This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application Nos. 2012-131349, filed on Jun. 8, 2012, and 2012-131218, filed on Jun. 8, 2012, in the Japan Patent Office, the entire disclosure of each of which is hereby incorporated by reference herein.
1. Technical Field
The present invention generally relates to a powder container including a rotatable powder chamber for containing powder, and further to a powder replenishing device and an image forming apparatus incorporating the powder container.
2. Description of the Background Art
There are powder replenishing devices, such as toner replenishing devices for supplying toner to an image forming apparatus, that use a powder container including a bottle body, serving as a powder chamber, for containing toner, and a front end cover, serving as a holding portion, for rotatably holding a front end portion of the bottle body.
In such configurations, typically a container gear is formed on a circumference of the front end portion of the bottle body to mesh with a driving gear provided in a body of an image forming apparatus (i.e., an apparatus body). As the bottle body rotates with the container gear meshing with the driving gear, toner contained inside the bottle body moves from a rear side to a front side of the bottle body along a spiral protrusion formed on an inner circumferential surface of the bottle body. In the front end portion, toner enters a hopper formed in a front end portion of the front end cover covering the bottle body. A nozzle inserted into the hopper from outside the front end cover, sucks in toner and transports the toner to a developing device incorporated in the image forming apparatus.
In such a configuration, it is possible that toner coagulate inside the bottle body if the apparatus is not used for a long time. Various approaches have been tried to loosen coagulated toner in the bottle body. For example, JP-H11-327275-A proposes a toner replenishing device that includes a cylindrical bottle holder having a diameter greater than that of the bottle body, and a rear end portion of the bottle body is inserted into the cylindrical bottle holder.
At a predetermined circumferential position of the bottle holder, an internal projection projects from an inner circumferential surface of the bottle holder, and a protrusion is formed in the rear end portion of the bottle body, at a predetermined circumferential position. When the protrusion of the rear end portion of the bottle body moves in a predetermined rotational range as the bottle body rotates, the protrusion overstrides the internal projection of the bottle holder. An impact at that time can vibrate the bottle body to loosen the toner therein.
In view of the foregoing, one embodiment of the present invention provides a powder container that includes a rotatable powder chamber for containing powder used for forming images, having an opening on a first side in an axial direction of the powder container, a conveyor disposed inside the powder chamber to transport powder contained in the powder chamber to the first side from a second side in the axial direction, a protrusion radially projecting from an outer circumferential surface of the powder chamber, disposed in a circumferential area of the powder chamber, and a first facing member disposed facing the outer circumferential surface of the powder chamber. The protrusion contacts the first facing member as the powder chamber rotates.
In another embodiment, an image forming apparatus includes an image forming unit to form images on recording media, and the above-described powder container.
In yet another embodiment, a powder container includes a powder chamber for containing powder for forming images, having an opening on a first side in a longitudinal direction of the powder container, a conveyor disposed inside the powder chamber to transport the powder contained in the powder chamber to the first side from a second side in an axial direction, an end cover to cover an end portion of the powder chamber in which the opening is formed, and a retainer to retain the powder container. A retaining hole is formed in the end cover, and the retainer penetrates the retaining hole of the end cover and contacts an outer circumferential surface of the powder chamber.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views thereof, a toner container, a toner replenishing device, and an image forming apparatus according to a first embodiment of the present invention is described.
According to the embodiments of the present invention described below, coagulation of powder contained in the powder container can be loosened without causing a substantial eccentric movement of the powder chamber therein.
Referring to
The image forming apparatus 500 includes a container frame 70 provided in an upper section of the apparatus body 100. Four toner containers 32Y, 32M, 32C, and 32K for containing yellow, magenta, cyan, and black toners, respectively, are removably installable in the container frame 70. That is, the toner containers 32Y, 32M, 32C, and 32K are replaceable. An intermediate transfer unit 85 is provided beneath the container frame 70.
It is to be noted that the suffixes Y, M, C, and K attached to each reference numeral indicate only that components indicated thereby are used for forming yellow, magenta, cyan, and black images, respectively, and hereinafter may be omitted when color discrimination is not necessary.
The intermediate transfer unit 85 includes an intermediate transfer belt 48, four primary-transfer bias rollers 49, a secondary-transfer backup roller 82, multiple tension rollers, and a belt cleaning unit. The intermediate transfer belt 48 is supported by the multiple rollers including the secondary-transfer backup roller 82 and is rotated in the direction indicated by an arrow shown in
The apparatus body 100 includes four image forming units 46 parallel to each other, facing the intermediate transfer belt 48. Additionally, toner replenishing devices 60 corresponding to the respective toner containers 32 are provided beneath the toner containers 32. Each toner replenishing device 60 supplies toner from the corresponding toner container 32 to a developing device 50 (shown in
As shown in
It is to be noted that other image forming units 46 have a similar configuration to that of the yellow image forming unit 46Y except the color of the toner used therein and form toner images of the respective colors. Thus, only the image forming unit 46Y is described below and descriptions of other image forming units are omitted.
Referring to
The four primary-transfer bias rollers 49 sandwich the intermediate transfer belt 48 with the corresponding photoreceptors 41, respectively, forming primary-transfer nips therebetween. Each primary-transfer bias roller 49 receives a transfer bias whose polarity is opposite the charge polarity of the toner.
At the position facing the primary-transfer bias roller 49Y via the intermediate transfer belt 48, the toner image is transferred from the photoreceptor 41Y onto the intermediate transfer belt 48 (primary-transfer process). After the primary-transfer process, a certain amount of toner tends to remain on the photoreceptor 41Y. Then, a cleaning blade 42a mechanically collects toner remaining on the photoreceptor 41Y (cleaning process) at the position facing the photoreceptor cleaning device 42Y. Subsequently, the discharger removes potentials remaining on the surface of the photoreceptor 41Y. Thus, a sequence of image forming processes performed on the photoreceptor 41Y is completed.
The above-described image forming processes are performed also in the image forming units 46M, 46C, and 46K similarly. That is, the exposing device 47 disposed above the image forming units 46 in
The intermediate transfer belt 48 rotates in the direction indicated by the arrow shown in
Then, the intermediate transfer belt 48 carrying the multicolor toner image reaches a position facing a secondary-transfer roller 89 disposed facing the secondary-transfer backup roller 82. The secondary-transfer backup roller 82 and the secondary-transfer roller 89 press against each other via the intermediate transfer belt 48, and the contact portion therebetween is hereinafter referred to as a secondary-transfer nip. The multicolor toner image on the intermediate transfer belt 48 is transferred onto the sheet P (recording medium) transported to the secondary-transfer nip. A certain amount of toner tends to remain on the intermediate transfer belt 48 after the secondary-transfer process. The belt cleaning unit collects untransferred toner remaining on the intermediate transfer belt 48, and thus a sequence of transfer processes performed on the intermediate transfer belt 48 is completed.
Next, sheet conveyance is described below.
The sheet P is transported by a sheet tray 26 of the sheet feeder 200 positioned beneath the apparatus body 100 to the secondary-transfer nip via a feed roller 27 and a registration roller pair 28. More specifically, the sheet tray 26 contains multiple sheets P piled one on another. The feed roller 27 rotates counterclockwise in
The registration roller pair 28 stops rotating temporarily, stopping the sheet P with a leading edge of the sheet P stuck in the nip. The registration roller pair 28 resumes rotation to transport the sheet P to the secondary-transfer nip, time to coincide with the arrival of the multicolor toner image formed on the intermediate transfer belt 48. Thus, the multicolor toner image is recorded on the sheet P.
