Embodiments of the invention relate to electronic systems, and in particular, to power amplifiers for use in radio frequency (RF) electronics.
Power amplifiers are used in radio frequency (RF) communication systems to amplify RF signals for transmission via antennas. It is important to manage the power of RF signal transmissions to prolong battery life and/or provide a suitable transmit power level.
Examples of RF communication systems with one or more power amplifiers include, but are not limited to, mobile phones, tablets, base stations, network access points, customer-premises equipment (CPE), laptops, and wearable electronics. For example, in wireless devices that communicate using a cellular standard, a wireless local area network (WLAN) standard, and/or any other suitable communication standard, a power amplifier can be used for RF signal amplification. An RF signal can have a frequency in the range of about 30 kHz to 300 GHz, for instance, in the range of about 410 MHz to about 7.125 GHz for Fifth Generation (5G) cellular communications in Frequency Range 1 (FR1) or in the range of about 24.250 GHz to about 52.600 GHz for Frequency Range 2 (FR2) of the 5G communication standard.
In certain embodiments, the present disclosure relates to a mobile device. The mobile device includes a transceiver configured to generate a radio frequency signal, a power management system including an envelope tracker configured to generate a power amplifier supply voltage that changes in relation to an envelope of the radio frequency signal, and a front end system including a power amplifier configured to amplify the radio frequency signal and to receive power from the power amplifier supply voltage. The power amplifier includes a current mirror having an input configured to receive a reference current and an output electrically connected to the power amplifier supply voltage, and a field-effect transistor configured to amplify the radio frequency signal and having a gate biased based on an internal voltage of the current mirror.
In various embodiments, the internal voltage of the current mirror increases in response to a decrease of the power amplifier supply voltage, and decreases in response to an increase of the power amplifier supply voltage.
In a number of embodiments, the field-effect transistor is a short channel metal oxide semiconductor transistor.
In several embodiments, the power amplifier further includes a choke inductor electrically connected between the power amplifier supply voltage and a drain of the field-effect transistor.
In some embodiments, the current mirror is a Wilson current mirror.
In various embodiments, the power amplifier further includes a buffer configured to buffer the internal voltage of the current mirror to generate a gate bias voltage of the field-effect transistor. According to a number of embodiments, the buffer includes a first depletion-mode transistor and a second depletion-mode transistor configured to provide buffering with a zero shift.
In several embodiments, the current mirror includes a first mirror transistor having a drain configured to output the internal voltage, a second mirror transistor, a third mirror transistor, and a fourth mirror transistor, the third mirror transistor and the first mirror transistor connected in series between the input of the current mirror and a ground voltage, and the fourth mirror transistor and the second mirror transistor connected in series between the output of the current mirror and the ground voltage. According to a number of embodiments, a gate of the first mirror transistor is connected to a gate of the second mirror transistor, and a gate of the third mirror transistor is connected to a gate of the fourth mirror transistor. In accordance with various embodiments, a drain of the second mirror transistor is connected to the gate of the second mirror transistor, and a drain of the third mirror transistor is connected to the gate of the third mirror transistor.
In several embodiments, the power amplifier further includes a current source configured to generate the reference current.
In some embodiments, the envelope tracker includes a DC-to-DC converter configured to output a plurality of regulated voltages, a modulator configured to generate a modulator output voltage at an output based on the plurality of regulated voltages and the envelope of the radio frequency signal, and a modulator output filter coupled between the output of the modulator and the power amplifier supply voltage.
In various embodiments, the envelope tracker includes a DC-to-DC converter and an error amplifier configured to operate in parallel with one another to generate the power amplifier supply voltage.
In certain embodiments, the present disclosure relates to an envelope tracking system. The envelope tracking system includes an envelope tracker configured to generate a power amplifier supply voltage that changes in relation to an envelope of a radio frequency signal, and a power amplifier configured to amplify the radio frequency signal and to receive power from the power amplifier supply voltage. The power amplifier includes a current mirror having an input configured to receive a reference current and an output electrically connected to the power amplifier supply voltage, and a field-effect transistor configured to amplify the radio frequency signal and having a gate biased based on an internal voltage of the current mirror.
In various embodiments, the internal voltage of the current mirror increases in response to a decrease of the power amplifier supply voltage, and decreases in response to an increase of the power amplifier supply voltage.
In several embodiments, the field-effect transistor is a short channel metal oxide semiconductor transistor.
In some embodiments, the power amplifier further includes a choke inductor electrically connected between the power amplifier supply voltage and a drain of the field-effect transistor.
In various embodiments, the current mirror is a Wilson current mirror.
In several embodiments, the power amplifier further includes a buffer configured to buffer the internal voltage of the current mirror to generate a gate bias voltage of the field-effect transistor. According to a number of embodiments, the buffer includes a first depletion-mode transistor and a second depletion-mode transistor configured to provide buffering with a zero shift.
In some embodiments, the current mirror includes a first mirror transistor having a drain configured to output the internal voltage, a second mirror transistor, a third mirror transistor, and a fourth mirror transistor, the third mirror transistor and the first mirror transistor connected in series between the input of the current mirror and a ground voltage, and the fourth mirror transistor and the second mirror transistor connected in series between the output of the current mirror and the ground voltage. According to a number of embodiments, a gate of the first mirror transistor is connected to a gate of the second mirror transistor, and a gate of the third mirror transistor is connected to a gate of the fourth mirror transistor. In various embodiments, a drain of the second mirror transistor is connected to the gate of the second mirror transistor, and a drain of the third mirror transistor is connected to the gate of the third mirror transistor.
In several embodiments, the power amplifier further includes a current source configured to generate the reference current.
In some embodiments, the envelope tracker includes a DC-to-DC converter configured to output a plurality of regulated voltages, a modulator configured to generate a modulator output voltage at an output based on the plurality of regulated voltages and the envelope of the radio frequency signal, and a modulator output filter coupled between the output of the modulator and the power amplifier supply voltage.
In several embodiments, the envelope tracker includes a DC-to-DC converter and an error amplifier configured to operate in parallel with one another to generate the power amplifier supply voltage.
In certain embodiments, the present disclosure relates to a method of radio frequency signal amplification in a mobile device. The method includes generating a power amplifier supply voltage that changes in relation to an envelope of a radio frequency signal using an envelope tracker, powering a power amplifier using the power amplifier supply voltage, amplifying the radio frequency signal using a field-effect transistor of the power amplifier, and generating a gate bias voltage of the field-effect transistor using an internal voltage of a current mirror of the power amplifier, including providing a reference current to an input of the current mirror and providing the power amplifier supply voltage to an output of the current mirror.
