The present invention relates to a powder injection microchip for injecting powder components, a powder injection system incorporating the same and a method of injecting powder components.
The injection and/or mixing of powders is employed in many industries for example in the pharmaceutical industry in the blending of dry granular powder compositions such as for use as a powder or in the manufacturer of tablets. Such processes may require the supply of small amounts of each powder composition for each tablet.
Particle handling is a fundamental issue in the pharmaceutical drug development process. The aim of a mixing process is to give the best homogenisation of the actual drug with one or more additional compounds, called excipients. While advances in pharmaceutical and biotechnology research lead to more potent active ingredients in products like tablets, the understanding of processes involved in formulating these products has not been improved at the same rate over the last years. “Powder technology in the pharmaceutical industry: the need to catch up fast”, an article by F. J. Muzzio et al, Powder Technology, 124 (1-2): 1-7, 2002 discussed the issue of mixing and dispersing tiny proportions of predominately minute particles with a matrix of much larger particles.
In addition marketplace realities have resulted in less time to optimise formulations or processes for the pharmaceutical companies. Micro-mixers for dry powders could accelerate the preparation time for a specific new composition of drug and excipients compared with currently used devices. This would decrease the time to determine the optimal ratio of ingredients for a new tablet significantly and therefore allow more time to be spent optimising the batch process or the whole process to be shortened.
Useful mixing devices depend on reliable and easily adjustable feeding systems of the different compounds. The aim of an injection process is to supply small amounts of a powder composition when needed and the aim of a mixing process is to give the best homogenisation of the actual drug with one or more additional compounds.
The article “Powder Handling Device for Drug Formulation” by T. Vilkner and A. Manz, Micro Total Analysis Systems 2002, volume 1, pages 1 to 7, 1 to 9, NARA, Japan discusses particle handling on a chip. Micro injections were used to add the particulate materials to the process.
A reproducible injection of very small amounts of powder has even more potential applications than just the feeding of a mixing device in the pharmaceutical industry. Any analytical operation that deals with particles depends on weighing small amounts of powders very precisely. If this has to be done repeatedly it can become very time consuming. A reliable injection system for tiny amounts of dry powder could possibly be employed in many of such applications.
The invention will now be described further, by way of example only, with reference to the accompanying drawings, in which:
a shows a three-dimensional view of a micro fabricated powder injection device;
b shows a schematic plan view of the micro fabricated powder injection device of
A method and apparatus for injecting and/or mixing powder in a microchip are described. In the following description, for the purposes of explanation, numerous specific details are set fourth to provide a thorough understanding of the present invention. It will be apparent however to one skilled in the art that the present invention may be practised without these specific details. In other instances, well known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.
The needs identified above, and other needs and objects that will become apparent from the following description, are achieved via the microchip powder injection system and method, which comprise in one aspect, a powder injection microchip comprising a gas supply inlet for supplying gas; an outlet; a channel in fluid connection with the gas supply inlet and the outlet; and a powder inlet in fluid connection with the channel. The powder inlet is for receiving a first, open end of a powder reservoir, the powder reservoir having an opening at or near to a second end of the powder reservoir to allow egress of gas from the powder reservoir at a point distal to the first end of the powder reservoir. In use, gas is supplied via the gas supply inlet to the channel and the powder inlet at a velocity sufficient to cause fluidisation of powder at the powder inlet. The velocity of the supplied gas is then reduced to stop fluidisation. This causes powder to pass from the powder inlet and to collect in a region of the channel adjacent a point where the powder inlet connects with the channel. The supply of gas is then restarted. This subsequent initialisation of the gas supply causes the powder collected in the channel to be moved by the gas towards the outlet. The steps of supplying of the gas to cause fluidisation, reducing the gas supply to stop fluidisation and the collection of powder in the channel and the re-starting of the gas may be repeated as many times as required. Each time the powder collected in the channel is moved to the outlet, an injection of powder is provided at the outlet.