Subsequently, the sheet P is transported to a fixing device 86. In the fixing device 86, a fixing belt and a pressing roller apply heat and pressure to the sheet P to fix the multicolor toner image on the sheet P. Subsequently, the sheet P is discharged by a discharge roller pair 29 outside the image forming apparatus 500 and stacked as an output image in a stack section 30. Thus, a sequence of image forming processes performed in the image forming apparatus 500 is completed.
Next, a configuration and operation of the developing device 50Y in the image forming unit 46Y are described in further detail below. The image forming units 46 for other colors and the developing devices 50 therein are configured similarly, and thus descriptions thereof are omitted.
The developing device 50Y includes a developing roller 51Y disposed facing the photoreceptor 41Y, a doctor blade 52Y disposed facing the developing roller 51Y, two developer conveying screws 55Y respectively disposed in first and second developer reservoirs 53Y and 54Y, and a toner density sensor 56Y to detect the density of toner in the second developer reservoir 54Y. A casing of the developing device 50Y is divided, at least partially, into the first and second developer reservoirs 53Y and 54Y. The developing roller 51Y includes a stationary magnet roller or multiple magnets and a sleeve that rotates around the magnet roller, and the like. The first and second developer reservoirs 53Y and 54Y contain two-component developer G consisting essentially of carrier (carrier particles) and toner (toner particles). Additionally, the second developer reservoir 54Y communicates, via an opening formed on an upper side thereof, with a vertical toner tube 64Y forming a toner conveyance channel through which toner is supplied from the toner container 32Y as indicated by arrow D.
Inside the developing device 50Y, the developer G is agitated by the two developer conveying screws 55Y and circulated between the first and second developer reservoirs 53Y and 54Y. While being transported by the developer conveying screw 55Y, the developer G in the first developer reservoir 53Y is attracted by magnetic fields generated by the magnet roller inside the developing roller 51Y and carried onto the sleeve surface of the developing roller 51Y. The developer G carried on the developing roller 51Y moves in the circumferential direction of the developing roller 51Y as the sleeve of the developing roller 51Y rotates counterclockwise in
The developer G carried on the developing roller 51Y is transported as indicated by arrow Y2 in
The concentration of toner in developer G contained in the developing device 50Y is adjusted within a predetermined range. More specifically, the toner replenishing device 60Y (shown in
Next, a configuration of the toner replenishing devices 60 is described below.
The respective color toners contained in the toner containers 32Y, 32M, 32C, and 32K in the container frame 70 are supplied to the developing devices 50Y, 50M, 50C, and 50K by the toner replenishing devices 60Y, 60M, 60C, and 60K according to the amount of the corresponding toner consumed. It is to be noted that the toner replenishing devices 60Y, 60M, 60C, and 60K have a similar structure, and the toner containers 32Y, 32M, 32C, and 32K have a similar structure except the color of toner used. Therefore, only the structure for yellow is shown in
Each toner replenishing device 60 includes a conveying nozzle 611, a conveying screw 614, the vertical toner tube 64, and a driving section 91, and is connected to the toner container 32 installed in the container frame 70.
In conjunction with insertion of the toner container 32 into the container frame 70 of the apparatus body 100 in the direction indicated by arrow Q shown in
The toner container 32 is cylindrical and constructed of a bottle body 33, which can be monolithic with a container gear 301, and a container front cover 34. The container front cover 34 is fixed stationary to the container frame 70, not to rotate. The container front cover 34 receives a front end portion of the bottle body 33 in its axial direction, meaning the direction in which the axis of rotation extends, and holds the front end portion rotationally.
The container frame 70 is constructed with a container cover section 73 to receive the container front covers 34 of the respective toner containers 32, a container body section 72 that receives the bottle bodies 33 of the toner containers 32, and an insertion section 71 having four insertion openings through which the toner containers 32 are inserted into and removed from the toner container frame 70. It is to be noted that the container cover section 73 of the container frame 70 includes container sockets (or container fitting, container holder; container brackets) 608 (608Y in
Referring again to
The longitudinal length of the container body section 72 of the container frame 70 is almost equal to the longitudinal length of the bottle body 33. In addition, the container cover section 73 is positioned on one side in the longitudinal direction of the container body section 72 (on the leading side or downstream side in the direction of insertion), and the insertion section 71 is positioned on the other side (on the upstream side) of the container body section 72. While the toner container 32 is being inserted into the container frame 70, the container front cover 34 passes through the insertion section 71, slides on the container body section 72 for a certain distance, and then is set in the container cover section 73.
With the container front cover 34 held in the container cover section 73, the bottle body 33 is rotated by the driving section 91 in the direction indicated by arrow A (hereinafter “direction A”) shown in
A spiral protrusion 302 protrudes inward from an inner circumferential surface of the bottle body 33. With this configuration, as the bottle body 33 rotates, toner inside the bottle body 33 is transported in the longitudinal direction thereof (from the left to the right in
The conveying screw 614 is disposed inside the conveying nozzle 611. When the driving section 91 inputs driving force to a screw gear 605, the conveying screw 614 rotates, thus transporting toner inside the conveying nozzle 611. The toner conveyed by the conveying screw 614 drops under its own weight through the vertical toner tube 64 (see
It is to be noted that the toner container 32Y, 32M, 32C, and 32K are replaced when the respective service lives thereof have expired, that is, when almost all toner in the toner container 32 have been consumed. A handle 303 is provided at the end of the bottle body 33 on the side opposite the container front cover 34, and users can grasp the handle 303 to remove the toner container 32 from the image forming apparatus 500 in replacement.
Toner is supplied to the developing device 50 from the toner container 32 when a controller 90 deems that toner supply is required from the toner consumption calculated according to image data used by the exposing device 47 or detection results generated by the toner density sensor 56. Specifically, the controller 90 drives the driving section 91 to rotate the bottle body 33 and the conveying screw 614 for a predetermined time period, thereby supplying toner to the developing device 50.
Since the conveying screw 614 inside the conveying nozzle 611 is rotated to supply toner, the amount of toner supplied from the toner container 32 can be calculated accurately by detecting the number of rotation of the conveying screw 614. For example, the amount of supplied toner can be calculated accumulatively from when the toner container 32 is installed in the image forming apparatus 500. When the accumulative amount of supplied toner reaches the amount of toner contained in the toner container 32 at the time of installation, the controller 90 deems that the toner container 32 is empty, which is a state referred to as “toner end”. Then, the controller 90 causes a display of the image forming apparatus 500 to instruct the user to replace the toner container 32. Additionally, this message can be displayed also when the concentration of toner does not recover to a desired concentration even after toner supply is repeated, deeming that the toner container 32 is empty.
When the amount of supplied toner is controlled based on the number of rotation of the conveying screw 614, the mount of toner is not adjusted after toner passes through the conveying nozzle 611, and supplied as is to the developing device 50 through the vertical toner tube 64. Even in the configuration in which the conveying nozzle 611 is inserted into the toner container 32, a temporary toner reservoir such as a toner hopper may be provided, and the amount of toner supplied to the developing device 50 may be controlled by changing the amount of toner transported from the temporary toner reservoir to the developing device 50.
