
As illustrated in
The toner end detector 66 is disposed on a side wall of the toner tank 61 at a predetermined height and detects that the amount of toner stored in the toner tank 61 has fallen to or below a predetermined amount. When the controller 90 recognizes that the amount of toner stored in the toner tank 61 is less than the predetermined amount using the toner end detector 66, the controller 90 causes the driving part 91 (including a driving gear 81) to rotate a container body 33 (33Y in
The agitator 65 is disposed in a center portion inside the toner tank 61 and inhibits the toner T from aggregating inside the toner tank 61. The agitator 65 rotates clockwise in
The toner conveying screw 62 transports the toner T stored in the toner tank 61 obliquely upward. Specifically, the toner conveying screw 62 linearly conveys the toner from the bottom (a lowest point) of the toner tank 61 to the upper side of the developing device 5. Then, the toner conveyed by the toner conveying screw 62 drops under the weight thereof through the toner dropping passage 64 and is supplied to the developer containing compartment 54 of the developing device 5.
Next, a structure of the toner container 32 is described below. The toner containers 32Y, 32M, 32C, and 32K have a similar configuration except the color of the toner contained therein, and thus subscripts Y, M, C, and K are omitted below.
Each toner container 32 is configured to move the toner stored therein to the toner outlet W. As illustrated in
As illustrated in
In other words, a spiral groove is formed in an outer face of the container body 33 when viewed from outside. As the container body 33 rotates around a rotation axis O extending in the longitudinal direction thereof, the spiral rib 33b disposed inside the container body 33 transports the toner in the container body 33 to the opening 33e.
The spiral rib 33b serves as a conveyor to transport the powder inside the powder storage to the opening in a powder conveyance direction parallel to a rotation axis of the powder storage. The conveyor to transport the powder inside the powder storage is not limited the spiral rib but can be a screw, an auger, a coil, or a paddle.
The opening 33e is disposed at the first end 33a1 of the container body 33, which is on the downstream side in the direction indicated by arrow A (in
The container body 33 is held by the toner container holder 70 rotatably relative to the cap 34 as illustrated in
Then, the toner is scooped up by the scooping portion 340 and flows to the opening 33e, from which the toner flows out the toner container 32 via the toner outlet W of the cap 34. Thus, the toner is supplied to the toner tank 61. Each toner container 32 is replaced with a new one when the operational life thereof expires. As described above, the cover of the printer body 100 is opened in replacement of the toner container 32. It is to be noted that the toner container 32 is replaced when the toner contained therein is consumed and the toner container 32 becomes empty or almost empty.
As illustrated in
As illustrated in
In the configuration to scoop up the toner by rotation of the container body 33, the amount of toner discharged from the container body 33 through the opening 33e and the toner outlet W tends to decrease when the amount of toner remaining in the container body 33 is small,
which is described in further detail below with reference to
When the amount of toner inside the container body 33 is sufficient, the amount of toner scooped is greater, and the toner remains on the scooping face 341 has a certain weight even if the toner spills out the rim 343X of the scooping face 341. Accordingly, an inertial force at the opening 33e is sufficient for the toner to flow. As the amount of toner in the container body 33 decreases, however, the amount of toner scooped is reduced. Since some of the scooped toner spills out the rim 343X, the weight of toner decreases. Accordingly, it is conceivable that the amount of discharged toner decreases since the inertial force to cause the toner to flow into the opening 33e becomes weaker.
In view of the foregoing, in the toner container 32 according to the present embodiment, as illustrated in
In the present embodiment, the scooping face 341 is flat. The protruding rim 343 can protrude from the scooping face 341 in the axial direction of the container body 33 as well.
The protruding rim 343 extends continuously from an upstream end 343a to a downstream end 343b in the toner conveyance direction A. The protruding rim 343 forms a guide wall on the inner end 342 of the scooping face 341. In other words, the protruding rim 343 includes a projecting portion extending from the upstream end 343a, at which swelling starts, to the downstream end 343b disposed at 180 degrees from the upstream end 343a and opposite the upstream end 343a in the direction of arch-shaped circumference of the container body 33. The downstream end 343b of the protruding rim 343 is located between the opening 33e and the upstream end 343a of the protruding rim 343 in the toner conveyance direction A. That is, the downstream end 343b is on the side of the opening 33e.
Thus, in the present embodiment, the scooping portion 340 to cause the toner to flow to the opening 33e includes the scooping face 341, which extends from the inner face 33c of the container body 33 toward the rotation axis O of the container body 33, and at least a portion of the protruding rim 343 on the scooping face 341 projects beyond the scooping face 341 to the downstream side in the rotation direction B in which the container body 33 rotates. Accordingly, even when the scooped toner moves on the scooping face 341 to the rotation axis O as the container body 33 rotates, the toner is dammed up by the protruding rim 343 projecting beyond the scooping face 341 in the rotation direction B. With this configuration, even when the amount of scooped toner decreases as the amount of toner in the container body 33 decreases, the scooped toner is inhibited from spilling out the protruding rim 343. Accordingly, decreases in the weight of toner are suppressed, thereby suppressing decreases in the inertial force to cause the toner to flow in the opening 33e. This configuration can keep the amount of discharged toner stable and simultaneously reduce the amount of toner that is not discharged but is inevitably left inside the toner container 32.