a and 1b show a powder injection system comprising a micro fabricated powder injection device. In this embodiment, the device is fabricated as a substrate chip, into which powder components are introduced. The micro fabricated powder injection device 2 as shown in
At least one gas supply inlet 6 is provided at one end of the channel 4 and at least one outlet port 8 at a downstream end of the channel. The powder injection is delivered from the outlet port 8. The gas supply inlet 6 is fluidly connected to the channel 4. The conveying gas may be introduced via a tube inserted into the gas supply inlet. The gas pressure is regulated by a MicroPR® pressure regulator (Redwood Microsystems inc., California, USA). The pressure regulator was controlled by a custom made device allowing the step-free adjustment of the flow rate through the regulator and returning the values for the actual gauge pressure in PSI. The connection to the chip was a 1 cm piece of teflon tubing that was glued onto the chip. At the other end of this tube a piece of PDMS, that had a small hole punched through, was attached. By connecting the teflon tubing coming from the pressure regulator via this piece of PDMS, it was possible to have an airtight sealing and to dismount and reattach the system quickly with no need to glue again.
A powder supply channel 10 is provided with one end being in fluid connection with the channel 4 and with the other end providing a powder inlet 12 for insertion of a reservoir 14 containing powder. The chip comprises two planar layers 16, 18 (e.g. of glass) with wet-etched channels. The arrow indicates the direction of movement of gas introduced via gas inlet 6.
The chip is typically around 7 cm square. The distance between the gas inlet 6 and the outlet 8 is typically around 6 cm and the distance between the powder inlet 12 and the channel 4 is typically 5 mm. Typical dimensions for the channel 4 is a width of 1 mm etched to a depth of 350 μm. To prevent channel blockage, the minimum width of the channel 4 is preferably in excess of twenty times the average particle diameter. To allow for a maximum depth of the channel, each layer of glass includes a channel as shown in
The end of the powder reservoir 14 that is distal to the powder inlet 12 has an opening 22 to the ambient atmosphere to allow egress of gas (e.g. air) from the reservoir 14. Thus the pressure exerted on the powder near the distal end of the reservoir will be around ambient pressure whereas the pressure at the proximal end of the powder reservoir 14 will be determined by the gas supplied via gas supply inlet 6.
This opening 22 distal to the powder inlet 12 allows the particles in the reservoir 14 to become fluidised. When being streamed through from underneath by the gas, the gravity of the powder particles and their upwards drag force become equivalent at a certain gas velocity and the powder is fluidised. This generally follows a bed expansion, where the packed density is decreased or the formation of bubbles moving towards the top of the powder bed starts. At the minimum fluidisation velocity the powder bed starts showing properties of a fluid.
When a gas pressure is applied at inlet 6, the gas moves out towards both the outlet 8 and the powder inlet 12. At lower gas velocities, the powder bed at the base of the reservoir 14 withstands the pressure from the gas flow and most of the gas escapes via the outlet 8. At a velocity equal to the minimum fluidisation velocity of the powder bed, the powder bed starts fluidising and allows the gas to flow through the powder inlet 12 as well as to the outlet 8. This fluidisation occurs in the pipette tip. Increasing pressure supplied at inlet 6 will increase the amount of fluidisation within the powder bed and the powder reservoir 14 generally. When the gas pressure is turned off, in a rapid manner, the powder bed within the reservoir 14 collapses and forms a packed bed again. When the gas supply is reduced to a velocity below the minimum fluidisation velocity, powder form the powder inlet 12 is drawn by negative pressure into the channel 4. Thus powder from the powder inlet 12 passes from the powder inlet and collects in a region 24 of the channel 4 adjacent the point where the powder inlet 12 is in fluid connection with the channel 4.
Movement of particles from the powder inlet 12 can be seen in
The gas flow is then stopped (t=0) and subsequently some particles 30 from the powder bed are sucked into the channel 4, as shown in
In
The short distance between the powder inlet 12 and the channel 4 and the rectangular design of the channel 10 are chosen to introduce equal amounts of powder every time the gas is switched off. Preferably the powder plug is stopped by the wall of the channel 4 and only fills the volume 24 of the channel 4 at its intersection with the channel 10.
The gas flow is turned off for a period of time (e.g., 280 milliseconds, as shown in
Subsequent rapid reduction of the pressure of the gas supply to zero will allow the formation of another powder plug. This process may be repeated as many times as required with each re-application of the gas supply causing the powder plug to be blown away and fluidisation beginning again once the velocity of the gas reaches the minimum fluidisation velocity.