Although the conveying screw 614 is used in the description above, toner in the conveying nozzle 611 may be transported using a different configuration. For example, negative pressure may be generated at the opening of the conveying nozzle 611 using a powder pump to give conveyance force to toner.
In configurations including the temporary toner reservoir, typically a toner end detector is provided to detect that the amount of toner remaining in the temporary toner reservoir falls below a threshold. According to the detection by the toner end detector, the bottle body 33 as well as the conveying screw 614 is rotated for a predetermined period to supply toner to the temporary toner reservoir.
If the toner end detector continues to report “toner end” even when this operation is repeated a predetermined number of times, the controller 90 causes the display of the image forming apparatus to instruct users to replace the toner container 32, deeming that the toner container 32 is empty. Cumulative calculation of supplied toner from the installation of the toner container 32 is not required in the configuration in which whether any toner remains inside the toner container 32 is judged based on the detection by the toner end detector. However, the toner replenishing device 60 according to the present embodiment, which does not include the temporary toner reservoir, is advantageous in that the toner replenishing device 60 can be more compact, thereby reducing the size of the image forming apparatus 500.
Next, the toner container 32 and the toner replenishing device 60 are described in further detail. As described above, the four toner containers 32 and the four toner replenishing devices 60 have similar configurations except the color of toner contained therein.
The toner replenishing device 60 includes a nozzle shutter 612 in addition to the conveying nozzle 611 provided with the conveying screw 614. The nozzle shutter 612 closes a nozzle opening 610 formed in the conveying nozzle 611 in the state shown in
In a center area of the front face of the toner container 32, a nozzle connecting opening 331 for receiving the conveying nozzle 611 is formed, and a container shutter 332 is provided to close the nozzle connecting opening 331 when the conveying nozzle 611 is not connected thereto. The front end portion of the bottle body 33 includes a nozzle receiver 330 and the nozzle connecting opening 331. In the first embodiment, as shown in, for example,
The bottle body 33 is substantially cylindrical and rotatable around a center axis (i.e., the axis of rotation). It is to be noted that, hereinafter the terms “front” and “anterior” mean the side on which the container front cover 34 is disposed, and the terms “rear” and “posterior” mean the side on which the bottle body 33 is disposed in the direction in which the axis of rotation of the bottle body 33 extends. The longitudinal direction of the toner container 32 parallels the axial direction thereof, and the axial direction is kept horizontal when the toner container 32 is connected to the toner replenishing device 60.
Referring to
Toner is transported to the front side along the spiral protrusion 302 as the bottle body 33 rotates in the direction A. The front end portion of the bottle body 33 includes a scooping portion 304 serving as a shovel or scoop to scoop up the toner using the rotation of the bottle body 33. An inner surface of the scooping portion 304 projects or extends inward in the bottle body 33 serving as the powder chamber (as shown in
For example, a portion of the inner wall of the scooping portion 304, on the upstream side in the direction of rotation, is shaped into a paddle blade against the direction of rotation and referred to as “scooping wall surface 304f”. The shape of the scooping portion 304 is not limited thereto.
When the space inside the scooping portion 304 is positioned on the lower side, using the rotation of the bottle body 33, the scooping wall surface 304f scoops up the toner transported to the scooping portion 304 by the conveyance force exerted by the scooping portion 304. Thus, the toner can be brought above the conveying nozzle 611.
The container gear 301 is anterior to the scooping portion 304 in the bottle body 33. The container front cover 34 is party cut away, forming a cutout 34a (i.e., a gear exposing cutout), to expose partly the container gear 301 (on the distal side in
A cylindrical front opening section 305 (i.e., a front opening forming section) is positioned anterior to the container gear 301 in the bottle body 33. A fixing portion 337 of the nozzle receiver 330 is fitted in the front opening section 305 (press fit), and thus the nozzle receiver 330 can be fixed to the bottle body 33. The fixing method is not limited to press fit. Alternatively, the nozzle receiver 330 may be glued or screwed to the bottle body 33, for example.
After the bottle body 33 is filled with toner through the opening inside the front opening section 305, the nozzle receiver 330 is fixed to the front opening section 305 of the bottle body 33.
A cover catch 306 (shown in
The bottle body 33 can be formed by using biaxial stretch blow molding, for example. Typically, biaxial stretch blow molding includes two steps, namely, preform molding and stretch blow molding. In the preform molding step, resin is injected into a mold shaped like a test tube, thus forming a tube-shaped preform. During the step of injection molding, the front opening section 305, the cover catch 306, and the container gear 301 are formed at the opening of the tube-shaped preform. Subsequently, the preform is cooled, removed from the mold, and heated. Then, blow molding and stretch of the softened preform are executed as the step of stretch blow molding.
The portion of the bottle body 33 posterior to the container gear 301 can be formed in the step of stretch blow molding. That is, the handle 303 and the portion where the scooping portion 304 and the spiral protrusion 302 are positioned are formed by stretch blow molding.
The shapes of the elements, such as the container gear 301, the front opening section 305, and the cover catch 306, positioned anterior to the container gear 301 are not changed from the preform. Accordingly, dimensional accuracy can be high. By contrast, elements produced by stretch blow molding, such the handle 303, the scooping portion 304, and the spiral protrusion 302, may have a lower degree of dimensional accuracy than that of the front portions.
Next, the nozzle receiver 330 fixed to the bottle body 33 is described below.
The nozzle receiver 330 includes the container shutter 332 and a shutter supporter 340. The shutter supporter 340 includes a rear end support 335, two shutter side supports 335a, and the fixing portion 337. The two shutter side supports 335a together from a part of a cylinder from which a large space between the shutter side supports 335a is cut away, thus forming an opening 335b between the shutter side supports 335a. The opening 335b communicates with the nozzle opening 610. With this configuration, the container shutter 332 can be guided to move inside a cylindrical space defined inside the shutter side supports 335a in the axial direction. The nozzle receiver 330 further includes a container seal 333 and a shutter spring 336 that can be a coil spring.
As shown in
A pair of hooks 332a is formed at the rear end of the container shutter 332 to be hooked on an outer wall of the rear end support 335. With the hooks 332a, the container shutter 332 can be prevented from moving further away from the rear end support 335 from the position shown in
The fixing portion 337 is shaped like a stepped cylinder with its inner diameter decreasing to the rear end. As shown in
As shown in
When the container shutter 332 moves to the rear side from the position (shown in
In view of the foregoing, in the toner container 32 according to the present embodiment, the nozzle receiver 330 includes the seal jam preventing space 337b on the inner circumferential side thereof. Since the seal jam preventing space 337b has an external diameter smaller than the external diameter of the toroidal container seal 333, the container seal 333 does not enter the seal jam preventing space 337b as a whole. Even if the portion of the container seal 333 pulled by the container shutter 332 and deformed elastically moves to the rear side and enters the seal jam preventing space 337b, the container seal 333 can be prevented from being entangled in the portion where the fixing portion 337 slidingly contacts the container shutter 332 because the diameter of the seal jam preventing space 337b is greater than the inner circumferential surface that slidingly contacts the outer circumferential surface of the container shutter 332. Accordingly, the container seal 333 can be prevented from being entangled in the portion where the fixing portion 337 slidingly contacts with the container shutter 332, and the container shutter 332 can be prevented from being locked relative to the fixing portion 337. Thus, opening and closing of the nozzle connecting opening 331 can be secured.
