The invention relates to a powder for use in a cold spraying process.
The deposition of particles by means of cold spraying processes, for example on turbine blades, has to date only been possible with particles larger than approximately 5 μm. This is due to the momentum transfer properties of the particles onto the surface. For various reasons, however, the use of cold spraying processes to spray nanoparticles is of interest.
In order to make this possible, it has been proposed to provide nanoparticles with shells in order to increase their size and mass with a view to achieving suitable momentum transfer properties. Particles which have a nanoparticle as the core and are surrounded by a shell or capsule are known, for example, from DE 101 31 173 A1, even if the core-shell particles described therein have dimensions of less than 1 μm.
As described, for example, in EP 1 548 134 A2, the nanoparticles may be produced by repeated fracture of microparticles during a milling process.
US 2005/0158723 A1 discloses irreversibly colloidal, i.e. finely distributed, chains with recognition sites. The aim of this is to provide a new type of tool for diagnosing and/or preparing an identification analysis or assay of species in a liquid sample.
The document illustrates the assembly of colloidal particles in the form of one or more chains, which are characterized in that they have an irreversible structure and have at least one recognition site for a species other than the ligands which are associated with the linear arrangement of the particles. In accordance with the invention, the colloidal chains may have a relatively rigid, semirigid or flexible structure.
The first problem addressed by the invention is that of providing a powder for a cold spraying process which makes it possible to cold spray particles smaller than approximately 5 μm.
A second problem is that of providing a process for producing such a powder.
The first problem is solved by a powder having the features of claim 1. The second problem is solved by a process for producing a powder as claimed in claim 8. The dependent claims contain advantageous developments of the invention.
According to the invention, the problem is solved by a powder for a cold spraying process comprising microparticles, nanoparticles and coupling molecules, in which nanoparticles are bonded to a microparticle by means of at least one coupling molecule. In particular, a large number of nanoparticles may be bonded to the microparticle.
Rather than nanoparticles being surrounded by a shell of microparticles, as has occurred previously, nanoparticles are attached to a microparticle as the carrier by means of specifically developed, organic coupling molecules so that they can be used in a cold spraying process.
The powder particle of microparticles, coupling molecules and nanoparticles has the mass and size required to be sprayed in a cold spraying process. Since the coupling molecules are organic, they are decomposed when they strike the substrate to be coated.
In one advantageous development of the invention, the microparticles are each surrounded by a shell, which is formed by nanoparticles coupled to the microparticle by means of a number of coupling molecules.
In particular, the coupling molecules are polar molecules, i.e. molecules with different functional groups at opposite ends. One functional group of the coupling molecule bonds to the microparticle, for example a ceramic particle, while the functional group at the other end of the coupling molecule bonds to the nanoparticle.
By way of example, the coupling molecules may be polymers (organic molecules), e.g. linear polymers (chains) or dendrimers, that is to say polymers which branch in tree-like fashion, which can be used to couple in each case a plurality of nanoparticles to a microparticle. This makes it possible to obtain a large number of nanoparticles for each microparticle.
By way of example, the microparticles may be ceramic particles, so that thermal barrier coatings (TBC), in particular for turbine components, for example, may therefore be produced by means of cold spraying.
The microparticles may also be MCrAlX particles or components thereof. This makes it possible to produce bonding layers on turbine components in oxidative or corrosive environments. In MCrAlX, M represents at least one element from the group consisting of iron (Fe), cobalt (Co) or nickel (Ni), X represents an active element, for example yttrium (Y) and/or silicon (Si) and/or at least one rare earth element and/or hafnium (Hf). Alloys of this type are known, for example, from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, and these are intended to form part of this disclosure with respect to the possible chemical composition of the MCrAlX particles. The nanoparticles may be a component of MCrAlX or may be additives which should fulfill specific tasks.
The small size of the nanoparticles means that the surface properties predominate as a result of the large surface to volume ratio, whereas the volume properties predominate in the case of microparticles which are larger and therefore have a relatively large volume to surface ratio. By way of example, this has an effect on the conductivity or the chemical reactivity of the particles.
The invention also proposes a process for producing a powder, in which the microparticles are immersed in a first solution, which contains the coupling molecules, and then in a second solution, which contains the nanoparticles. This is a simple process for producing a powder according to the present invention.
Further features, properties and advantages of the invention are evident from the following description of exemplary embodiments with reference to the appended figures, in which:
The microparticle 2 is larger than 1 μm, preferably larger than 5 μm, and may consist, for example, of MCrAlX or an MCrAlX component, for example Co or Ni. However, the microparticle 2 may also consist of other materials, for example ceramics or mixed oxides.
The coupling molecules 5 may be polar molecules, in particular polymers. Polar molecules are molecules with different functional groups 6 and 7 at the two opposite ends. They may be in the form of linear polymers (chains), as illustrated in
The nanoparticles 12 are smaller than the microparticles 2, preferably smaller than 1 μm. The sizes of the microparticles and nanoparticles are chosen such that the size of the powder particle 14 consisting of microparticles 2, nanoparticles 12 and coupling molecules 5 is at least 5 μm, and therefore it can be sprayed in a cold spraying process. By way of example, if the microparticle 2 consists of nickel or cobalt, the nanoparticles 12 may consist, for example, of one of the elements from the group consisting of aluminum (Al), X, that is to say an active element, for example yttrium (Y) and/or silicon (Si) and/or at least one rare earth element, and/or hafnium (Hf) or of chromium (Cr). They can be produced mechanically, for example by milling. Together with the microparticle 2, the nanoparticles 12 can then form an MCrAlX composition. If an MCrAlX composition is already being used as the microparticle 2, the nanoparticles 12 may be an additive to the MCrAlX composition. The same applies if the microparticles consist of ceramic, for example.
In
Microparticles 2 are immersed in a first solution 4 which contains coupling molecules 5. The first functional groups 6 of the coupling molecules 5 settle on the microparticles 2, and complexes 8 are therefore produced.
The complexes 8 are immersed in a second solution 10 which contains nanoparticles 12. Nanoparticles 12 can then be locally bonded to the outwardly pointing second functional groups 7 of the coupling molecules 5 (chains or dendrimers), and powder particles 14 consisting of central microparticles 2, coupling molecules 5 bonded thereto and nanoparticles 12 which have settled thereon are therefore produced.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-047-103.2 | Sep 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/60277 | 9/27/2007 | WO | 00 | 8/3/2009 |