In various embodiments, the method includes increasing the internal voltage of the current mirror in response to a decrease of the power amplifier supply voltage, and decreasing the internal voltage of the current mirror in response to an increase of the power amplifier supply voltage.
In several embodiments, the field-effect transistor is a short channel metal oxide semiconductor transistor.
In a number of embodiments, the method further includes providing the power amplifier supply voltage to a drain of the field-effect transistor using a choke inductor.
In some embodiments, the current mirror is a Wilson current mirror.
In various embodiments, the method further incudes buffering the internal voltage of the current mirror to generate the gate bias voltage of the field-effect transistor.
In a number of embodiments, the method further includes generating the reference current using a current source.
In several embodiments, generating the power amplifier supply voltage includes outputting a plurality of regulated voltages from a DC-to-DC converter, generating a modulator output voltage based on the plurality of regulated voltages and the envelope of the radio frequency signal using a modulator, and filtering the modulator output voltage to generate the power amplifier supply voltage using a modulator output filter.
In some embodiments, generating the power amplifier supply voltage includes tracking the envelope using a DC-to-DC converter and an error amplifier operating in parallel.
The following detailed description of certain embodiments presents various descriptions of specific embodiments. However, the innovations described herein can be embodied in a multitude of different ways, for example, as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals can indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
The mobile device 100 can be used communicate using a wide variety of communications technologies, including, but not limited to, 2G, 3G, 4G (including LTE, LTE-Advanced, and LTE-Advanced Pro), 5G, WLAN (for instance, Wi-Fi), WPAN (for instance, Bluetooth and ZigBee), WMAN (for instance, WiMax), and/or GPS technologies.
The transceiver 2 generates RF signals for transmission and processes incoming RF signals received from the antennas 4. It will be understood that various functionalities associated with the transmission and receiving of RF signals can be achieved by one or more components that are collectively represented in
The front end system 3 aids in conditioning signals transmitted to and/or received from the antennas 4. In the illustrated embodiment, the front end system 3 includes power amplifiers (PAs) 11, low noise amplifiers (LNAs) 12, filters 13, switches 14, and duplexers 15. However, other implementations are possible.
For example, the front end system 3 can provide a number of functionalities, including, but not limited to, amplifying signals for transmission, amplifying received signals, filtering signals, switching between different bands, switching between different power modes, switching between transmission and receiving modes, duplexing of signals, multiplexing of signals (for instance, diplexing or triplexing), or some combination thereof.
In certain implementations, the mobile device 100 supports carrier aggregation, thereby providing flexibility to increase peak data rates. Carrier aggregation can be used for both Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD), and may be used to aggregate a plurality of carriers or channels. Carrier aggregation includes contiguous aggregation, in which contiguous carriers within the same operating frequency band are aggregated. Carrier aggregation can also be non-contiguous, and can include carriers separated in frequency within a common band and/or in different bands.
The antennas 4 can include antennas used for a wide variety of types of communications. For example, the antennas 4 can include antennas associated transmitting and/or receiving signals associated with a wide variety of frequencies and communications standards.
In certain implementations, the antennas 4 support MIMO communications and/or switched diversity communications. For example, MIMO communications use multiple antennas for communicating multiple data streams over a single radio frequency channel. MIMO communications benefit from higher signal to noise ratio, improved coding, and/or reduced signal interference due to spatial multiplexing differences of the radio environment. Switched diversity refers to communications in which a particular antenna is selected for operation at a particular time. For example, a switch can be used to select a particular antenna from a group of antennas based on a variety of factors, such as an observed bit error rate and/or a signal strength indicator.
The mobile device 100 can operate with beamforming in certain implementations. For example, the front end system 3 can include phase shifters having variable phase controlled by the transceiver 2. Additionally, the phase shifters are controlled to provide beam formation and directivity for transmission and/or reception of signals using the antennas 4. For example, in the context of signal transmission, the phases of the transmit signals provided to the antennas 4 are controlled such that radiated signals from the antennas 4 combine using constructive and destructive interference to generate an aggregate transmit signal exhibiting beam-like qualities with more signal strength propagating in a given direction. In the context of signal reception, the phases are controlled such that more signal energy is received when the signal is arriving to the antennas 4 from a particular direction. In certain implementations, the antennas 4 include one or more arrays of antenna elements to enhance beamforming.
The baseband system 1 is coupled to the user interface 7 to facilitate processing of various user input and output (I/O), such as voice and data. The baseband system 1 provides the transceiver 2 with digital representations of transmit signals, which the transceiver 2 processes to generate RF signals for transmission. The baseband system 1 also processes digital representations of received signals provided by the transceiver 2. As shown in
The memory 6 can be used for a wide variety of purposes, such as storing data and/or instructions to facilitate the operation of the mobile device 100 and/or to provide storage of user information.
The power management system 5 provides a number of power management functions of the mobile device 100. The power management system 5 of
The mobile device 100 of
The transmit system 130 of
The baseband processor 107 operates to generate an I signal and a Q signal, which correspond to signal components of a sinusoidal wave or signal of a desired amplitude, frequency, and phase. For example, the I signal can be used to represent an in-phase component of the sinusoidal wave and the Q signal can be used to represent a quadrature-phase component of the sinusoidal wave, which can be an equivalent representation of the sinusoidal wave. In certain implementations, the I and Q signals are provided to the I/Q modulator 110 in a digital format. The baseband processor 107 can be any suitable processor configured to process a baseband signal. For instance, the baseband processor 107 can include a digital signal processor, a microprocessor, a programmable core, or any combination thereof.
The signal delay circuit 108 provides adjustable delay to the I and Q signals to aid in controlling relative alignment between the envelope signal and the RF signal RFIN. The amount of delay provided by the signal delay circuit 108 is controlled based on amount of intermodulation detected by the intermodulation detection circuit 112.
The DPD circuit 109 operates to provide digital shaping to the delayed I and Q signals from the signal delay circuit 108 to generate digitally pre-distorted I and Q signals. In the illustrated embodiment, the DPD provided by the DPD circuit 109 is controlled based on amount of intermodulation detected by the intermodulation detection circuit 112. The DPD circuit 109 serves to reduce a distortion of the power amplifier 103 and/or to increase the efficiency of the power amplifier 103.