As shown in
Referring to
In the toner container 32, the elastic container seal 333 forms a front end face of the nozzle receiver 330 in which the nozzle connecting opening 331 (to which the conveying nozzle 611 is inserted) is formed. Then, the nozzle shutter flange 612a (i.e., a contact portion) of the nozzle shutter 612 (i.e., powder inlet opening and closing member) presses against the front end face, compressing the container seal 333. With this operation, the surface of the nozzle shutter flange 612a opposite the spring receiving surface 612f closely contacts the container seal 333, thus enhancing toner leak prevention.
In the fixing portion 337 of the nozzle receiver 330, when the container seal 333, the elastic member, is squeezed, the nozzle shutter flange 612a (shown in
In installation of the toner container 32, after the nozzle shutter flange 612a contacts the ribs 337a and determines the position of the nozzle shutter 612 relative to the toner container 32, opening of the nozzle opening 610 is started. By contrast, in removal of the toner container 32 from the toner replenishing device 60, the position of the nozzle shutter 612 relative to the toner container 32 does not change while the nozzle opening 610 is open, even if the conveying nozzle 611 is moved in the direction of removal from the toner container 32. The nozzle shutter 612 is pulled out from the toner container 32 together with the conveying nozzle 611 after the nozzle shutter 612 closes the nozzle opening 610. While the nozzle shutter flange 612a is in contact with the ribs 337a, the portion of the conveying nozzle 611 in which the nozzle opening 610 is formed is positioned substantially inside the toner container 32 (upstream in the installation direction Q) from the entrance of the nozzle connecting opening 331. Since opening or closing of the nozzle opening 610 is started when the nozzle opening 610 is inside the toner container 32, toner leak from the nozzle opening 610 can be prevented.
The nozzle receiver 330 fixed to the bottle body 33 rotates as the bottle body 33 rotates. At that time, the shutter side supports 335a of the nozzle receiver 330 rotate around the conveying nozzle 611 of the toner replenishing device 60. Accordingly, when the rotating shutter side support 335a is present above the nozzle opening 610 formed in the upper portion of the conveying nozzle 611, the rotating shutter side support 335a hinders supply of toner from the bottle body 33 to the conveying nozzle 611. By contrast, when the two shutter side supports 335a are positioned on the lateral sides of the conveying nozzle 611 and the nozzle opening 610 formed in the conveying nozzle 611 faces the opening 335b formed in the shutter supporter 340, toner can be supplied from the bottle body 33 to the conveying nozzle 611 as indicated by arrow 13 shown in
In the nozzle receiver 330 shown in
As shown in
Next, a configuration of the toner replenishing devices 60 is described below in further detail.
As shown in
The driving section 91 is fixed to the frame 602. The driving section 91 includes a driving motor 603, the container driving gear 601, and a worm gear 603a to transmit rotation of the driving motor 603 to a rotary shaft of the container driving gear 601. A drive transmission gear 604 is fixed to the rotary shaft of the container driving gear 601 to engage the screw gear 605 fixed to the rotary shaft of the conveying screw 614. In this configuration, rotation of the driving motor 603 is transmitted via the container driving gear 601 and the container gear 301 to the toner container 32, thereby rotating the toner container 32. The driving motor 603 further rotates the conveying screw 614 via the drive transmission gear 604 and the screw gear 605.
Alternatively, a clutch may be provided in a drive transmission route from the driving motor 603 to the container gear 301 or a drive transmission route from the driving motor 603 to the screw gear 605. When such a clutch is provided, only one of the toner container 32 and the conveying screw 614 can be driven as the driving motor 603 rotates.
Next, installation of the toner container 32 to the toner replenishing device 60 is described below.
Referring to
As the toner container 32 moves further to the toner replenishing device 60, the rear side of the nozzle shutter flange 612a, opposite the spring receiving surface 612f, contacts and presses the front end face of the container seal 333. Accordingly, the rear side of the nozzle shutter flange 612a contacts the ribs 337a, and the nozzle shutter 612 is set in position relative to the toner container 32 in the axial direction.
As the toner container 32 moves further to the toner replenishing device 60, the conveying nozzle 611 is inserted further into the toner container 32. At that time, the nozzle shutter 612 being in contact with the ribs 337a is pushed back, relative to the conveying nozzle 611, to the base side of the conveying nozzle 611 (downstream side in the installation direction Q). With this movement, the nozzle shutter spring 613 is compressed, and the nozzle shutter 612 moves to the base side of the conveying nozzle 611 relative to the conveying nozzle 611. With this relative movement, the nozzle opening 610 is released from the nozzle shutter 612 and exposed inside the bottle body 33. Thus, the conveying nozzle 611 communicates with the interior of the bottle body 33.
When the conveying nozzle 611 is retained in the nozzle connecting opening 331, the shutter spring 336 and the nozzle shutter spring 613, which are compressed, exert force to push back the toner container 32 relative to the toner replenishing device 60 (in the direction reverse to the installation direction Q). However, when the toner container 32 is inserted to the toner replenishing device 60, the toner container 32 is moved in the installation direction Q, against the force exerted by the shutter spring 336 and the nozzle shutter spring 613, to the position where the container engagement portion 339 receives the container lock 609 of the container socket 608 of the toner replenishing device 60. Then, the axial position of the toner container 32 relative to the toner replenishing device 60 is determined in the state shown in
As shown in
It is to be noted that, in a state in which the toner container 32 is connected to the toner replenishing device 60, the end face of the cylindrical front opening section 305, which is the end face of the toner container 32, does not contact the end face of a container setting section 615, which is a part of the container socket 608 and can be disposed, for example, on the bottom of the container socket 608. The container socket 608 and the container setting section 615 are used for positioning the toner container 32.
The toner container 32 is inhibited from moving further in the installation direction Q if the end face of the cylindrical front opening section 305 contacts the end face of the container setting section 615 before the container locks 609 enter the container engagement portions 339. Accordingly, positioning of the toner container 32 in the axial direction is hindered. Therefore, in a state in which the toner container 32 is connected to the toner replenishing device 60, clearance is secured between the end face of the cylindrical front opening section 305 and the end face of the container setting section 615.
With the toner container 32 positioned in the axial direction, the outer circumferential surface of the front opening section 305 slidingly contacts an inner circumferential surface 615a of the container setting section 615. Accordingly, the position of the toner container 32 relative to the toner replenishing device 60 can be determined in a direction along a plane perpendicular to the axial direction of the toner container 32. Thus, installation of the toner container 32 to the toner replenishing device 60 is completed.