The gas supplied to the micro fabricated powder injection device 2 is pressurised above ambient pressure. Any suitable gas may be used for instance nitrogen or compressed air. The gas pressure may be controlled such that the powder bed in powder inlet 12 is fluidised without extensive elutriation, the process in which finer particles are carried out of a fluidised bed owing to the fluid flow rate passing through the bed. A Y-valve (not shown) may be provided to switch the gas stream to the chip 2 on and off and may be mounted between a pressure regulating valve and the chip. The injection time and number of injections may be digitally regulated (for instance using a Microrobotics® Relay Card 5620 controlled by Microrobotics® K4 Application Board III 5525).
The following experiments were carried out to investigate the reproducibility of the negative pressure injection over a broad mass range of a powder. The tests were conducted with a chip having a channel layout as shown in
The results of the reproducibility tests indicated that the volume of the channel 10 connecting the powder inlet 12 and the main flow channel 4 is a dead volume which is filled each time with particles that are not further transported towards the outlet 8. To prove this hypothesis, a similar set of experiments as described above was conducted in a channel with another design (see
The weighed masses showed reproducible linearity within the range from 1 to 50 injections as illustrated in
Linear regression for each series: Y=B×X. The gradient B is the average mass of one single injection.
The dependency of the injection mass may be determined from the bed height in the powder hopper. To do that the calculated values for the average masses of a single injection were plotted against the fill height of the powder hopper 14. From
Linear Regression of average masses: Y=A+B×X.
Interestingly the straight line of the linear fitting intersects the Y-axis at a value of about −1.2 mg instead of 0 mg at the origin of the graph. It is likely that a certain amount of powder is retained during every injection and that the channel 10 that connects the powder inlet 12 with the main channel 4 may act as a dead volume in the system. FIGS. 3E-F support this idea as only the particles located directly in the intersection 24 were transported towards the outlet.
The intention of the second series of experiments was to confirm the hypothesis that the small connecting channel 10 between powder inlet 12 and the main channel 4 acted as a dead volume.
Linear regression for the data of each series of the experiments with a shorter connecting channel: Y=B×X. The gradient B is the average mass of one single injection. The values for 35 or 50 injections were slightly smaller than expected due to the decreasing bed height during the injection series. Therefore they were not used for the calculations in some cases (see column N).
The average mass of an injection in the chip with the shorter connecting channel (
The intersections of the straight lines obtained from the linear regression, that give the specific mass retained in the channel, should correlate with the volume of the channel 10 which can be calculated from the dimensions of the channel.
The results of the injection experiments confirm that the amount of powder injected depends on the fill height of the powder hopper. It may be possible to describe the mass of x injections with a one-dimensional function of the decreasing fill height. For practical implementation the fill height of the powder hopper may have to be monitored continuously to control the calculated values.
Other designs for the channel crossing are envisaged. Some examples of further designs for the crossing between the channel 4 and the power supply channel 10 are shown in
The negative pressure injection method and system described provides a powerful method to separate and transport small amounts of non-cohesive dry powders. The micro fabricated powder injection device may be used to supply injections of powder material to a micro fabricated powder mixing device. This mixing may be implemented within the channel 4 downstream of the powder supply channel 10 or a separate micro fabricated powder mixing device may receive the output from the outlet 8. Mixing may be achieved in an additional fluidised bed that a plurality of injection channels lead to. The mixing bed should be placed in the middle of the chip. Each of the plurality of injection channels 4 may introduce different powders at different rates while they provide the gas flow to enable fluidisation within the mixing bed at the same time. Through slight compaction of the mixed powder bed it may be possible to transfer the mixture onto a table press without allowing it to demix, thus allowing the pressing of pills out of blends generated with a chip-based device and testing them for pharmaceutical requirements concerning mass, volume, contents, friability, dissolution time etc.
The skilled person will appreciate that modification of the disclosed arrangement is possible without departing from the invention. Accordingly, the above description of several embodiments is made by way of example and not for the purposes of limitation. It will be clear to the skilled person that minor modifications can be made to the arrangements without significant changes to the operation described above. The present invention is intended to be limited only by the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0315094.3 | Jun 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/02718 | 6/24/2004 | WO | 5/15/2006 |