The present disclosure relates to furniture members having leg rest assemblies capable of extension or retraction as well as seat back members that can rotate, where leg rest or seat back member movement does not result in contact between the furniture member and a proximate wall.
This section provides background information related to the present disclosure which is not necessarily prior art.
Conventionally, reclining articles of furniture (i.e., chairs, sofas, loveseats, and the like) require a mechanism to bias a leg rest assembly in the extended and stowed positions and to move a seat back member from an upright to a fully reclined position. Most reclining furniture members include an upholstered frame supported from a stationary base assembly. For example, known combination platform reclining chairs permit reclining movement of the seat assembly and actuation of the leg rest assembly independently of the seat back member. The leg rest assembly is operably coupled to a drive mechanism to permit the seat occupant to selectively move the leg rest assembly between its normally retracted (i.e., “stowed”) and elevated (i.e., “extended”) positions. The drive mechanism is manually-operated and includes a handle which, when rotated by the seat occupant, causes concurrent rotation of a drive rod for extending or retracting the leg rest assembly.
Known mechanisms provide for clearance to a nearby wall with the seat back member in the upright position; however, they do not limit a rearward displacement of the seat back member during motion toward the fully reclined position and, therefore, the seat back member can contact the wall when fully reclined. Manually actuated mechanisms are known that can limit a rearward displacement of the seat back member between the upright and fully reclined positions, which permits the furniture member to be positioned in close proximity to a wall without the seat back member contacting the wall in any operating position of the furniture member. These furniture members are known as “wall proximity” furniture members.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to several embodiments of the present disclosure, an electrically operated wall proximity furniture member includes a frame. An actuation mechanism connected to the frame includes at least one rotatable seat back support member and an electrically powered drive assembly operating to rotate the seat back support member between fully upright and fully reclined positions inclusive. A link displaces the seat back support member between the fully upright and fully reclined positions inclusive with the seat back support member moved substantially forward from the fully upright position to the fully reclined position such that the fully upright position defines a rear-most extent of the seat back support member.
According to further embodiments, an electrically operated wall proximity furniture member includes a frame and an actuation mechanism rotatably connected to the frame. The actuation mechanism includes first and second rotatable seat back support members and an electrically powered drive assembly operating to rotate the seat back support members between fully upright and fully reclined positions inclusive. A point of each of the seat back support members when positioned in the fully upright position defines a rear-most extent of the seat back support members between each of the fully upright and fully reclined positions.
According to other embodiments, an electrically operated wall proximity furniture member includes a frame and an actuation mechanism rotatably connected to the frame. The actuation mechanism includes an extendable and retractable leg rest assembly and first and second rotatable seat back support members oriented to face a wall outer surface. An electrically powered drive assembly operates to move the leg rest assembly between retracted and extended positions inclusive and to further rotate the seat back member between fully upright and fully reclined positions inclusive. A point of the seat back support members when positioned in the fully upright position is positioned at a rear-most extent of the seat back support members. The rear-most extent defines a vertical plane spaced from the wall outer surface having no portion of the seat back support members extending beyond the vertical plane and closer to the wall outer surface than the vertical plane when the seat back support member is repositioned to the fully reclined position.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and, therefore, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Referring generally to
Referring generally to
Referring to
As generally used herein, the terms front or forward and right hand or left hand are oriented with respect to the direction an occupant of the furniture member 10 faces when seated or with respect to the occupant's sides when the occupant is seated. The terms rear or rearward refer to a direction opposite to the front or forward direction. The linkage portion of actuation mechanism 32 includes right and left side assemblies 40, 42, which are rotatably connected to and supported on right and left side support members 44, 46. Right and left side support members 44, 46 are connected to a frame support structure such as a frame 48 using a plurality of substantially vertically oriented, tubular-shaped elastic support elements 50, 50′, 50″, 50′″ such that right and left side support members 44, 46 and right and left side assemblies 40, 42 can collectively deflect within an elastic deformation range of elastic support elements 50, 50′, 50″, 50′″ with respect to frame 48.
Frame 48 can also include rear and front cross members 52, 54 are provided to space and provide structural rigidity of right and left side assemblies 40, 42 and right and left frame extensions 56, 58. Occupant loads at a front portion of furniture member 10 are transferred from right and left side support members 44, 46 to front cross frame member 54 which is connected such as by fasteners 60 (which can be bolts, threaded fasteners, extension rivets, or the like) extending through through-apertures of elastic support elements 50, 50′. Similarly, occupant loads at a rear portion of furniture member 10 are transferred from right and left side support members 44, 46 to rear cross frame member 52 which is connected such as by fasteners 60 extending through through-apertures of elastic support elements 50″, 50′″ (not clearly visible in this view). Right and left frame extensions 56, 58 are connected to rear cross frame member 52 by threaded fasteners or rivets (not visible in this view) and by brackets 62, 62′ (only right side bracket 62 is visible in this view). In some embodiments the frame members of frame support structure 48 can be created from formed, bent and/or extruded angle elements, of metal such as steel or aluminum, or of polymeric or composite materials. The present disclosure is not limited by the material used for the frame components.