After the toner container 32 is installed, the driving motor 603 is rotated, thereby rotating the bottle body 33 and the conveying screw 614 in the conveying nozzle 611. As the bottle body 33 rotates, toner therein is transported by the spiral protrusion 302 to the front side. When the toner reaches the scooping portion 304, the scooping portion 304 lifts the toner above the nozzle opening 610 as the bottle body 33 rotates, and toner falls to the nozzle opening 610. Then, the toner is supplied into the conveying nozzle 611. The toner is transported inside the conveying nozzle 611 by the conveying screw 614 and supplied to the developing device 50 through the vertical toner tube 64. It is to be noted the flow of toner from the bottle body 33 to the vertical toner tube 64 is indicated by arrow 13 shown in
Reference character a shown in
The nozzle receiver 330 of the toner container 32 includes the nozzle connecting opening 331, the opening 335b, and the container shutter 332. The nozzle connecting opening 331 provided in the front end portion of the bottle body 33 receives the conveying nozzle 611 in which the nozzle opening 610, serving as a powder inlet, is formed. The opening 335b positioned between the shutter side supports 335a serves as a supply inlet to supply toner contained in the bottle body 33 to the nozzle opening 610. As the conveying nozzle 611 is inserted into and pulled out from the nozzle receiver 330, the container shutter 332 supported by the nozzle receiver 330 slides in the axial direction and opens and closes the nozzle connecting opening 331. With this configuration, in the toner container 32, the nozzle connecting opening 331 is kept closed until the conveying nozzle 611 is inserted thereto. Thus, before the toner container 32 is connected to the toner replenishing device 60, leak and scattering of toner can be prevented.
When the conveying nozzle 611 is inserted into the nozzle connecting opening 331, the container shutter 332 slides to the rear side, pushed by the conveying nozzle 611. Then, toner accumulating around the opening 335b is pushed away. Thus, space for the portion of the conveying nozzle 611 including the nozzle opening 610 can be secured around the opening 335b, and toner can be supplied reliably from the opening 335b to the nozzle opening 610. Thus, leak or scattering of toner from the toner container 32 being removed from the toner replenishing device 60 can be prevented, while discharge of toner from the toner container 32 (bottle body 33) being connected to the toner replenishing device 60 can be secured.
Referring to
The container shutter 332 to seal the nozzle connecting opening 331, through which toner is discharged from the toner container 32, is positioned posterior to the front end of the front opening section 305 of the bottle body 33. Thus, a certain distance is secured from the container shutter 332 to the front end of the front opening section 305. In this configuration, to go out the bottle body 33, toner is to travel a distance from the nozzle connecting opening 331 posterior to the opening end (i.e., the front end of the front opening section 305) of the bottle body 33. Thus, toner is inhibited from reaching the outer circumferential surface of the front opening section 305, thereby inhibiting scattering of toner.
The position of the toner container 32 relative to the toner replenishing device 60 in the direction perpendicular to the axial direction can be determined by engagement between the outer circumferential surface of the front opening section 305 and the inner circumferential surface of the cylindrical container setting section 615. That is, the outer circumferential surface of the front opening section 305 of the bottle body 33 (i.e., a powder chamber) serves as the positioning portion relative to the toner replenishing device 60 serving as a powder conveyance device. Therefore, toner adhering to the outer circumferential surface of the front opening section 305 can change contact state with the inner circumferential surface 615a of the container setting section 615, thus degrading positioning accuracy.
In view of the foregoing, the toner container 32 according to the present embodiment is designed to inhibit toner from reaching and adhering to the outer circumferential surface of the front opening section 305, thereby preventing fluctuations in the positioning accuracy of the toner container 32 relative to the toner replenishing device 60.
When the toner container 32 rotates, the outer circumferential surface of the front opening section 305 and the inner circumferential surface 615a of the container setting section 615 slide on each other. Hereinafter the outer circumferential surface of the front opening section 305 of the bottle body 33 is referred to as a sliding portion that slidingly contacts with the toner replenishing device 60, serving as the powder conveyance device. If toner enters the sliding portion, it is possible that sliding load increases, thus increasing rotation torque of the toner container 32.
By contrast, the toner container 32 according to the present embodiment can inhibit toner from reaching the outer circumferential side of the front opening section 305 and inhibit toner from entering the sliding portion with the inner circumferential surface 615a of the container setting section 615. Accordingly, increases in sliding load can be reduced, stabilizing sliding, and increases in rotation torque can be reduced. Additionally, with toner inhibited from entering the sliding portion, coagulation of toner in the sliding portion can be inhibited.
When the toner container 32 is connected to the toner replenishing device 60, the nozzle shutter flange 612a squeezes the container seal 333 and coheres the container seal 333 with pressure, securing prevention of toner leak. Disposing the container shutter 332 posterior to (inner side in the longitudinal direction from) the opening position (front end) of the toner container 32 can form a cylindrical space between the front end of the toner container 32 and the front end faces of the container shutter 332 and the container seal 333.
In a configuration in which the container gear to mesh with the driving gear of the apparatus body is disposed in the front end portion of the bottle body, and the rear end portion of the bottle body includes a protrusion that contacts an internal projection projecting from an inner face of a bottle holder holding the bottle body, the possibility of damage to the container gear or the driving gear of the apparatus body can be higher.
More specifically, the orbit of the front end portion of the bottle body, where the container gear is provided, is preferably a perfect or almost perfect circle so that the container gear can properly mesh with the driving gear or the apparatus body. By contrast, the orbit of the rear end portion provided with the protrusion is eccentric since the protrusion overstrides the internal projection of the bottle holder. The eccentric movement of the rear end portion of the bottle body causes stress on the engagement between the container gear of the front end portion and the driving gear of the apparatus body, resulting in damage to them. A similar inconvenience can arise also in powder containers for containing powder other than toner.
In view of the foregoing, according to the embodiments of the present invention, coagulation of powder contained in a powder container can be loosened without causing a substantial eccentric movement of the powder chamber therein. This can be attained by configurations described below.
[First Configuration]
In
Referring
The two protrusions 304g are symmetrical about a point, namely, axis of rotation of the bottle body 33, with their phases shifted 180 degrees.
The amount by which the protrusion 304g projects from the outer circumferential surface of the scooping portion 304 is designed such that the radius R1 of orbit of revolution of the outer end of the protrusion 304g (around the axis of rotation of the bottle body 33) is smaller than the radius of inner circumference of the container front cover 34. A minute clearance is secured between the inner circumferential surface of the container front cover 34 and the outer end of the protrusion 304g of the scooping portion 304 being received inside the container front cover 34. Accordingly, as the scooping portion 304 rotates, the protrusion 304g revolves around the axis of rotation inside the container front cover 34.
Inside the container front cover 34, if movement of the front end portion of the bottle body 33 becomes eccentric, one of the two protrusions 304g contacts the inner circumferential surface of the container front cover 34, thereby stopping the eccentric movement. Therefore, the orbit of the front end portion of the bottle body 33 can be an almost perfect circle.
The two container engagement portions 339 are formed at predetermined circumferential positions in the container front cover 34, in which the scooping portion 304 is received. The container engagement portions 339 are symmetrical about a point, namely, axis of rotation of the bottle body 33.