Since the scooping face 341 is flat in the present embodiment, the scooped toner is not blocked by the scooping face 341 but can move to the protruding rim 343. Then, the toner scooped up by the scooping face 341 is efficiently supplied from the protruding rim 343 to the opening 33e, thereby keeping the amount of discharged toner stable.
As illustrated in
Making the inclination θ1 of the protruding rim 343 of the scooping portion 340 smaller than the inclination θ of the spiral rib 33b is advantageous in scooping the powdered toner and accordingly reducing the amount of toner left in the container body 33. Thus, a sufficient amount of toner can be scooped, thereby better suppressing the decrease in the amount of toner discharged from the toner container 32.
In the present embodiment, there are two scooping faces 341 disposed at 180 phase from each other in the rotation direction B of the container body 33 around the rotation axis O. Accordingly, each time the container body 33 makes a half-turn, the toner is scooped and caused to flow to the opening 33e. Therefore, even when the amount of toner remaining in the container body 33 is small, a sufficient amount of toner can be scooped since the number of times of toner scooping per unit time is thus increased. Accordingly, the decrease in the amount of toner discharged from the opening 33e is suppressed better.
It is to be noted that the protruding rim 343 is not limited to the above-described structure in which the protruding rim 343 at the inner end 342 of the scooping face 341 projects downstream beyond the scooping face 341 in the rotation direction B in which the container body 33 rotates and the protruding rim 343 extends continuously from the upstream end 343a to the downstream end 343b in the toner conveyance direction A.
For example, in the structure illustrated in
Accordingly, the capability to discharge toner is improved, thereby better suppressing the decrease in the amount of toner discharged from the opening 33e.
Alternatively, in the structure illustrated in
Alternatively, in the structure illustrated in
In the structures in which at least a portion of the protruding rim 343 projects beyond the scooping face 341 in the rotation direction B of the container body 33, referring to
Additionally, a structure in which an angle θ2 between an inner face 343e of the protruding rim 343 and the scooping face 341 is 90 degrees or smaller is preferable since the effect to dam up the toner is higher.
The shape of trajectory from the upstream end 343a, at which the protruding rim 343 starts, to the downstream end 343b, at which the protruding rim 343 ends, is not limited to the continuous spiral. In other embodiments, the trajectory from the upstream end 343a to the downstream end 343b is linear as illustrated in
Referring to
The experiment was conducted under the following test conditions. Both of the comparative toner container 32X and the toner container 32 according to the present embodiment were filled with toner of identical type and rotated at an identical rotation speed, and the amount of toner discharged from the opening 33e was measured.
According to the result of the experiment illustrated in
Specifically, each of the toner container 32 according to the present embodiment and the comparative toner container 32X was mounted in the copier 500, and an image having an image area ratio of 5% was repeatedly printed on two recording sheets (printing on two sheets and stop of image formation were repeated). The amount of toner remaining in the toner container 32 or 32X was measured when the copier reported the toner end. In
According to the result of the experiment, as illustrated in
It is to be noted that the scope of the appended claims is not limited to the embodiments described above, but a variety of modifications can naturally be made within the scope of the present disclosure.
For example, image forming apparatuses in which aspects of the present disclosure are adopted are not limited to copiers but can be printers, facsimile machines, or multifunction peripherals having at least two of copying, printing, plotting, facsimile transmission, and scanning capabilities.
Although most preferable advantages are described above, advantages of the present disclosure are not limited to the advantages described above.
Number | Date | Country | Kind |
---|---|---|---|
2015-126744 | Jun 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5890040 | Matsuoka | Mar 1999 | A |
5903806 | Matsuoka | May 1999 | A |
6104902 | Meyer | Aug 2000 | A |
7729644 | Thornton | Jun 2010 | B2 |
7747202 | Taguchi | Jun 2010 | B2 |
7817944 | Li | Oct 2010 | B2 |
8824934 | Hayashi | Sep 2014 | B2 |
20060099012 | Kita et al. | May 2006 | A1 |
20070081834 | Koyama et al. | Apr 2007 | A1 |
20070086809 | Yamane | Apr 2007 | A1 |
20070140747 | Kita et al. | Jun 2007 | A1 |
20070147900 | Taguchi et al. | Jun 2007 | A1 |
20070147902 | Taguchi et al. | Jun 2007 | A1 |
20100150605 | Yomoda et al. | Jun 2010 | A1 |
20100226690 | Kadota et al. | Sep 2010 | A1 |
20110002713 | Taguchi et al. | Jan 2011 | A1 |
20120141169 | Yamane et al. | Jun 2012 | A1 |
20120200871 | Takahashi et al. | Aug 2012 | A1 |
20120308242 | Yamane et al. | Dec 2012 | A1 |
20130045029 | Kimura et al. | Feb 2013 | A1 |
20130064570 | Yamane et al. | Mar 2013 | A1 |
20130129391 | Kadota et al. | May 2013 | A1 |
20140314443 | Takahashi et al. | Oct 2014 | A1 |
20140341602 | Takahashi et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
0 853 260 | Jul 1998 | EP |
2012-226289 | Nov 2012 | JP |
2012-230343 | Nov 2012 | JP |
2013-072921 | Apr 2013 | JP |
WO 2013077474 | May 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/255,629, filed Apr. 17, 2014. |
Extended European Search Report issued Oct. 21, 2016 in Patent Application No. EP16175995.6. |
Number | Date | Country | |
---|---|---|---|
20160378021 A1 | Dec 2016 | US |