Oil wells are created by drilling a hole into the earth using a drilling rig that rotates a drill string (e.g., drill pipe) having a drill bit attached thereto. The drill bit, aided by the weight of pipes (e.g., drill collars) cuts into rock within the earth. Drilling fluid (e.g., mud) is pumped into the drill pipe and exits at the drill bit. The drilling fluid may be used to cool the bit, lift rock cuttings to the surface, at least partially prevent destabilization of the rock in the wellbore, and/or at least partially overcome the pressure of fluids inside the rock so that the fluids do not enter the wellbore. Other equipment can also be used for evaluating formations, fluids, production, other operations, and so forth.
Aspects of the disclosure can relate to an adapter for power and communication connections between electronic devices in a drill string. In embodiments, the adapter can include a first terminal configured to couple with an output terminal of a first tool and a second terminal configured to couple with an input terminal of a second tool. The adapter can further include a power converter that adjusts a voltage received at the first terminal and supplies the adjusted voltage to the second terminal and a communications adapter that converts a signal format of a communications signal received at the first terminal to a second signal format for the second terminal.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Embodiments of systems and methods that can implement a power and communications adapter are described with reference to the following figures. The same numbers are used throughout the figures to reference like features and components.
A bottom hole assembly (BHA) 116 is suspended at the end of the drill string 104. The bottom hole assembly 116 includes a drill bit 118 at its lower end. In embodiments of the disclosure, the drill string 104 includes a number of drill pipes 120 that extend the bottom hole assembly 116 and the drill bit 118 into subterranean formations. Drilling fluid (e.g., mud) 122 is stored in a tank and/or a pit 124 formed at the wellsite. The drilling fluid can be water-based, oil-based, and so on. A pump 126 displaces the drilling fluid 122 to an interior passage of the drill string 104 via, for example, a port in the rotary swivel 114, causing the drilling fluid 122 to flow downwardly through the drill string 104 as indicated by directional arrow 128. The drilling fluid 122 exits the drill string 104 via ports (e.g., courses, nozzles) in the drill bit 118, and then circulates upwardly through the annulus region between the outside of the drill string 104 and the wall of the borehole 102, as indicated by directional arrows 130. In this manner, the drilling fluid 122 cools and lubricates the drill bit 118 and carries drill cuttings generated by the drill bit 118 up to the surface (e.g., as the drilling fluid 122 is returned to the pit 124 for recirculation).
In some embodiments, the bottom hole assembly 116 includes down-hole tools, such as a logging-while-drilling (LWD) module 132, a measuring-while-drilling (MWD) module 134, a rotary steerable system 136, a motor, and so forth (e.g., in addition to the drill bit 118). The logging-while-drilling module 132 can be housed in a drill collar and can contain one or a number of logging tools. It should also be noted that more than one LWD module and/or MWD module can be employed (e.g., as represented by another logging-while-drilling module 138). In embodiments of the disclosure, the logging-while drilling modules 132 and/or 138 include capabilities for measuring, processing, and storing information, as well as for communicating with surface equipment, and so forth.
The measuring-while-drilling module 134 can also be housed in a drill collar, and can contain one or more devices for measuring characteristics of the drill string 104 and drill bit 118. The measuring-while-drilling module 134 can also include components for generating electrical power for down-hole tools (e.g., sensors, electrical motors, transmitters, receivers, controllers, energy storage devices, and so forth). For example, the system can include a mud turbine generator (also referred to as a “mud motor”) powered by the flow of the drilling fluid 122. However, this configuration is provided by way of example and is not meant to limit the present disclosure. In other embodiments, other power and/or battery systems can be employed. The measuring-while-drilling module 134 can include one or more of the following measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, an inclination measuring device, and so on.
In embodiments of the disclosure, the wellsite system 100 is used with controlled steering or directional drilling. For example, the rotary steerable system 136 is used for directional drilling. As used herein, the term “directional drilling” describes intentional deviation of the wellbore from the path it would naturally take. Thus, directional drilling refers to steering the drill string 104 so that it travels in a desired direction. In some embodiments, directional drilling is used for offshore drilling (e.g., where multiple wells are drilled from a single platform). In other embodiments, directional drilling enables horizontal drilling through a reservoir, which enables a longer length of the wellbore to traverse the reservoir, increasing the production rate from the well. Further, directional drilling may be used in vertical drilling operations. For example, the drill bit 118 may veer off of a planned drilling trajectory because of the unpredictable nature of the formations being penetrated or the varying forces that the drill bit 118 experiences. When such deviation occurs, the wellsite system 100 may be used to guide the drill bit 118 back on course.