The container socket 608 supports the two container locks 609 slidably. A torsion coil spring 616 urges each container lock 609 from outside the container socket 608, along a guiding groove formed in the container socket 608, to the axial line of the bottle body 33. A rear end of the container lock 609 (i.e., an outer end in the direction of diameter of the toner bottle 33 in
With the front end portion of the toner container 32 received inside the container socket 608, the front end of the container lock 609, latched in the guiding groove, penetrates the container engagement portion 339 and enters the interior of the container front cover 34. However, the front end of the container lock 609 does not reach the outer circumferential surface of the scooping portion 304 as shown in
More specifically, in the radial direction centered on the axis of rotation of the bottle body 33, the front end position of the container lock 609 being latched is positioned outside the outer circumferential surface of the scooping portion 304 and inside the orbit of the protrusion 304g of the scooping portion 304. Accordingly, when the protrusion 304g of the scooping portion 304 approaches the position facing the container lock 609 as the bottle body 33 rotates, the protrusion 304g contacts the container lock 609 as shown in
The two container locks 609 are symmetrical about the axis of rotation of the bottle body 33. Accordingly, as one of the protrusions 304g starts contacting the container lock 609, the other protrusion 304g also starts contacting the corresponding container lock 609. Therefore, the bottle body 33 does not become eccentric but can keep the orbit shaped into a substantially perfect circle.
The container lock 609 in contact with the protrusion 304g is pushed by the protrusion 304g outward in the radial direction centered on the axis of rotation. Thus, the container lock 609 moves outward in the radial direction, against the bias force exerted by the torsion coil spring 616. In other words, the container lock 609 changes its position away from the protrusion 304g on contact with the protrusion 304g and can serves as a movable contact member or a facing member. In this configuration, as the container lock 609 moves to the position to avoid the protrusion 304g as shown in
As shown in
The scooping portion 304 is reduced in width compared with the bottle body 33 (powder chamber), and scooping capability may be degraded if toner adheres to the inner surface thereof, reducing the amount of toner supplied. Therefore, disposing the protrusion 304g to the scooping portion 304 is advantageous in that adhering toner can be separated from the inner surface of the scooping portion 304 by vibrating the scooping portion 304 progressively, thereby stabilizing the amount of toner supplied.
Although driving torque is increased by sliding between the protrusion 304g and the container lock 609, the driving torque returns to normal abruptly when the protrusion 304g is disengaged from the container lock 609. Accordingly, the rotational velocity of the bottle body 33 increases sharply for a moment, and vibration is given to the toner inside the bottle body 33. This vibration can loosen coagulation of toner similarly.
As described above, in the toner replenishing device 60 according to the present embodiment, coagulation of toner can be loosened without a substantial eccentric movement of the bottle body 33.
It is to be noted that, although the description above concerns the configuration in which the container engagement portion 339 is formed in the container front cover 34, serving as the holder for holding the movable container lock 609 from outside, alternatively, for example, the container lock 609 may be supported movably relative to the container front cover 34.
Yet alternatively, a protrusion facing the outer circumferential surface of the bottle body 33 may be formed on the inner circumferential surface of the container front cover 34, and a movable contact member may be supported by the bottle body 33. Specifically, the movable contact member is disposed to contact the protrusion of the container front cover 34 when the bottle body 33 reaches a predetermined rotational position, and, on contact with the protrusion, the movable member moves away from the protrusion in the radial direction.
The container lock 609 serves as a latch to retain the container front cover 34 when the container lock 609 is inside the container engagement portion 339. Use of the container lock 609 as both the lock for the toner container 32 and the movable contact member is advantageous in that component layout can be simpler compared with a configuration using separate members for them.
[Second Configuration]
In the configuration shown in
This configuration can alleviate the impact to each of the protrusion 304g2 and the container lock 609 at the start of contact therebetween. Accordingly, damage to the protrusion 304g2 or the container lock 609 can be inhibited.
[Variation]
Variations of the container locks according to the first embodiment are described below. Other than the differences described below, the configurations shown in
The free end of the container lock 609A is bent at 90 degrees from the axial direction of the bottle body 33 toward the axial line. The bent portion is referred to as a lock claw 609A1. When insertion of the front end portion of the toner container 32 into the container socket 608 is started, the lock claws 609A1 of the respective container locks 609A contact the outer surface of the container front cover 34 as shown in
When the toner container 32 is fully received in the container socket 608, the lock claw 609A1 of the container lock 609A enters the container engagement portion 339 formed in the container front cover 34 as shown in
[Second Variation]
When insertion of the front end portion of the toner container 32 into the container socket 608 is started, as shown in
The various configurations according to the first embodiment can attain specific effects as follows.
Configuration A: A powder container (such as the toner container 32) includes a rotatable powder chamber (such as the bottle body 33) for containing powder and a holder (such as the container front cover 34) to rotatably hold an end portion of the powder container on one side in the axial direction of the powder chamber and configured to transport powder from the other side to the end portion as the powder chamber rotates and discharge the powder from the powder chamber. In this powder container, a protrusion (such as the protrusion 304g) projects from an outer circumferential surface of the axial end portion of the powder chamber. The projecting amount is smaller than the gap between the inner circumferential surface of the holder and the outer circumferential surface of the powder chamber so that the radius (R1) of orbit of revolution (around the axial line thereof) is smaller than the radius of inner circumference of the holder. When the powder chamber is at a predetermined rotational position, a movable contact member (such as the container lock 609) provided to the holder contacts the protrusion and moves away from the protrusion, avoiding the protrusion. Alternatively, an opening (such as the container engagement portion 339) is formed in the holder for receiving the movable contact member from the outside of the holder.
Configuration B: A powder replenishing device includes the powder container according to configuration A and a conveyance channel (such as the vertical toner tube 64) through which powder flows from the powder container to a destination.
Configuration C: In configuration B, an end of the protrusion is tapered such that the outer end (in the radial direction) thereof deviates from the axis of rotation as the powder chamber rotates downstream in the direction of rotation thereof. This configuration can alleviate the impact to each of the protrusion and the movable contact member at the start of contact therebetween.
Configuration D: In configuration B or C, the movable contact member is provided separately from the holder, the opening for receiving the movable contact member is formed in the holder, and the movable contact member being inserted into the opening serves as a retainer to retain the holder. The configuration in which the movable contact member is used also as the retainer is advantageous in that component layout can be simpler.
In the first embodiment, when the powder chamber of the powder container is at a predetermined rotational position, a protrusion formed on the outer circumferential surface of the powder chamber contacts a movable contact member disposed facing the protrusion. Alternatively, a movable contact member supported by the powder chamber contacts a facing member disposed facing the outer circumferential surface of the powder chamber. In either case, on contact between the movable contact member and the facing member facing it, force to inhibit rotation of the powder chamber is generated, giving the powder chamber an impact in the direction of rotation. The impact can loosen coagulation of toner inside the powder chamber.
Subsequently, as the powder chamber rotates further, the movable contact member in contact with the protrusion of the powder chamber, or the movable contact member retained by the powder chamber and in contact with the facing member, moves in the radial direction, away from the protrusion or the facing member to avoid the protrusion or the facing member. With this movement, while the powder chamber follows an almost perfect circle orbit, the protrusion of the powder chamber passes by the contact position with the movable contact member, or the movable contact member of the powder chamber passes by the facing member.
Thus, while the powder chamber rotating along an almost perfect circle orbit, the powder chamber can be vibrated in the direction of rotation by the movable contact member that periodically contacts the protrusion of the powder chamber, or the movable contact member of the powder chamber that periodically contacts the facing member. Thus, coagulated powder can be loosened without causing a substantial eccentric movement of the powder chamber.