The I/Q modulator 110 receives the digitally pre-distorted I and Q signals, which are processed to generate an RF signal RFIN. For example, the I/Q modulator 110 can include DACs configured to convert the digitally pre-distorted I and Q signals into an analog format, mixers for upconverting the analog I and Q signals to radio frequency, and a signal combiner for combining the upconverted I and Q signals into an RF signal suitable for amplification by the power amplifier 103. In certain implementations, the I/Q modulator 110 can include one or more filters configured to filter frequency content of signals processed therein.
The envelope delay circuit 121 delays the I and Q signals from the baseband processor 107. Additionally, the CORDIC circuit 122 processes the delayed I and Q signals to generate a digital envelope signal representing an envelope of the RF signal RFIN. Although
The shaping circuit 123 operates to shape the digital envelope signal to enhance the performance of the transmit system 130. In certain implementations, the shaping circuit 123 includes a shaping table that maps each level of the digital envelope signal to a corresponding shaped envelope signal level. Envelope shaping can aid in controlling linearity, distortion, and/or efficiency of the power amplifier 103.
In the illustrated embodiment, the shaped envelope signal is a digital signal that is converted by the DAC 124 to an analog envelope signal. Additionally, the analog envelope signal is filtered by the reconstruction filter 125 to generate an envelope signal suitable for use by the envelope tracker 102. In certain implementations, the reconstruction filter 125 includes a low pass filter.
With continuing reference to
The directional coupler 104 is positioned between the output of the power amplifier 103 and the input of the duplexing and switching circuit 105, thereby allowing a measurement of output power of the power amplifier 103 that does not include insertion loss of the duplexing and switching circuit 105. The sensed output signal from the directional coupler 104 is provided to the observation receiver 111, which can include mixers for down converting I and Q signal components of the sensed output signal, and DACs for generating I and Q observation signals from the downconverted signals.
The intermodulation detection circuit 112 determines an intermodulation product between the I and Q observation signals and the I and Q signals from the baseband processor 107. Additionally, the intermodulation detection circuit 112 controls the DPD provided by the DPD circuit 109 and/or a delay of the signal delay circuit 108 to control relative alignment between the envelope signal and the RF signal RFIN.
By including a feedback path from the output of the power amplifier 103 and baseband, the I and Q signals can be dynamically adjusted to optimize the operation of the transmit system 130. For example, configuring the transmit system 130 in this manner can aid in providing power control, compensating for transmitter impairments, and/or in performing DPD.
Although illustrated as a single stage, the power amplifier 103 can include one or more stages. Furthermore, RF communication systems such as mobile devices can include multiple power amplifiers. In such implementations, separate envelope trackers can be provided for different power amplifiers and/or one or more shared envelope trackers can be used.
Adaptive Bias for Power Amplifiers operating with Envelope Tracking
Envelope tracking is a technique that can be used to increase power added efficiency (PAE) of a power amplifier by efficiently controlling a voltage level of a power amplifier supply voltage in relation to an envelope of the RF signal amplified by the power amplifier. Thus, when the envelope of the RF signal increases, the voltage supplied to the power amplifier can be increased. Likewise, when the envelope of the RF signal decreases, the voltage supplied to the power amplifier can be decreased to reduce power consumption.
In one example, an envelope tracker includes a DC-to-DC converter that operates in combination with an error amplifier to generate a power amplifier supply voltage based on an envelope signal. For example, the DC-to-DC converter and the error amplifier can be electrically connected in parallel with one another, and the DC-to-DC converter can track low frequency components of the envelope signal while the error amplifier can track high frequency components of the envelope signal. For example, the DC-to-DC converter's switching frequency can be reduced to be less than a maximum frequency component of the envelope signal, and the error amplifier can operate to smooth gaps in the converter's output to generate the power amplifier supply voltage. In certain implementations, the DC-to-DC converter and error amplifier are combined via a combiner.
In another example, an envelope tracker includes a multi-output boost switcher for generating regulated voltages of different voltage levels, a bank of switches for controlling selection of a suitable regulated voltage over time based on the envelope signal, and a filter for filtering the output of the switch bank to generate the power amplifier supply voltage.
Power amplifiers with adaptive bias for envelope tracking applications are provided herein. In certain embodiments, an envelope tracking system includes a power amplifier that amplifies an RF signal and that receives power from a power amplifier supply voltage, and an envelope tracker that generates the power amplifier supply voltage based on an envelope of the RF signal. The power amplifier includes a field-effect transistor (FET) for amplifying the RF signal, and a current mirror including an input that receives a reference current and an output connected to the power amplifier supply voltage. An internal voltage of the current mirror is used to bias the gate of the FET to compensate the FET for changes in the power amplifier supply voltage arising from envelope tracking.
By implementing the power amplifier with adaptive bias, non-idealities of the power amplifier's FET are compensated for. For example, such adaptive biasing aids in compensating for channel length modulation and/or drain induced barrier lowering that would otherwise give rise to high variation in RF gain versus power amplifier supply voltage.
In certain implementations, the FET is implemented as a short channel metal oxide semiconductor (MOS) transistor. Although short channel MOS transistors suffer from a number of transistor non-idealities, adaptive biasing provides compensation that enables the short channel MOS transistor to be used in the power amplifier without significantly degrading the power amplifier's performance. Since short channel MOS transistors can be fabricated in processes that are low cost and/or enable high degrees of integration, it is desirable to implement a power amplifier using a short channel MOS transistor in a number of applications.
In certain implementations, a buffer is further included for buffering the internal voltage of the current mirror to generate the gate bias voltage of the FET. Including the buffer can enhance the bandwidth and speed-up the transient response of the power amplifier's biasing, thereby improving amplitude and phase distortion.
The current mirror can be implemented in a wide variety of ways. In certain implementations, the current mirror is implemented as a Wilson current mirror. For example, the current mirror can be implemented using n-type field-effect transistors (NFETs) arranged as a four transistor Wilson current mirror. For example, the drain-to-source voltage of a first NFET of the four transistor Wilson mirror can increase as voltage of the output decreases, and is well-suited for increasing the power amplifier's gain as power amplifier supply voltage decreases.
Although
The power amplifier 250 receives an RF input signal RFIN at an RF input terminal, and provides an amplified RF output signal RFOUT to an RF output terminal. In the illustrated embodiment, the input DC blocking capacitor 233 is connected between the RF input terminal and the gate of the NFET 231 to allow biasing of the gate voltage of the NFET 231 separately from the DC voltage of the RF input terminal. Additionally, the output DC blocking capacitor 234 is connected between the drain of the NFET 231 and the RF output terminal to decouple the drain voltage of the NFET 231 from the DC voltage of the RF output terminal.
