Power architecture for low power modes in storage devices

Information

  • Patent Grant
  • 9058834
  • Patent Number
    9,058,834
  • Date Filed
    Monday, November 10, 2014
    10 years ago
  • Date Issued
    Tuesday, June 16, 2015
    9 years ago
Abstract
A power control device comprising an always-on-domain (AOD) which includes control logic circuitry for controlling power from a power source, load switches, bias current generators. The power control device also includes, outside of the AOD, functional blocks. The control logic circuitry is configured to receive a signal to go into a lower power state, initiate a shut-down sequence of the load switches and the bias current generators of the AOD, to disable circuitry outside of the AOD, including the functional blocks of the power control device and loads controlled by the power control device, and operate in a low power state to detect a wake-up signal. The shut-down sequence may additionally include sequencing off voltage regulators outside of the AOD and a clock control inside the AOD.
Description
BACKGROUND

Many electronic devices operate in multiple modes of operation, with one of modes usually being a low power mode intended to reduce power consumption. Data storage devices, such as hard disk drives, solid state hybrid drives, and solid state drives, may receive power from a host power supply, which can reside in a desktop or laptop computer or be a standalone power supply, for example. The host may at times indicate to the data storage device that it should go into a low power mode. In many situations, power circuitry inside such an electronic device needs to be able to transition the device into a low power mode that consumes as little power as possible, and quickly transition out of the low power mode if needed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a data storage device with a power control device such as power large scale integrated (PLSI) circuitry according to an embodiment of the invention.



FIG. 2 shows an example power control device that manages transitions to low power modes with switches external to the power control device.



FIG. 3 shows a power control device with an always on domain (AOD) according to an embodiment of the invention.



FIG. 4 is a flow chart showing an example operation of the power control device according to an embodiment of the invention.



FIG. 5 is a flow chart showing another example operation of the power control device according to an embodiment of the invention.





DETAILED DESCRIPTION

Some embodiments of the present disclosure are directed to power control devices for enabling low power mode support through an always on domain (AOD) without the need of load switches external to the power control device. In one embodiment, the power control device is implemented in a data storage device, and can be configured to transition the data storage device into low power modes required for host commands such as DEVSLP, USB Suspend, and SAS Host Suspend, without the need for FET load switches to cut off power to the components inside the data storage device.


While various embodiments are described herein, these embodiments are presented by way of example only, and not intended to limit the scope of protection. Indeed, the novel methods and devices described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and devices described herein may be made without departing from the scope of protection. To illustrate some of the embodiments, reference will now be made to the figures.



FIG. 1 shows a data storage device 60 according to an embodiment comprising a head 16 and a disk 18 comprising a plurality of servo tracks 20, wherein each servo track comprises a plurality of servo sectors 220-22N. The data storage device further comprises control circuitry 24 comprising a servo control system operable to actuate the head over the disk in response to the servo sectors 220-22N. The disk is rotated by a spindle motor 46 at a rotational speed that is controlled by the control circuitry 24, for example, a motor driver of the control circuitry 24.


In the embodiment of FIG. 1, the control circuitry 24 processes a read signal 32 emanating from the head 16 to demodulate the servo sectors 220-22N and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. A preamplifier (preamp) may be used to improve the read signal 32 from the head 16. In one embodiment, the target track comprises a target data track defined relative to the servo tracks 20, wherein the data tracks may be recorded at the same or different radial density than the servo tracks 20. The control circuitry 24 filters the PES using a suitable compensation filter to generate a control signal 34 applied to a voice coil motor (VCM) 36 which rotates an actuator arm 38 about a pivot in order to actuate the head 16 radially over the disk 18 in a direction that reduces the PES. The control circuitry 24 may also generate a control signal 40 applied to a microactuator 42 in order to actuate the head 16 over the disk 18 in fine movements. Any suitable microactuator 42 may be employed in the embodiments, such as a piezoelectric actuator. In addition, the microactuator 42 may actuate the head 16 over the disk 18 in any suitable manner, such as by actuating a suspension relative to the actuator arm, or actuating a slider relative to the suspension. The servo sectors 220-22N may comprise any suitable head position information, such as a track address for coarse positioning and servo bursts for fine positioning. The servo bursts may comprise any suitable pattern, such as an amplitude based servo pattern or a phase based servo pattern.


The control circuitry 24 may also control solid state memory storage 50, e.g., memory storage comprising solid state NAND memory. For example, where the data storage device 60 is a solid state hybrid drive (SSHD), data may be stored in solid state memory storage 50 in addition to, or instead of, disk 18. In another embodiment, the data storage device 60 is a solid state drive (SSD) that stores data in solid state memory storage 50 instead of magnetic recording media such as disk 18. In an embodiment, the control circuitry 24 may comprise power control device 62, which may include a PLSI (Power Large Scale Integrated) Circuit. The power control device 62, among other things, controls the power consumption of the various components within the data storage device 60.