A second embodiment is described below. Descriptions of features of the second embodiment similar to those of the above-described first embodiment are omitted.
In the toner replenishing device 60, the toner container 32 is replaced when no or almost no toner remains in the bottle body 33 (toner end). Therefore, it is preferable that “toner end” is detected, and users are advised to replace the toner container 32.
As described above, in the configuration including the temporary toner reservoir for temporarily storing toner discharged from a toner container to be supplied to the developing device, typically a toner end detector is provided to the temporary toner reservoir. When the toner container becomes empty, no toner is supplied to the temporary toner reservoir, and the level of toner therein falls under the lower limit. Then, the toner end detector does not detect the presence of toner. Thus, “toner end” in the toner container can be detected according to the detection made by the toner end detector in the temporary toner reservoir.
However, in this configuration, the temporary toner reservoir is required to detect “toner end” in the toner container. A similar inconvenience can arise also in powder containers for containing powder other than toner.
In view of the foregoing, the second embodiment is designed to detect the amount of toner remaining in the powder chamber (i.e., the bottle body 33) of the powder container (i.e., the toner container 32) without providing a temporary reservoir for temporarily storing powder discharged from the powder container.
It is to be noted that the toner container 32 according to the second embodiment includes the protrusion 304g for loosening toner coagulation similarly to the first embodiment with reference to
Next, a feature of the present embodiment is described in further detail below.
In
First and second openings 337 and 338 are formed in a container front cover 34-2 according to the second embodiment, which receives the front end portion of the bottle body 33. The first opening 337 is adjacent to and on the right of the scooping portion 304 in
The toner replenishing device 60 includes a light-emitting element 620 and a light-receiving element 621. A toner supply controller is constructed of a central processing unit (CPU) as well as data storage units such as a random access memory (RAM), and a read only memory (ROM). The light-emitting element 620, the light-receiving element 621, and the toner supply controller together form a toner amount detector for detecting the amount of toner remaining in the bottle body 33.
The light-emitting element 620 and the light-receiving element 621 are arranged as follows in a direction along the surface of the paper on which
Since the wall of the scooping portion 304 is transparent entirely in the direction of rotation, light entering the container front cover 34-2 through the second opening 338 can penetrate the scooping portion 304 regardless of the rotational position of the scooping portion 304. When the amount of toner remaining in the scooping portion 304 is reduced a certain amount, a part of the light again penetrates the transparent scooping portion 304 to the outside of the scooping portion 304 after traveling inside the scooping portion 304. The light further travels through the first opening 337 outside the container front cover 34-2 and is received by the light-receiving element 621.
The amount of light received by the light-receiving element 621 correlates with the amount of toner remaining in the scooping portion 304. Specifically, as the amount of toner remaining in the toner container 32 decreases, the amount of toner in the scooping portion 304 decreases, and the amount of light received by the light-receiving element 621 increases. Then, the voltage output from the light-receiving element 621 increases. Accordingly, an algorithm correlating the amount of light received by the light-receiving element 621 with the amount of remaining toner can be prestored in the toner supply controller so that the amount of remaining toner can be calculated using the algorithm and the voltage output from the light-receiving element 621. When the amount of remaining toner falls below a threshold, “toner end” can be displayed on a display.
It is to be noted that, due to the scooping portion 304 shaped like a low-profile box (
This configuration enables detection of the amount of toner remaining in the bottle body 33 without providing the temporary toner reservoir for temporarily storing toner discharged from the toner container 32 since the amount of toner in the scooping portion 304, not the amount of toner discharged from the toner container 32, can be detected using transmitted light.
It is to be noted that, since the rear portion of the scooping portion 304 in the axial direction is cylindrical, the light-receiving element 621 may be disposed to receive light emitted from the light-emitting element 620 at the position of the cylindrical rear portion thereof.
The front end portion of the bottle body 33 in the axial direction thereof is received in the container front cover 34-2, and the scooping portion 304 shown in
Referring to
As toner is consumed, the level of toner inside the bottle body 33 is substantially reduced in the entire axial length thereof, which is a state referred to as “toner near end”. In this specification, reduction in the amount of remaining toner from this state is divided in three levels. In a first reduction level, a small amount of toner is still present in the entire axial length of the bottle body 33.
As the amount of toner decreases further, no or almost not toner is present in the rear end portion of the bottle body 33, but a certain amount of toner remains in the front end portion thereof, which is a state close to “toner end” and hereinafter referred to as “second reduction level”. That is, a small amount of toner remains in this state.
As the mount of toner decreases further, the level of toner in the front end portion of the bottle body 33 decreases substantially. The term “toner end” used in this specification means this state. If the window is disposed in the rear end portion of the bottle body 33, the state in which almost no toner is present in the rear end portion is detected based on changes in the amount of light received by the light-receiving element 621. This state, however, is the above-described second reduction level and is slightly earlier than the time when the bottle body 33 becomes empty (toner end).
By contrast, when the window is disposed in the front end portion of the bottle body 33 as in the present embodiment, based on changes in the amount of light received by the light-receiving element 621, the state in which almost no toner is present in the front end portion can be detected. In other words, the state of “toner end” can be detected. Thus, disposing the window in the front end portion of the bottle body 33 can enable more accurate detection of the timing when the toner bottle becomes empty (toner end).
In
It is to be noted that, although the two container engagement portions 339 and the first and second openings 337 and 338 are provided separately in the container front cover 34-2 in the configuration shown in
Next, configurations applicable to the toner replenishing device according to the second embodiment are described with reference to
[First Configuration]
In the configuration shown in
The light emitted from the light-emitting element 620 enters the container lock 609C on the left in
Subsequently, the light travels through the second opening 338, the scooping portion 304 of the bottle body 33, and the first opening 337 and enters an L-shaped second optical cable 623. After deflected and guided upward along the L-shaped second optical cable 623, the light exits the second optical cable 623 and enters the transparent container lock 609C on the right. After the reflecting mirror 609a of the container lock 609 deflects the light, the light-receiving element 621 receives the light.
In this configuration, light can be transmitted between the light-emitting element 620 and the light-receiving element 621 using the space where the container locks 609C are provided.
[Second Configuration]
A second configuration usable in the second embodiment is described below with reference to
In the configuration shown in
The light emitted from the light-emitting element 620 penetrates the container lock 609D inserted in the container engagement portion 339 on the left, enters the container front cover 34-2, and then penetrates the scooping portion 304. Subsequently, the light penetrates the container lock 609D inserted in the container engagement portion 339 on the right, exits the container front cover 34-2, and then reaches the light-receiving element 621.
In this configuration, light can be transmitted between the light-emitting element 620 and the light-receiving element 621 using the space of the container engagement portions 339 and the container locks 609D.
A toner container according to a third embodiment is described below. Other than the differences described below, the container shown in
The toner container 900 shown in
The rotary shaft 902a is connected to a drive device outside the toner bottle 901. As the drive device rotates the rotary shaft 902a, the multiple blades 902b rotate, thereby transporting toner from the rear side to the front side inside the toner bottle 901.
In a front end portion of the toner bottle 901, a first window 903 for introducing light from outside the toner bottle 901 and a second window 904 for discharging the light outside the toner bottle 901 are formed. The first window 903 faces the second window 904 via an interior of the toner bottle 901 in the direction (on a cross section of the toner bottle 901) perpendicular to the axial line thereof.