Drill assemblies can be used with, for example, a wellsite system (e.g., the wellsite system 100 described with reference to
A drill assembly includes a body for receiving a flow of drilling fluid. The body comprises one or more crushing and/or cutting implements, such as conical cutters and/or bit cones having spiked teeth (e.g., in the manner of a roller-cone bit). In this configuration, as the drill string is rotated, the bit cones roll along the bottom of the borehole in a circular motion. As they roll, new teeth come in contact with the bottom of the borehole, crushing the rock immediately below and around the bit tooth. As the cone continues to roll, the tooth then lifts off the bottom of the hole and a high-velocity drilling fluid jet strikes the crushed rock chips to remove them from the bottom of the borehole and up the annulus. As this occurs, another tooth makes contact with the bottom of the borehole and creates new rock chips. In this manner, the process of chipping the rock and removing the small rock chips with the fluid jets is continuous. The teeth intermesh on the cones, which helps clean the cones and enables larger teeth to be used. A drill assembly comprising a conical cutter can be implemented as a steel milled-tooth bit, a carbide insert bit, and so forth. However, roller-cone bits are provided by way of example and are not meant to limit the present disclosure. In other embodiments, a drill assembly is arranged differently. For example, the body of the bit comprises one or more polycrystalline diamond compact (PDC) cutters that shear rock with a continuous scraping motion.
In embodiments of the disclosure, the body of a drill assembly can define one or more nozzles that allow the drilling fluid to exit the body (e.g., proximate to the crushing and/or cutting implements). The nozzles allow drilling fluid pumped through, for example, a drill string to exit the body. For example, drilling fluid can be furnished to an interior passage of the drill string by the pump and flow downwardly through the drill string to a drill bit of the bottom hole assembly, which can be implemented using, for example, a drill assembly. Drilling fluid then exits the drill string via nozzles in the drill bit, and circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole. In this manner, rock cuttings can be lifted to the surface, destabilization of rock in the wellbore can be at least partially prevented, the pressure of fluids inside the rock can be at least partially overcome so that the fluids do not enter the wellbore, and so forth.
In some drilling systems, power and communication signals are carried over the same single conductor (e.g., single wire). For example, a signal transmitted from one electronic device or tool (e.g., MWD 134, LWD 132/138, sensor, electrical motor, transmitter, receiver, controller, energy storage device, and or the like) to a second electronic device or tool can include power and communication components transferred over a single conductor. Other drilling systems can use multiple-wire connections and/or different communication protocols to send power and communication signals from one tool to another along a drill string. In some of these systems, at least two separate conductors (e.g., two or more wires) can include at least a first wire that carries a power signal and at least a second wire that carries a communication signal. Other operating differences can also be encountered between different system architectures. For example, some legacy systems rely on power signals with voltage of approximately 30V and a passband communication signal; while newer systems can have power signals transmitting at approximately 300V with baseband communication protocols.
In some embodiments, the CAM 208 can be attached to extenders that link the two BHAs or tools. The CAM 208 can electrically terminate the bus to maintain signal integrity and avoid current reflections on the linked BHAs or tools. Dual MWD Isolation Adapter (DMIA) components can be included in the CAM 208, so that the CAM 208 can isolate the power between the two adjacent BHAs or tools. For example, such isolation adapter configurations are described in U.S. Patent Application Publication No. 2014/0311804 to Gadot et al., which is incorporated herein by reference in its entirety.
In embodiments, the PCAS 204 can be combined with or coupled to the MWD tool to generate power for two adjacent BHAs (e.g., BHA 202 and BHA 206) at different voltage levels. The PCAS 204 can also be the bus master for both BHAs, each using different communication methods.