A rear cross brace 64 and a front cross brace 66 connect right and left side assemblies 40, 42. A hinge pin assembly 68 (shown and described in greater detail in reference to
Referring to
Referring to
During the period of extension of leg rest assembly 24 from the retracted to the fully extended position, right and left seat back support members 78, 80 are in the fully upright position. The right and left side assemblies 40, 42 individually include first and second side plates 102, 104, individually including first and second elongated slots 106, 108. First and second pins 110, 112 are slidably received in the first and second elongated slots 106, 108 respectively, and are rotatably connected to first and second rear support links 114, 116 and also rotatably connected to first and second upper connecting links 118, 120. In the fully upright position first and second position pins 110, 112 are positioned furthest forward in their respective first and second elongated slots 106, 108.
Referring to
Referring to
An arc-shaped link 136′ is rotatably connected to left seat back support member 80 at a first end and is rotatably connected to a positioning link 138′ at a second end. Positioning link 138′ is in turn rotatably connected to second side plate 104. Left seat back support member 80 is rotatably connected to second side plate 104 by a rotational fastener 140′ such as a spin rivet. The fully upright position of the seat back member 16 at a point 129 of left seat back support member 80 establishes a vertical plane or rear-most extent 131 of the actuation mechanism 32, the rear-most extent 131 establishing the vertical plane having all portions of the seat back support member 78, 80 (with the exception of point 129) positioned forward of the vertical plane 131 (away from the wall outer surface 132) in any position of furniture member 10. No portion of the seat back support members 78, 80 extend beyond the vertical plane 131 (closer to the wall outer surface 132 with respect to vertical plane 131) in any position of actuation mechanism 32, including the fully forward to fully reclined positions of seat back member 16 or the fully retracted to fully extended positions of leg rest assembly 24. Point 129 is defined as the closest point of the seat back support members 78, 80 with respect to wall outer surface 132. Also, when furniture member 10 is positioned proximate to wall 134, no portion of the upholstered seat back member 16 will extend rearwardly of the position identified by furniture member-to-wall clearance “B”, which is controlled by the seat back support member-to-wall clearance “C” of vertical plane 131, for any position of actuation mechanism 32, therefore the rear-most extent 131 also controls a closest point of approach of seat back member 16 to wall outer face 132.
Referring to
Concomitant with forward rotation of second rear support link 116, a left front support link 150 rotatably connected to left side support member 46 by a rotational fastener 152′ and to second side plate 104 also rotates forwardly (counterclockwise as viewed in
Referring to
Referring to
Translation motion of drive rod 90 from the lowest elevation channel position 100 until positioned proximate to or in contact with second channel end wall 122, 122′ generates a continuous reclining rotation of right and left seat back support members 78, 80 in a seat back reclining arc of rotation 30. Continued rotation of arc-shaped link 136′, second rear support link 116, and left front support link 150 as previously described with respect to arc of rotation 154 and arc of rotation 156 continues, however this continued rotation causes second pin 112 to displace away from a forward facing end wall 158′ of second elongated slot 108 until second pin 112 either contacts or proximately approaches a rear facing end wall 160′ of second elongated slot 108, establishing the fully reclined position of seat back member 16. Furniture member-to-wall clearance “B” as shown in
The portions of actuation mechanism 32 connected by first and second rear support links 114, 116 and right and left front support links 150, 150′ to right and left side support members 44, 46, therefore, move forward in an overall forward direction “F” with respect to right and left side support members 44, 46 during extension of leg rest assembly 24 and/or rotation of seat back member 16 toward the seat back fully reclined position to increase clearance with respect to outer wall surface 132. Right and left side support members 44, 46 remain substantially stationary during all movements of actuation mechanism 32. In the seat back fully reclined position, a maximum seat back member to wall clearance “G” is defined. Also in the seat back fully reclined position rear end face 126 of cover 76 can define the closest point of approach between actuation mechanism 32 and outer wall surface 132.
Referring again to
A wall proximity furniture member 10 having an electrically powered actuation mechanism 32, therefore, includes a frame 48 having an actuation mechanism 32 connected to the frame 48. The actuation mechanism 32 includes an extendable and retractable leg rest assembly 24 and an independently rotatable seat back member 16. An electrically powered drive assembly 70 operates to move the leg rest assembly 24 between retracted and extended positions and to separately rotate the seat back member 16 between upright and fully reclined positions. An arc-shaped link 136, 136′ permits the seat back member 16 to rotatably displace between fully upright and fully reclined positions inclusive with the seat back member 16 moving forward and away from a position of the seat back member 16 when positioned in the fully upright position such that the fully upright position of the seat back member 16 establishes a rear-most extent 131 of the actuation mechanism 32.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.