In one embodiment, the control circuitry 24 may receive commands from a host via host interface. For example, the power control device 62 may respond to a host command by putting components of the data storage device 60 into a lower power mode such as a sleep mode. It should be noted that although FIG. 1 depicts components of magnetic data storage, some embodiments of the invention may be applied to a pure solid state memory-based data storage device without such magnetic data storage components.



FIG. 2 shows an example power control device that manages transitions to low power modes with switches external to the power control device. In order to reduce data storage device power consumption down to single digit mW levels, the example shown in FIG. 2 relies on using low on-resistance FET switches to cut power to virtually the entire electronics of the data storage device. As shown in FIG. 2, host power and host power control (HPC) input are routed through an HPC block 102, which includes control logic 104. The power control device 62 (which includes internal voltage regulators 64, control logic circuitry 66, bias current generators 68, and various internal functional blocks 72) controls the power provided to the various components of the electronic device. In this example, the electronic device is a data storage device with a spindle motor driven by a motor driver 70. The power control device 62 also controls various voltage regulators 74 external to the power control device.


However, as shown in FIG. 2, the power control device 62 is isolated from the HPC block 102, which is responsible for shutting off power (through the FET switches shown) when the data storage device needs to go into low power state in response to a command from the host. In order to achieve the very low power consumption requirements of modes such as DEVSLP, USB Suspend, and SAS Host Suspend, these FET switches must be sufficiently large and possess very low RDS-ON (Resistance Drain to Source in ON state of a FET transistor), in order to minimize the voltage drop across the FET when in the ON-state. Apart from the FET switches, alternative solutions to enable the low power state include the so called ‘e-fuse’ components and discrete FETs with appropriate gate drivers and control logic. However, these low power state enablers are discrete components external to the power control device, and thus carry a significant cost burden.



FIG. 3 shows a power control device with an always on domain (AOD) according to an embodiment of the invention. Unlike the example in FIG. 2, where the host power control is disintegrated or separated from the power control device, the power control device 62 includes an always-on-domain (AOD)/host power control (HPC) 124. The AOD 124 includes, in one embodiment, control logic circuitry 126 for controlling power from a power source (e.g., host power input 122) and internal voltage regulators 128 coupled to the power source. The output of the voltage regulators 128 are fed to bias current generators 130 and load switches 132. In addition, the AOD 124 also includes a clock control 134 controlled by the control logic circuitry 126.


In one embodiment, the power control device 62 includes, outside of the AOD, various functional blocks 142, which generically represent some functional portions of the power control device 62. Some functional blocks 142 are specifically illustrated. For example, FIG. 3 shows a motor driver 138, and voltage regulators 144 configured to regulate voltage from one or more external power sources (e.g., the host). As shown, these components outside of the AOD are powered from internally generated voltage supplies and bias current generators within the AOD.


In contrast to the configuration shown in FIG. 2, the internal voltage regulators 128, the bias current generators 130, the load switches 132, and the clock control 134 are all within the AOD 124, where the control logic circuitry 126 is responsible for power routing and proper control that are necessary to achieve a low or ultra low power state. Such an arrangement enables the low power state support without needing to use aforementioned solutions such as external FET switches.


In one embodiment, the transition to, and out of, a low power state works as shown in the flow diagram of FIG. 4 depicting a process 200. At block 202, the control logic circuitry 126 is configured to receive a signal to go into a lower power state. The signal may be a command from the host power control input 120 (e.g., DEVSLP, Host Suspend, etc.). The various power state commands and the handling of those commands in a power control device are additionally described in co-pending application Ser. No. 14/146,555, filed Jan. 2, 2014, entitled “POWER CONTROL MODULE FOR DATA STORAGE DEVICE” to Ferris et al., which is hereby incorporated by reference. In response to the signal, at block 204, the control logic circuitry may initiate a shut-down sequence of the load switches 132 and the bias current generators 130 within the AOD in a controlled manner, which disables circuitry outside of the AOD. This includes (1) the functional blocks 142 of the power control device and (2) other external loads controlled by the power control device (e.g., DRAM, drive controller (SoC), solid state memory (e.g., NAND) in a data storage device). Additionally, the shut-down sequence may include sequencing off voltage regulators 144 external to the AOD and the clock control 134 within the AOD. If the power control device 62 is in a data storage device with a rotating magnetic recording sub-system, the control logic circuitry 126 may additionally shut power off to the motor driver 138. At block 206, the control logic circuitry 126 may operate in a low power state to detect a wake-up signal to transition out of the low power state. At block 208, a wake-up signal is detected, in response to which the control logic circuitry 126 is configured to initiate a start-up sequence of the components within the AOD to enable circuitry outside of the AOD (block 210).


