This invention relates to sintered powder metal manufacturing and in particular to forming axial and radial locking features in components that will become part of a molded assembly.
The use of sintered powder metal (PM) parts has increased in the recent past as a base component or insert that becomes part of a molded product of multi-materials. These materials may be plastic, rubber, aluminum, or another material as required. The advantage of the multi-material product is lower cost, increased productivity and greater design flexibility. These advantages are achieved in part because PM parts can provide added strength and features for the molded component not achievable as a single material product, and PM parts can be manufactured to net-shape or near net-shape in various alloys which yields little material waste and eliminates or minimizes machining.
Typically the PM part will have an inner surface that defines features required for consumer use of the product. This may be a straight through hole, keyway, double D hole, or others as required. The outer surface engages the other component material. This quite often is achieved by molding the material around the PM part often referred to as overmolding. Simple PM parts or inserts might not include any retention features. As such the PM insert may break free and fall out of the component. To address this problem, some inserts may include retaining features to provide a more secure connection to the component. For example, some PM inserts will have a flange to provide retention in one direction, another may have outer surface features such as ribs, a keyway, a polygonal shape and so forth to provide rotary or radial retention. Other designs include knurling, undercuts, or perforations into which the molded material can flow to provide axial retention.
However, to achieve both rotary and axial retention, typically additional processing will be required that significantly increases the overall manufacturing time and cost of the multi-material component. For example knurling, turning, undercutting or milling an undercut or side perforations all require an additional processing step. Considering these limitations of previous designs, a need exists for an improved PM part that has both rotary and axial retention features that is easily manufactured.
In one aspect the present invention provides a PM part that comprises a first or upper end surface and a second or lower end surface. The distance between the end surfaces defines an axial or longitudinal direction. The PM part further comprises an inner surface that defines a passageway configured as required by consumer use of the product and an outer surface configured to engage a material structure in which the PM part is placed. The distance between the inner and outer surfaces defines a radial direction perpendicular to the axial or longitudinal direction. The PM part further comprises a first set of retention features that project inwardly from the outer surface and longitudinally from the first end surface. A second set of retention features project inwardly from the outer surface and longitudinally from the second end surface. This second set of retention features is angularly located midway between the first set of retention features so that they are angularly offset from one another do not intersect. Both the first and second sets of retention features have at least a portion of the surface that is perpendicular to the tangential direction. Furthermore these features also have a portion of the feature surface that is perpendicular to the longitudinal direction. Thus they provide retention in both the axial or longitudinal direction to resist punch out of the PM part in the axial direction as well as retention in a radial direction so as to resist rotation of the PM part relative to the material surrounding it.
In another aspect the present invention provides a method for forming the part from powder metal. This method includes the step of pressing the powder metal in a longitudinal direction. This can be accomplished utilizing a compaction die set including a lower punch, a lower core, a lower die, an upper die, an upper punch, and an upper core. The top surface of the PM part will be formed by the upper punch. The upper outer surface including the upper retention features will be formed by the upper die cavity. The lower outer surface of the part including the lower retention features will be shaped by the lower die cavity. The lower end face of the part will be formed by the lower punch. The inner surface of the part is shaped with the core. This method further includes removal of the part by first raising the upper die and upper punch from the part and final removal by lowering the lower die and core.
Other features and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
a is a perspective view of a prior art, powder metal part having knurling and circular undercut features for axial and radial retention;
b is a sectional view of the same powder metal part of
a is a perspective view of a powder metal part redesigned to incorporate the present invention;
b is a sectional view of the same powder metal part of
a-3f are sectional schematic views of the tooling for forming the powder metal part of
In accordance with the present invention, the axial or longitudinal and radial retention features are created during the pressing cycle. As shown in
As illustrated, both the upper and lower retention features have at least a portion of the surface that is perpendicular to the radial direction and also have a portion of the feature surface that is perpendicular to the longitudinal direction. Thus they provide retention in both the axial direction and in the radial direction.
The process is illustrated in
The starting position is shown in
The second step, shown in
Next in
The fourth step,
The fifth step,
The sixth step,
The final or seventh step,
Thereby, referring to
Following compaction the part is sintered in a sintering oven to fuse the powder of the compact and solidify it, making it structurally sound while largely maintaining its shape.
Preferred embodiments of the invention have been described in considerable detail, many modifications and variations to the preferred embodiments described will be apparent to a person of ordinary skill in the art. For example the powder metal parts may have various retention shapes or size or the part may have additional levels of complexity. Therefore, the invention should not be limited to the embodiments described.
This claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/407,294 filed Oct. 27, 2010, which is hereby incorporated by reference for all purposes.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/57275 | 10/21/2011 | WO | 00 | 3/8/2013 |
Number | Date | Country | |
---|---|---|---|
61407294 | Oct 2010 | US |