PCAS circuitry 404 can include a power converter 406 (e.g., an AC-to-DC converter, a transformer for AC-to-AC power conversion, linear/switching converter for DC-to-DC power conversion, or the like) that adjusts a voltage received at the input terminal 402 and supplies the adjusted voltage to the output terminal 410. For example, the power converter 406 can step an input voltage in the range of 10V to 100V up to an output voltage in the range of 200V to 1000V. PCAS circuitry 404 can also include a communications adapter 408 that converts a communication method (e.g., signal format or signal protocol) of a communications signal received at the input terminal 402 to a second signal format for the output terminal 410. For example, the input terminal 402 can receive a passband communication protocol that is converted by the communications adapter 408 to a baseband communication protocol for the output terminal 410, or vice versa. The communications adapter 408 can also convert from passband communication with a first signal power level or signal format to passband communication with a second signal power level or signal format. The communications adapter 408 can also implement baseband-to-baseband conversions or any other signal conversion where one or more components of the communication method (e.g., signal type, format, communication protocol, power level, etc.) are altered. In some embodiments, the input terminal 402 comprises a single-wire input terminal 402, and the output terminal 410 comprises a multiple-wire output terminal 410 having multiple ports (e.g., as shown in
Examples of interconnectivity between tools of a first BHA (e.g., BHA 202) and a second BHA (e.g., BHA 206) are shown in
In some embodiments, the first tool is part of a first BHA (e.g., BHA 202) having a single conductor carrying both power and communication (e.g., tool bus) signals, with 30V DC power and Low Power Tool Bus (LTB) having 4.8 kbps Frequency-Shift Keying (FSK) modulation communication signals, and the second tool is part of a second BHA (e.g., BHA 206) having multiple conductors (e.g., separate wires for power and communications), with 650V DC power and enhanced fast tool bus (EFTB) having 2 Mbps bi-phase modulation communication signals.
An embodiment of a PCAS 600 (e.g., such as PCAS 204) is shown in
In some embodiments, the PCAS can operate as the bus master for the first communication protocol and also as the bus slave for the second communication protocol. For example, the adapter's legacy modem (e.g., modem 608), as legacy bus master, can collect data from legacy tools (e.g., LWDs 502 and 504), and the legacy modem (e.g., modem 608) can send the data to the new system modem (e.g., modem 610). As the new bus slave, modem 610 can encapsulates the data into a packet following the new communication protocol and can send the encapsulated data to the new bus master (e.g. new system MWD 508). The PCAS's modems (e.g., modems 608 and 610) can also operate in reverse, e.g., where modem 608 is the legacy bus slave and modem 610 is the new system bus master.
An embodiment of a CAM 700 (e.g., such as CAM 208) is shown in
In some embodiments, the first tool (e.g., legacy LWD 512) and the second tool (e.g., new LWD 510) are both configured to send power and communication signals via a single conductor. For example, the first BHA and the second BHA can both have one-wire power and communication, e.g., both at 30V DC, but each may implement a different signal format. For example, the first BHA can have a LTB tool bus with 4.8 kbps Frequency-Shift Keying (FSK) modulation communication signals, and the second BHA can have a high speed bus (HSB) tool bus with 150 kbps Quadrature Phase Shift Keying (QPSK) modulation communication signals. In such a tool string configuration, where the first and second BHAs both use the same power protocol (e.g., one-wire 30V DC), the BHAs can be coupled by CAMs without a PCAS (e.g., PCAS 204 can be replaced with another CAM). An embodiment of a CAM 800 (e.g., such as CAM 208) that can be used implement this type of tool string setup is shown in
The various PCAS and CAM architectures described herein can be used with LTB, HSB, EFTB, or other industry known protocols, such as Ethernet, TCP/IP, CAN, etc. In some implementations, the protocol or modulation conversion done by one or more DSPs and/or FPGAs. Power conversion/control can include stepping up or stepping down power, blocking, terminating, or passing through power (e.g., in CAM configuration), AC-to-DC, DC-to-AC, AC-to-AC, DC-to-DC conversions, and so forth. Additionally, the PCAS (e.g., PCAS 204) and/or CAM (e.g., CAM 208) can be powered by one of the BHAs or tools connected therewith, or by a dedicated battery or generator.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from the current disclosure. Features shown in individual embodiments referred to above may be used together in combinations other than those which have been shown and described specifically. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. § 112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
Number | Name | Date | Kind |
---|---|---|---|
20020043369 | Vinegar et al. | Apr 2002 | A1 |
20020113718 | Wei | Aug 2002 | A1 |
20030213620 | Krueger | Nov 2003 | A1 |
20100224356 | Moore | Sep 2010 | A1 |
20100264747 | Hall | Oct 2010 | A1 |
20140202711 | Scott et al. | Jul 2014 | A1 |
20140311804 | Gadot | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
WO9716751 | May 1997 | WO |
Entry |
---|
International Search Report and Written Opinion issued in International Patent application PCT/US2016/049548 dated Dec. 21, 2016, 13 pages. |
International Preliminary Report on Patentability issued in International Patent application PCT/US2016/049548, dated Mar. 13, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20170074073 A1 | Mar 2017 | US |