The AOD/HPC configuration allows for a system level design that can achieve a very low power goal. In an embodiment within a data storage device with a rotating magnetic recording sub-system, except for the preamp supply (e.g., +5V), all data storage device power consumption, passes through, or is controlled by, the power control device. This means that, in one embodiment, reducing the data storage device power consumption can be achieved by means of an appropriate control logic in the AOD of the power control device, along with putting the preamp into a lower power/sleep mode (e.g., with firmware) to take care of the one power domain not under control of the power control device. The power saving that can be achieved can be significant in some embodiments. Once the shut-down sequence is complete, the power draw could be, for example, in the range of hundreds of uA.


In one embodiment, the control logic circuitry 126 may be configured to communicate the status of the HPC, via HPC_Out, to a controller of the data storage device (not shown). In addition, in one embodiment, the AOD 124 may include a serial interface 150 through which firmware executing from an external controller could invoke a transition to a low power mode (e.g., an Ultra Low Power (ULP) mode). For example, the firmware could cause the VCM to be retracted and spindle motor to be spun-down (as part of going into a Sleep mode) and then invoke the ULP mode in the control logic circuitry 126 through the serial interface 150.


In one embodiment, upon receiving the signal from the host indicating a first type of transition (e.g., DEVSLP) to a lower power state, the control logic circuitry 126 is configured to send a signal to the controller of the data storage device to cause the controller to initiate one or more operations to prepare the data storage device to enter into the low power state (e.g., finish last writes, spin down disk, park head, etc.). The control logic circuitry 126 then awaits an input signal from the controller that the operations are complete, and then initiates the shut-down sequence after receiving the input signal from the data storage device's controller.


In another embodiment, upon receiving the signal from the host indicating a second type of transition to a lower power state (e.g., Host Suspend), the control logic circuitry 126 is configured to initiate the shut-down sequence without waiting for the input signal from the data storage device's controller.


In one embodiment, upon receiving a wake signal from the host (e.g., received via input 120), the AOD 124 is configured in one embodiment to reverse the sequence as follows:


a) Turn on internal voltage and current sources to enable circuitry outside of the AOD;


b) Sequence all regulators on in a controlled manner;


c) A ULP status bit is read (e.g., by firmware) to determine if it is a cold boot or coming out of ULP mode; and


d) A state is changed (e.g., by firmware) from ULP mode to Sleep to Ready modes.


In one embodiment, there are additional architectural changes from a device physics standpoint that may be implemented. To achieve low current within the power device for deep sleep modes and eliminate latch up through SCR (Silicon-Controlled Rectifier) action for load switches in high current paths, a deep trench isolation process technology may be utilized in one embodiment. The deep trench isolation technologies typically increase the packing density of devices, by bringing them closer together to minimize die size increases. Isolation spacing within the deep trench should follow minimum design requirements to prevent internal transistor cross conduction mechanisms. Deep trench isolation also reduces the effects of inter-well latch up and SCR parasitics. The mixed signal device will have a significant reduction in junction capacitance, reducing parasitics. Deep trench isolation will also reduce effects of fly back currents and voltages seen in data storage technology from motors or recirculating currents as the devices enter or awake from these modes.



FIG. 5 is a flow chart showing another example process 230 of the power control device according to an embodiment of the invention. At block 232, the control logic circuitry 126 detects whether the host power control input has been asserted. If so (Y branch), at block 234 it sets the host power control status, which allows for firmware in the data storage device controller to detect that the host power control input has been asserted. In that way, the firmware can perform housekeeping operations to ready the data storage device for the transition to the low power state. Once the housekeeping operations are completed, the firmware may indicate through the controller power input readiness for the next stage of the low power state transition. Therefore, at block 236, the controller power control input is checked to see if it has been set. If so, the shut-down sequence is initiated, which in one embodiment includes sequencing off the regulators (block 238), the clocks (block 240), the internal loads (block 242) and the internal bias currents (block 244). After which the circuitry outside of the AOD is disabled and a low power state is achieved.


At block 246, the control logic circuitry 126 detects whether the host power control input has been de-asserted. As long as it has not been de-asserted (N branch), the low power state persists. However, if it has been de-asserted (Y branch), the control logic circuitry 126 initiates the start-up sequence to wake from the low power state, which in one embodiment includes sequencing on the internal bias currents (block 248), the internal loads (block 250), the clocks (block 252), and the regulators (block 254). This completes the transition out of the low power state and the flow returns to the top.