As shown in
The NFET 231 amplifies the RF input signal RFIN to generate the RF output signal RFOUT. Additionally, the gate of the NFET 231 is biased by an internal voltage of the Wilson current mirror 232. Furthermore, the source of the NFET 231 receives a ground voltage (ground), while the drain of the NFET 231 receives the power amplifier supply voltage VPA from the choke inductor 235. In certain implementations, the NFET 231 is implemented as an n-type metal oxide semiconductor (NMOS) transistor. For example, the NFET 231 can be a short channel NMOS transistor.
The Wilson current mirror 232 includes an input that receives a reference current IREF from a reference current source 236, and an output connected to the power amplifier supply voltage VPA. The Wilson current mirror 232 includes a first current mirror NFET 241, a second current mirror NFET 242, a third current mirror NFET 243, and a fourth current mirror NFET 244.
As shown in
In the illustrated embodiment, an internal voltage of the Wilson current mirror 232 is provided to the gate of the NFET 231 to provide adaptive biasing. The internal voltage corresponds to the drain voltage of the first current mirror NFET 241, in this embodiment.
The Wilson current mirror 232 operates to mirror the reference current IREF received at the input to generate an output current provided at the output. As the power amplifier supply voltage VPA changes due to envelope tracking, the drain voltage of the first current mirror NFET 241 also changes such that the output current tracks the input current. The regulation of the Wilson current mirror 232 results in the drain-to-source voltage of the first current source NFET 241 increasing as the power amplifier supply voltage VPA decreases.
The drain voltage of the first current mirror NFET 241 is well-suited for increasing the power amplifier's gain as the power amplifier supply voltage VPA decreases, and for decreasing the power amplifier's gain as the power amplifier supply voltage VPA increases. Thus, the Wilson current mirror 232 provides adaptive biasing to the NFET 231 to compensate for gain variation arising from power supply variation. Such adaptive biasing is well-suited for compensating for short channel effects (for instance, channel length modulation and/or drain-induced barrier lowering) when the NFET 231 is implemented as a short channel NMOS transistor.
As shown by a comparison of
As shown by a comparison of
The power amplifier 280 of
In the illustrated embodiment, the buffer 270 is implemented as a zero shift buffer including a first depletion mode (d-mode) FET 271 and a second d-mode FET 272, which can be, for example, junction field-effect transistors (JFETs) or Schottky gate FETs. The drain of the first d-mode FET 271 receives a battery voltage VBATT, while a gate of the first d-mode FET 271 receives the internal voltage of the Wilson current mirror 232. Additionally, the gate and source of the second d-mode FET 272 are connected to ground, while the drain of the second d-mode FET 272 is connected to a source of the first d-mode FET 271 at a node that outputs the gate bias voltage for biasing the power amplifier's NFET 231.
By including the buffer 270, enhanced bandwidth and improved transient response of the power amplifier's biasing circuitry is achieved.
As shown by a comparison of
As shown by a comparison of
In
It can be important that the power amplifier supply voltage 443 of a power amplifier has a voltage greater than that of the RF signal 441. For example, powering a power amplifier using a power amplifier supply voltage that has a magnitude less than that of the RF signal can clip the RF signal, thereby creating signal distortion and/or other problems. Thus, it can be important the power amplifier supply voltage 443 be greater than that of the envelope 442. However, it can be desirable to reduce a difference in voltage between the power amplifier supply voltage 443 and the envelope 442 of the RF signal 441, as the area between the power amplifier supply voltage 443 and the envelope 442 can represent lost energy, which can reduce battery life and increase heat generated in a wireless device.
In
The envelope tracker 502 receives an envelope signal 504 corresponding to an envelope of the radio frequency signal 503. Additionally, the envelope tracker 502 generates a power amplifier supply voltage VPA, which supplies power to the power amplifier 501.
The illustrated envelope tracker 502 includes a DC-to-DC converter 511 and an error amplifier 512 that operate in combination with one another to generate the power amplifier supply voltage VPA based on the envelope signal 504. In the illustrated embodiment, an output of the DC-to-DC converter 511 and an output of the error amplifier 512 are combined using a combiner 515.
The envelope tracker 502 of
The envelope tracker 532 receives an envelope signal 504 corresponding to an envelope of the radio frequency signal 503. Additionally, the envelope tracker 532 generates a power amplifier supply voltage VPA, which supplies power to the power amplifier 501.
The illustrated envelope tracker 532 includes a multi-level switching circuit 535. In certain implementations, the multi-level switching circuit includes a multi-output DC-to-DC converter for generating regulated voltages of different voltage levels, switches for controlling selection of a suitable regulated voltage over time based on the envelope signal, and a filter for filtering the output of the switches to generate the power amplifier supply voltage.
The envelope tracker 532 of
The envelope tracker 602 receives an envelope signal corresponding to an envelope of the radio frequency signal 503. In this example, the envelope signal is differential. Additionally, the envelope tracker 602 generates a power amplifier supply voltage VPA, which supplies power to the power amplifier 501.
The illustrated envelope tracker 602 includes an envelope amplifier 611, a first comparator 621, a second comparator 622, a third comparator 623, a coding and dithering circuit 624, a multi-output boost switcher 625, a filter 626, a switch bank 627, and a capacitor bank 630. The capacitor bank 630 includes a first capacitor 631, a second capacitor 632, and a third capacitor 633. Additionally, the switch bank 627 includes a first switch 641, a second switch 642, and a third switch 643.
The envelope amplifier 611 amplifies the envelope signal to provide an amplified envelope signal to the first to third comparators 621-623. The first to third comparators 621-623 compare the amplified envelope signal to a first threshold T1, a second threshold T2, and a third threshold T3, respectively. The results of the comparisons are provided to the coding and dithering circuit 624, which processes the results to control selection of switches of the switch bank 627. The coding and dithering circuit 624 can activate the switches while using coding and/or dithering to reduce artifacts arising from opening and closing the switches.
Although an example with three comparators is shown, more or fewer comparators can be used. Furthermore, the coding and dithering circuit 624 can be omitted in favor of controlling the switch bank in other ways. In a first example, coding but not dithering is used. In a second example, dithering but not coding is used. In a third example, neither coding nor dithering is used.
The multi-output boost switcher 625 generates a first regulated voltage VMLS1, a second regulated voltage VMLS2, and a third regulated voltage VMLS3 based on providing DC-to-DC conversion of a battery voltage VBATT. Although an example with three regulated voltages is shown, the multi-output boost switcher 625 can generate more or fewer regulated voltages. In certain implementations, at least a portion of the regulated voltages are boosted relative to the battery voltage VBATT. In some configurations, one or more of the regulated voltages is a buck voltage having a voltage lower than the battery voltage VBATT.