Outside the toner bottle 901, a light-emitting element 920 faces the first window 903 formed in the toner bottle 901. Additionally, a light-receiving element 921 faces the second window 904 formed in the toner bottle 901. The first and second windows 903 and 904 are formed with transparent plastic or transparent glass.
The light emitted from the light-emitting element 920 inters the toner bottle 901 through the first window 903. The light travels inside the toner bottle 901 along the cross sectional plane shown in
As described above, the specification of the present invention also provides the following configurations.
Configuration 1: A powder container includes a rotatable powder chamber for containing powder and a holder to rotatably hold an end portion of the powder container on one side in the axial direction or longitudinal direction of the powder chamber and configured to transport powder from the other side to the end portion as the powder chamber rotates and discharge the powder from the powder chamber. In this powder container, a window is formed with a light transmissive material in at least a part of the powder chamber in the axial direction thereof to transmit light through the powder chamber in a direction perpendicular to the axial direction.
Configuration 2: In configuration 1, the window extends entirely in the direction of rotation of the powder chamber.
Configuration 3: In a powder replenishing device that includes the powder container according to configuration 1 or 2 and a conveyance member to transport powder from the powder container to a destination, further a light-emitting element, a light-receiving element, and a powder amount detector are provided. The light-emitting element and the light-receiving element are disposed facing each other via the window in the direction perpendicular to the axial direction. Light emitted from the light-emitting element enters an interior of the powder chamber through the window, travels inside the powder chamber, exits the powder chamber through the window, and is received by the light-receiving element. The powder amount detector is configured to detect the amount of powder remaining in the powder chamber based on the detection result generated by the light-receiving element.
Configuration 4: In configuration 3, the window is positioned in the axial end portion received in the holder, and first and second openings are formed in the holder to guide external light into the axial end portion of the powder chamber and guide the light from inside the powder chamber to the outside of the holder.
Configuration 5: In configuration 4, the first and second openings are disposed to face each other at a position lower (in the direction of gravity) than the axial line in the holder.
Configuration 6: In configuration 5, the powder replenishing device further includes at least two retaining holes formed in the holder and at least two retainers inserted into the respective retaining holes to retain the holder. The two retaining holes respectively serve as the first and second openings to guide light into and out of the holder.
Configuration 7: In configuration 6, the retainers are formed with a transparent material.
Configuration 8: In a powder container including a powder chamber for containing powder and a powder conveying member to transport by rotation powder inside the powder chamber, two light transmission windows are formed in the powder chamber to guide external light to an interior of the powder chamber and discharge the light from inside the powder chamber.
Configuration 9: In a powder replenishing device including the powder container according to configuration 8 and a conveyance member to transport powder from the powder container to a destination, further a light-emitting element, a light-receiving element, and a powder amount detector are provided. The light-emitting element is disposed outside the powder chamber to face one of the light transmission windows, and the light-receiving element is disposed outside the powder chamber to face the other light transmission window. Light emitted from the light-emitting element enters an interior of the powder chamber through the light transmission window, travels inside the powder chamber, exits the powder chamber through the other light transmission window, and is received by the light-receiving element. The powder amount detector is configured to detect the amount of powder remaining in the powder chamber based on the detection result generated by the light-receiving element.
Configuration 10: An image forming apparatus includes the toner replenishing device according to any of configurations 1 through 7, or the powder replenishing device according to configuration 9.
The above-described configurations 1 to 10 can attain the following effects.
According to configurations 1 through 7 and configuration 10, external light directed to the window formed in the powder chamber enters the powder chamber through the window. When the amount of powder in the powder chamber is reduced a certain amount, a part of the light travels inside the powder chamber in the direction perpendicular to the axial direction and exits through the winder outside the powder chamber. In this configuration, when the light-emitting element is disposed facing the light-receiving element via the window in the direction perpendicular to the axial direction, the light-receiving element can receive the light that has been emitted from the light-emitting element and passed through the window and the interior of the powder chamber. Accordingly, the amount of powder remaining in the powder chamber can be detected based on the amount of light received by the light-receiving element. Since the amount of toner remaining in the powder chamber of the powder container not the amount of powder discharged from the powder chamber is detected, the amount of powder remaining in the powder chamber can be detected without providing a temporary reservoir for temporarily storing powder discharged from the powder container.
According to configuration 8 and 9, when the light-emitting element and the light receiving-element are disposed facing the respective light transmission windows formed in the powder chamber, the amount of powder remaining in the powder chamber can be detected based on the amount of light received by the light-receiving element after the light emitted from the light-emitting element travels the interior of the powder chamber. Also in this configuration, since the amount of toner remaining in the powder chamber of the powder container is detected, the amount of powder remaining in the powder chamber can be detected without providing a temporary reservoir for temporarily storing powder discharged from the powder container.
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2012-131218 | Jun 2012 | JP | national |
2012-131349 | Jun 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5495323 | Meetze, Jr. | Feb 1996 | A |
6169864 | Baxendell et al. | Jan 2001 | B1 |
7248825 | Nishitani et al. | Jul 2007 | B2 |
20010021326 | Yanagisawa et al. | Sep 2001 | A1 |
20020114646 | Sudo et al. | Aug 2002 | A1 |
20040223790 | Hosokawa et al. | Nov 2004 | A1 |
20040247343 | Matsumoto et al. | Dec 2004 | A1 |
20070147900 | Taguchi et al. | Jun 2007 | A1 |
20070147902 | Taguchi et al. | Jun 2007 | A1 |
20070154244 | Taguchi et al. | Jul 2007 | A1 |
20080193169 | Teramura | Aug 2008 | A1 |
20090185824 | Murakami et al. | Jul 2009 | A1 |
20100209141 | Ikado | Aug 2010 | A1 |
20110020039 | Mitsuishi et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
7-020705 | Jan 1995 | JP |
7-199632 | Aug 1995 | JP |
08-095361 | Apr 1996 | JP |
8-220857 | Aug 1996 | JP |
9-211977 | Aug 1997 | JP |
10-221943 | Aug 1998 | JP |
10-254229 | Sep 1998 | JP |
11-327275 | Nov 1999 | JP |
2003-241492 | Aug 2003 | JP |
2004-012687 | Jan 2004 | JP |
2004-280064 | Oct 2004 | JP |
2005-099434 | Apr 2005 | JP |
2006-072166 | Mar 2006 | JP |
2006-258997 | Sep 2006 | JP |
2007-065613 | Mar 2007 | JP |
2007-140433 | Jun 2007 | JP |
2007-178969 | Jul 2007 | JP |
2008-292936 | Dec 2008 | JP |
2011-027934 | Feb 2011 | JP |
2012-042533 | Mar 2012 | JP |
Entry |
---|
Kato. JP H11-327275 Machine Translation. Published Nov. 1999. Accessed/translated Jan. 2015. |
Office Action issued Mar. 11, 2016 in Japanese Patent Application No. 2012-131218. |
Office Action issued Mar. 18, 2016 in Japanese Patent Application No. 2012-131349. |
Number | Date | Country | |
---|---|---|---|
20130330105 A1 | Dec 2013 | US |