The capacitor bank 630 aids in stabilizing the regulated voltages generated by the multi-output boost switcher 625. For example, the capacitors 631-633 operate as decoupling capacitors.
The filter 626 processes the output of the switch bank 627 to generate the power amplifier supply voltage VPA. By controlling the selection of the switches 641-643 over time based on the envelope signal, the power amplifier supply voltage VPA is generated to track the envelope signal.
The packaged module 800 includes an IC or die 801, surface mount components 803, wirebonds 808, a package substrate 820, and encapsulation structure 840. The package substrate 820 includes pads 806 formed from conductors disposed therein. Additionally, the die 801 includes pads 804, and the wirebonds 808 have been used to electrically connect the pads 804 of the die 801 to the pads 806 of the package substrate 820.
The die 801 includes a power amplifier 846, which can be implemented in accordance with any of the embodiments herein.
The package substrate 820 can be configured to receive a plurality of components such as the die 801 and the surface mount components 803, which can include, for example, surface mount capacitors and/or inductors.
As shown in
In some embodiments, the packaged module 800 can also include one or more packaging structures to, for example, provide protection and/or facilitate handling of the packaged module 800. Such a packaging structure can include overmold or encapsulation structure 840 formed over the package substrate 820 and the components and die(s) disposed thereon.
It will be understood that although the packaged module 800 is described in the context of electrical connections based on wirebonds, one or more features of the present disclosure can also be implemented in other packaging configurations, including, for example, flip-chip configurations.
Applications
Some of the embodiments described above have provided examples in connection with wireless devices or mobile phones. However, the principles and advantages of the embodiments can be used for any other systems or apparatus that have needs for power amplifiers.
Such envelope trackers can be implemented in various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, etc. Examples of the electronic devices can also include, but are not limited to, memory chips, memory modules, circuits of optical networks or other communication networks, and disk driver circuits. The consumer electronic products can include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a hand-held computer, a personal digital assistant (PDA), a microwave, a refrigerator, an automobile, a stereo system, a cassette recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi-functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can,” “could,” “might,” “can,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
This application is a continuation of U.S. patent application Ser. No. 17/302,953, filed May 17, 2021 and titled “POWER AMPLIFIERS WITH ADAPTIVE BIAS FOR ENVELOPE TRACKING APPLICATIONS,” which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 62/704,972, filed Jun. 5, 2020 and titled “POWER AMPLIFIERS WITH ADAPTIVE BIAS FOR ENVELOPE TRACKING APPLICATIONS,” which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5455542 | Spence et al. | Oct 1995 | A |
5459762 | Wang et al. | Oct 1995 | A |
5724657 | Lin et al. | Mar 1998 | A |
5761250 | Lin | Jun 1998 | A |
6204734 | Zhang et al. | Mar 2001 | B1 |
6438365 | Balteanu | Aug 2002 | B1 |
6639470 | Andrys et al. | Oct 2003 | B1 |
6671500 | Damgaard et al. | Dec 2003 | B2 |
6704560 | Balteanu et al. | Mar 2004 | B1 |
6734729 | Andrys et al. | May 2004 | B1 |
6768382 | Shie et al. | Jul 2004 | B1 |
6842067 | Andrys et al. | Jan 2005 | B2 |
6977976 | Birkett et al. | Dec 2005 | B1 |
7136003 | Ripley et al. | Nov 2006 | B1 |
7142053 | Phillips et al. | Nov 2006 | B2 |
7193474 | Phillips et al. | Mar 2007 | B2 |
7276973 | Ripley et al. | Oct 2007 | B2 |
7288991 | Ripley | Oct 2007 | B2 |
7385442 | Ripley | Jun 2008 | B1 |
7397089 | Zhang et al. | Jul 2008 | B2 |
7408413 | Ripley | Aug 2008 | B2 |
7414479 | Ripley et al. | Aug 2008 | B2 |
7443246 | Andrys et al. | Oct 2008 | B2 |
7482868 | Hageman et al. | Jan 2009 | B2 |
7496339 | Balteanu et al. | Feb 2009 | B2 |
7538606 | Ripley | May 2009 | B2 |
7589592 | Fisher et al. | Sep 2009 | B2 |
7605651 | Ripley et al. | Oct 2009 | B2 |
7696826 | Ripley et al. | Apr 2010 | B2 |
7876160 | Zhang et al. | Jan 2011 | B2 |
7994861 | Fisher et al. | Aug 2011 | B2 |
8023909 | Ripley et al. | Sep 2011 | B2 |
8049565 | Zhang et al. | Nov 2011 | B2 |
8140028 | Balteanu et al. | Mar 2012 | B2 |
8154345 | Andrys et al. | Apr 2012 | B2 |
8188793 | Ripley et al. | May 2012 | B2 |
8330546 | Ripley et al. | Dec 2012 | B2 |
8351873 | Balteanu et al. | Jan 2013 | B2 |
8362840 | Andrys et al. | Jan 2013 | B2 |
8421539 | Zhang et al. | Apr 2013 | B2 |
8514016 | Ripley et al. | Aug 2013 | B2 |
8526995 | Ripley et al. | Sep 2013 | B2 |
8537579 | Ripley et al. | Sep 2013 | B2 |
8598953 | Fisher et al. | Dec 2013 | B2 |
8611836 | Ripley et al. | Dec 2013 | B2 |
8634789 | Chang et al. | Jan 2014 | B2 |
8644777 | Ripley et al. | Feb 2014 | B2 |
8666337 | Ripley et al. | Mar 2014 | B2 |
8717100 | Reisner et al. | May 2014 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8719459 | Ripley | May 2014 | B2 |
8774739 | Ripley et al. | Jul 2014 | B2 |
8786371 | Popplewell et al. | Jul 2014 | B2 |
8791719 | Ripley | Jul 2014 | B2 |
8824991 | Chang et al. | Sep 2014 | B2 |
8928426 | Li et al. | Jan 2015 | B2 |
8928427 | Li et al. | Jan 2015 | B2 |
8941449 | Li et al. | Jan 2015 | B2 |
8948712 | Chen et al. | Feb 2015 | B2 |
8981847 | Balteanu | Mar 2015 | B2 |
8983406 | Zhang et al. | Mar 2015 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9030259 | Fisher et al. | May 2015 | B2 |
9041472 | Chen et al. | May 2015 | B2 |
9042854 | Wang et al. | May 2015 | B2 |
9054575 | Ripley et al. | Jun 2015 | B2 |
9054663 | Reisner et al. | Jun 2015 | B2 |
9071335 | Agarwal et al. | Jun 2015 | B2 |
9083282 | Zhang et al. | Jul 2015 | B2 |
9083455 | Popplewell et al. | Jul 2015 | B2 |
9092393 | Whitefield et al. | Jul 2015 | B2 |
9106183 | Liu et al. | Aug 2015 | B2 |
9116183 | Cummins et al. | Aug 2015 | B2 |
9118277 | Balteanu et al. | Aug 2015 | B2 |
9136795 | Liu et al. | Sep 2015 | B2 |
9143096 | Balteanu et al. | Sep 2015 | B2 |
9189430 | Ross et al. | Nov 2015 | B2 |
9197128 | Popplewell et al. | Nov 2015 | B2 |
9202747 | Chen et al. | Dec 2015 | B2 |
9203529 | Chen et al. | Dec 2015 | B2 |
9214387 | Chen et al. | Dec 2015 | B2 |
9214979 | Ripley | Dec 2015 | B2 |
9225298 | Ripley et al. | Dec 2015 | B2 |
9231528 | Granger-Jones | Jan 2016 | B2 |
9231533 | Zhang et al. | Jan 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9294043 | Ripley et al. | Mar 2016 | B2 |
9294054 | Balteanu et al. | Mar 2016 | B2 |
9295157 | Chen et al. | Mar 2016 | B2 |
9305859 | Williams et al. | Apr 2016 | B2 |
9374045 | Zhang et al. | Jun 2016 | B2 |
9391648 | Popplewell et al. | Jul 2016 | B2 |
9418950 | Zhang et al. | Aug 2016 | B2 |
9419567 | Ripley et al. | Aug 2016 | B2 |
9425833 | Popplewell et al. | Aug 2016 | B2 |
9445371 | Khesbak et al. | Sep 2016 | B2 |
9450639 | Zhang et al. | Sep 2016 | B2 |
9451566 | Morshedi et al. | Sep 2016 | B1 |
9455669 | Modi et al. | Sep 2016 | B2 |
9467940 | Zhang et al. | Oct 2016 | B2 |
9473019 | Ripley et al. | Oct 2016 | B2 |
9473073 | Liu et al. | Oct 2016 | B2 |
9490827 | Wang et al. | Nov 2016 | B2 |
9503025 | Cao et al. | Nov 2016 | B2 |
9506968 | Hoang et al. | Nov 2016 | B2 |
9515029 | Chen et al. | Dec 2016 | B2 |
9520835 | Ko et al. | Dec 2016 | B2 |
9543919 | Ripley | Jan 2017 | B2 |
9571049 | Zhang et al. | Feb 2017 | B2 |
9571152 | Ripley et al. | Feb 2017 | B2 |
9584070 | Balteanu et al. | Feb 2017 | B2 |
9588529 | Balteanu et al. | Mar 2017 | B2 |
9602060 | Gorbachov et al. | Mar 2017 | B2 |
9602064 | Wu et al. | Mar 2017 | B2 |
9606947 | Ross et al. | Mar 2017 | B2 |
9621034 | Liu et al. | Apr 2017 | B2 |
9621118 | Ripley et al. | Apr 2017 | B2 |
9646936 | Chen et al. | May 2017 | B2 |
9660584 | Modi et al. | May 2017 | B2 |
9667200 | Ripley | May 2017 | B2 |
9668215 | Balteanu et al. | May 2017 | B2 |
9673707 | Popplewell et al. | Jun 2017 | B2 |
9678528 | Ripley | Jun 2017 | B2 |
9679869 | Petty-weeks et al. | Jun 2017 | B2 |
9692357 | Hoang et al. | Jun 2017 | B2 |
9698736 | Ripley | Jul 2017 | B2 |
9698740 | Lin et al. | Jul 2017 | B2 |
9698832 | Popplewell et al. | Jul 2017 | B2 |
9698853 | Andrys et al. | Jul 2017 | B2 |
9703913 | Chen et al. | Jul 2017 | B2 |
9712125 | Lehtola et al. | Jul 2017 | B2 |
9712196 | Ripley et al. | Jul 2017 | B2 |
9712197 | Ripley et al. | Jul 2017 | B2 |
9722547 | Ripley et al. | Aug 2017 | B2 |
9735737 | Gorbachov et al. | Aug 2017 | B2 |
9748985 | Zhang et al. | Aug 2017 | B2 |
9768740 | Zhang et al. | Sep 2017 | B2 |
9774300 | Jin et al. | Sep 2017 | B2 |
9780741 | Ripley et al. | Oct 2017 | B2 |
9806395 | Li et al. | Oct 2017 | B2 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9806679 | Gorbachov et al. | Oct 2017 | B2 |
9831765 | Liu et al. | Nov 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9831841 | Wu et al. | Nov 2017 | B2 |
9837965 | Wagh | Dec 2017 | B1 |
9838058 | Pehlke et al. | Dec 2017 | B2 |
9843293 | Wagh | Dec 2017 | B1 |
9847755 | Sun et al. | Dec 2017 | B2 |
9853620 | Gorbachov et al. | Dec 2017 | B2 |
9871599 | Chen et al. | Jan 2018 | B2 |
9876471 | Modi et al. | Jan 2018 | B2 |
9876473 | Khesbak et al. | Jan 2018 | B2 |
9887668 | Zampardi, Jr. et al. | Feb 2018 | B2 |
9893682 | Zhu et al. | Feb 2018 | B2 |
9893686 | Ripley | Feb 2018 | B2 |
9899961 | Lehtola et al. | Feb 2018 | B2 |
9905902 | Zhang et al. | Feb 2018 | B2 |
9912233 | Liu et al. | Mar 2018 | B2 |
9929694 | Ripley | Mar 2018 | B2 |
9935582 | Balteanu et al. | Apr 2018 | B2 |
9935677 | Puente et al. | Apr 2018 | B2 |
9948241 | Popplewell et al. | Apr 2018 | B2 |
9966982 | Ripley et al. | May 2018 | B2 |
9971377 | Balteanu et al. | May 2018 | B2 |
9973088 | Balteanu et al. | May 2018 | B2 |
9985592 | Gorbachov et al. | May 2018 | B2 |
9990322 | Whitefield et al. | Jun 2018 | B2 |
9991856 | Khesbak et al. | Jun 2018 | B2 |
10033277 | Ripley et al. | Jul 2018 | B2 |
10033385 | Ripley | Jul 2018 | B2 |
10038406 | Liu et al. | Jul 2018 | B2 |
10041987 | Hoang et al. | Aug 2018 | B2 |
10044400 | Zhang et al. | Aug 2018 | B2 |
10050529 | Pehlke et al. | Aug 2018 | B2 |
10061885 | Chen et al. | Aug 2018 | B2 |
10063200 | Wu et al. | Aug 2018 | B2 |
10080192 | Balteanu et al. | Sep 2018 | B2 |
10090811 | Ripley et al. | Oct 2018 | B2 |
10090812 | Modi et al. | Oct 2018 | B2 |
10097216 | Gorbachov et al. | Oct 2018 | B2 |
10103726 | Wilz et al. | Oct 2018 | B2 |
10116274 | Ripley et al. | Oct 2018 | B2 |
10135408 | Cao et al. | Nov 2018 | B2 |
10141901 | Zhang et al. | Nov 2018 | B2 |
10147994 | Jayaraman et al. | Dec 2018 | B2 |
10181820 | Balteanu et al. | Jan 2019 | B2 |
11082021 | Lin et al. | Aug 2021 | B2 |
11133782 | Birkbeck | Sep 2021 | B2 |
11239800 | Drogi et al. | Feb 2022 | B2 |
11444576 | Drogi et al. | Sep 2022 | B2 |
11482975 | Lyalin et al. | Oct 2022 | B2 |
20070268074 | Vejzovic | Nov 2007 | A1 |
20080051042 | Komaili et al. | Feb 2008 | A1 |
20080101263 | Barber et al. | May 2008 | A1 |
20090040671 | Zhang | Feb 2009 | A1 |
20090206932 | Wu | Aug 2009 | A1 |
20100197365 | Ripley et al. | Aug 2010 | A1 |
20110025422 | Marra et al. | Feb 2011 | A1 |
20110043284 | Zhao et al. | Feb 2011 | A1 |
20110128761 | Ripley et al. | Jun 2011 | A1 |
20110181364 | Ahadian | Jul 2011 | A1 |
20120019335 | Hoang et al. | Jan 2012 | A1 |
20120119840 | Sanduleanu et al. | May 2012 | A1 |
20120139643 | Scott | Jun 2012 | A1 |
20120154036 | Oh et al. | Jun 2012 | A1 |
20120200338 | Olson | Aug 2012 | A1 |
20120200354 | Ripley et al. | Aug 2012 | A1 |
20120269240 | Balteanu et al. | Oct 2012 | A1 |
20130285750 | Chowdhury et al. | Oct 2013 | A1 |
20130310114 | Zohny | Nov 2013 | A1 |
20140184334 | Nobbe et al. | Jul 2014 | A1 |
20140266448 | Cha et al. | Sep 2014 | A1 |
20140327483 | Balteanu | Nov 2014 | A1 |
20150061770 | Luo | Mar 2015 | A1 |
20150145596 | Fagg | May 2015 | A1 |
20150145604 | Scott et al. | May 2015 | A1 |
20150171796 | Matsui | Jun 2015 | A1 |
20150236651 | Yang et al. | Aug 2015 | A1 |
20150236652 | Yang et al. | Aug 2015 | A1 |
20150270806 | Wagh et al. | Sep 2015 | A1 |
20150280655 | Nobbe | Oct 2015 | A1 |
20150365052 | Barton et al. | Dec 2015 | A1 |
20160014935 | Agarwal et al. | Jan 2016 | A1 |
20160027571 | Zhang et al. | Jan 2016 | A1 |
20160094254 | Ripley | Mar 2016 | A1 |
20160163661 | Chen et al. | Jun 2016 | A1 |
20160241210 | Andrys et al. | Aug 2016 | A1 |
20160241292 | Ripley | Aug 2016 | A1 |
20160241299 | Ripley | Aug 2016 | A1 |
20160242057 | Ripley et al. | Aug 2016 | A1 |
20160248381 | Yang | Aug 2016 | A1 |
20160294328 | Kondo et al. | Oct 2016 | A1 |
20160329866 | Gorbachov et al. | Nov 2016 | A1 |
20170005629 | Yang et al. | Jan 2017 | A1 |
20170040955 | Yang et al. | Feb 2017 | A1 |
20170085223 | Miol et al. | Mar 2017 | A1 |
20170093505 | Ripley et al. | Mar 2017 | A1 |
20170094607 | Ripley | Mar 2017 | A1 |
20170099059 | Wang et al. | Apr 2017 | A1 |
20170126185 | Kang et al. | May 2017 | A1 |
20170131734 | Balteanu et al. | May 2017 | A1 |
20170149437 | Luo | May 2017 | A1 |
20170160318 | Zhang et al. | Jun 2017 | A1 |
20170162705 | Gorbachov et al. | Jun 2017 | A1 |
20170163218 | Gorbachov et al. | Jun 2017 | A1 |
20170163226 | Gorbachov et al. | Jun 2017 | A1 |
20170195972 | Drogi et al. | Jul 2017 | A1 |
20170223632 | Balteanu et al. | Aug 2017 | A1 |
20170228332 | Ross et al. | Aug 2017 | A1 |
20170264253 | Gorbachov et al. | Sep 2017 | A1 |
20170271301 | Petty-weeks et al. | Sep 2017 | A1 |
20170271302 | Petty-weeks et al. | Sep 2017 | A1 |
20170271303 | Petty-weeks et al. | Sep 2017 | A1 |
20170277216 | Ripley | Sep 2017 | A1 |
20170279350 | Liu et al. | Sep 2017 | A1 |
20170294885 | Kang et al. | Oct 2017 | A1 |
20170301647 | Petty-weeks et al. | Oct 2017 | A1 |
20170302231 | Ripley et al. | Oct 2017 | A1 |
20170317648 | Gorbachov et al. | Nov 2017 | A1 |
20170317653 | Lehtola et al. | Nov 2017 | A1 |
20170324432 | Zhang et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20170346516 | Ripley et al. | Nov 2017 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180083578 | Klaren et al. | Mar 2018 | A1 |
20180097482 | Gorbachov et al. | Apr 2018 | A1 |
20180102753 | Gorbachov et al. | Apr 2018 | A1 |
20180123528 | Jo et al. | May 2018 | A1 |
20180123529 | Jo et al. | May 2018 | A1 |
20180138574 | Li et al. | May 2018 | A1 |
20180138862 | Balteanu et al. | May 2018 | A1 |
20180152945 | Balteanu | May 2018 | A1 |
20180159476 | Balteanu et al. | Jun 2018 | A1 |
20180159478 | Balteanu et al. | Jun 2018 | A1 |
20180159577 | Pehlke et al. | Jun 2018 | A1 |
20180167037 | Zhu et al. | Jun 2018 | A1 |
20180175814 | Wu et al. | Jun 2018 | A1 |
20180183389 | Lehtola et al. | Jun 2018 | A1 |
20180191050 | Zhang et al. | Jul 2018 | A1 |
20180234095 | Balteanu et al. | Aug 2018 | A1 |
20180262170 | Gorbachov et al. | Sep 2018 | A1 |
20180269838 | Ripley | Sep 2018 | A1 |
20180278214 | Jin et al. | Sep 2018 | A1 |
20180287573 | Khesbak et al. | Oct 2018 | A1 |
20180294776 | Popplewell et al. | Oct 2018 | A1 |
20180302036 | Balteanu et al. | Oct 2018 | A1 |
20180331659 | Khesbak et al. | Nov 2018 | A1 |
20180343029 | Zhang et al. | Nov 2018 | A1 |
20180351454 | Khesbak et al. | Dec 2018 | A1 |
20180351457 | Ripley | Dec 2018 | A1 |
20180365365 | Chen et al. | Dec 2018 | A1 |
20180375476 | Balteanu et al. | Dec 2018 | A1 |
20180375483 | Balteanu et al. | Dec 2018 | A1 |
20190020315 | Khesbak et al. | Jan 2019 | A1 |
20190028136 | Zhang et al. | Jan 2019 | A1 |
20190036524 | Wilz et al. | Jan 2019 | A1 |
20190041442 | Hoang et al. | Feb 2019 | A1 |
20190044554 | Gorbachov et al. | Feb 2019 | A1 |
20190074813 | Zou et al. | Mar 2019 | A1 |
20190123690 | Balteanu et al. | Apr 2019 | A1 |
20190131684 | Jayaraman et al. | May 2019 | A1 |
20190158045 | Zampardi, Jr. et al. | May 2019 | A1 |
20190158046 | Lehtola et al. | May 2019 | A1 |
20190165736 | Khesbak et al. | May 2019 | A1 |
20190171785 | Chen et al. | Jun 2019 | A1 |
20190173432 | Van Der Heijden et al. | Jun 2019 | A1 |
20190181816 | Ishihara et al. | Jun 2019 | A1 |
20190190462 | Zhu et al. | Jun 2019 | A1 |
20190199434 | Ripley | Jun 2019 | A1 |
20190214902 | Liu et al. | Jul 2019 | A1 |
20190215774 | Ripley | Jul 2019 | A1 |
20190229621 | Balteanu et al. | Jul 2019 | A1 |
20190229679 | Gorbachov et al. | Jul 2019 | A1 |
20190229682 | Gorbachov et al. | Jul 2019 | A1 |
20190245439 | Pehlke et al. | Aug 2019 | A1 |
20190273473 | Gorbachov et al. | Sep 2019 | A1 |
20190273478 | Lin et al. | Sep 2019 | A1 |
20190273480 | Lin et al. | Sep 2019 | A1 |
20190288671 | Ripley et al. | Sep 2019 | A1 |
20190312328 | Zhang et al. | Oct 2019 | A1 |
20190319583 | El-Hassan et al. | Oct 2019 | A1 |
20190319720 | Ripley et al. | Oct 2019 | A1 |
20190331716 | Zhang et al. | Oct 2019 | A1 |
20190334564 | Gorbachov et al. | Oct 2019 | A1 |
20190341888 | Drogi et al. | Nov 2019 | A1 |
20190372526 | Balteanu et al. | Dec 2019 | A1 |
20190372628 | Balteanu et al. | Dec 2019 | A1 |
20190379332 | Ripley | Dec 2019 | A1 |
20190385781 | Zhang et al. | Dec 2019 | A1 |
20190386617 | Naraine et al. | Dec 2019 | A1 |
20190386698 | Miol et al. | Dec 2019 | A1 |
20200007088 | Ranta | Jan 2020 | A1 |
20200007177 | Ripley et al. | Jan 2020 | A1 |
20200052660 | Cao et al. | Feb 2020 | A1 |
20200067406 | Khesbak et al. | Feb 2020 | A1 |
20200076393 | Gorbachov et al. | Mar 2020 | A1 |
20200083915 | Zhang et al. | Mar 2020 | A1 |
20200091820 | Ripley | Mar 2020 | A1 |
20200091870 | Lehtola et al. | Mar 2020 | A1 |
20200091878 | Maxim et al. | Mar 2020 | A1 |
20200099343 | Khesbak et al. | Mar 2020 | A1 |
20200103448 | Hoang et al. | Apr 2020 | A1 |
20200106399 | Ripley et al. | Apr 2020 | A1 |
20200112300 | Balteanu et al. | Apr 2020 | A1 |
20200127619 | Khesbak et al. | Apr 2020 | A1 |
20200136670 | Zhang et al. | Apr 2020 | A1 |
20200154434 | Balteanu | May 2020 | A1 |
20200159275 | Ripley | May 2020 | A1 |
20200162028 | Balteanu et al. | May 2020 | A1 |
20200162030 | Drogi et al. | May 2020 | A1 |
20200162032 | Ripley et al. | May 2020 | A1 |
20200162039 | Lehtola et al. | May 2020 | A1 |
20200195202 | Gorbachov et al. | Jun 2020 | A1 |
20200195207 | Ripley | Jun 2020 | A1 |
20200259458 | Balteanu et al. | Aug 2020 | A1 |
20200259459 | Balteanu et al. | Aug 2020 | A1 |
20200321923 | Park et al. | Oct 2020 | A1 |
20200335844 | Jayaraman et al. | Oct 2020 | A1 |
20200336110 | Drogi et al. | Oct 2020 | A1 |
20200343865 | Balteanu et al. | Oct 2020 | A1 |
20210028872 | Cho et al. | Jan 2021 | A1 |
20210119582 | Cappello et al. | Apr 2021 | A1 |
20210384875 | Lyalin et al. | Dec 2021 | A1 |
20210384880 | Lin et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
WO 2018052539 | Mar 2018 | WO |
WO 2021061851 | Apr 2021 | WO |
Entry |
---|
Balteanu, Florinel “RF Front End Module Architectures for 5G,” dated Nov. 2019, in 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/052315 dated Jan. 12, 2021 in 10 pages. |
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2020/052315 dated Mar. 15, 2022, in 6 pages. |
Number | Date | Country | |
---|---|---|---|
20230017220 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
62704972 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17302953 | May 2021 | US |
Child | 17934340 | US |