Going back to block 232, on the N branch, the control logic circuitry 126 checks whether the controller power control input has been set (block 260). If so, a similar shut-down sequence is followed in one embodiment to sequence off the regulators (block 262), the clocks (block 264), the internal loads (block 266) and the internal bias currents (block 268). The device is now in a low power state. When the controller power control input is reset at block 270, the control logic circuitry 126 in one embodiment initiates the start-up sequence to wake from the low power state, which in one embodiment includes sequencing on the internal bias currents (block 272), the internal loads (block 274), the clocks (block 276), and the regulators (block 278). This completes the transition out of the low power state and the flow returns to the top.


Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.


In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the data storage device is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry. Also, the various components described may be implemented as software and/or firmware on a processor, ASIC/FPGA, or dedicated hardware. As an additional example, some of the above described power module embodiments may be implemented in electronic devices other than data storage devices.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.


Also, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain preferred embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of protection is defined only by the claims.

Claims
  • 1. A power control device comprising: an always-on-domain (AOD) comprising: control logic circuitry for controlling power from a power source;a plurality of load switches; anda plurality of bias current generators; anda plurality of functional blocks,wherein the control logic circuitry is configured to: receive a signal to go into a lower power state;initiate a shut-down sequence of the load switches and the bias current generators of the AOD, to disable circuitry outside of the AOD, including the functional blocks of the power control device and loads controlled by the power control device; andoperate in a low power state to detect a wake-up signal.
  • 2. The power control device as recited in claim 1, wherein the power control device is in a data storage device and the signal and the power source are from a host coupled to the data storage device.
  • 3. The power control device as recited in claim 2, wherein the control logic circuitry is coupled to a controller in the data storage device.
  • 4. The power control device as recited in claim 3, wherein the control logic circuitry is further configured to: upon receiving the signal from the host indicating a first type of transition to a lower power state, send a signal to the controller to cause the controller to initiate one or more operations to prepare the data storage device to enter into the low power state;await an input signal from the controller that the operations are complete; andinitiate the shut-down sequence after receiving the input signal from the controller.
  • 5. The power control device as recited in claim 4, wherein the control logic circuitry is further configured to: upon receiving the signal from the host indicating a second type of transition to a lower power state, initiate the shut-down sequence without waiting for an input signal from the controller.
  • 6. The power control device as recited in claim 1, wherein the AOD further comprises a plurality of clocks and the shut-down sequence additionally includes sequencing off the clocks.
  • 7. The power control device as recited in claim 6, further comprising a plurality of voltage regulators outside of the AOD, wherein the shut-down sequence additionally includes sequencing off the plurality of voltage regulators outside of the AOD.
  • 8. The power control device as recited in claim 7, further the control logic circuitry is further configured to perform shut-down sequence by: sequencing off the regulators;sequencing off the clocks;sequencing off the load switches; andsequencing off the bias current generators.
  • 9. The power control device as recited in claim 1, further the control logic circuitry is further configured to: detect a wake-up signal; andinitiate a start-up sequence of the load switches and the bias current generators of the AOD, to enable circuitry outside of the AOD, including the functional blocks of the power control device and loads controlled by the power control device.
  • 10. An integrated circuit comprising the power control device as recited in claim 1.
  • 11. A data storage device comprising the power control device as recited in claim 1.
  • 12. A method for operating a power control device comprising an always-on-domain (AOD) that includes for control logic circuitry controlling power from a power source, a plurality of load switches and a plurality of bias current generators; and a plurality of functional blocks, the method comprising: receiving a signal to go into a lower power state;initiating a shut-down sequence of the load switches and the bias current generators of the AOD, to disable circuitry outside of the AOD, including the functional blocks of the power control device and loads controlled by the power control device; andoperating in a low power state to detect a wake-up signal wherein the method is performed by the control logic circuitry of the AOD.
  • 13. The method as recited in claim 12, wherein the power control device is in a data storage device and the signal and the power source are from a host coupled to the data storage device.
  • 14. The method as recited in claim 13, wherein the power control device is coupled to a controller in the data storage device.
  • 15. The method as recited in claim 14, further comprising: upon receiving the signal from the host indicating a first type of transition to a lower power state, sending a signal to the controller to cause the controller to initiate one or more operations to prepare the data storage device to enter into the low power state;awaiting an input signal from the controller that the operations are complete; andinitiating the shut-down sequence after receiving the input signal from the controller.
  • 16. The method as recited in claim 15, further comprising: upon receiving the signal from the host indicating a second type of transition to a lower power state, initiating the shut-down sequence without waiting for an input signal from the controller.
  • 17. The method as recited in claim 12, wherein the AOD further comprises a plurality of clocks and the shut-down sequence additionally includes sequencing off the clocks.
  • 18. The method as recited in claim 17, wherein the power control device further comprises a plurality of voltage regulators outside of the AOD, wherein the shut-down sequence additionally includes sequencing off the plurality of voltage regulators outside of the AOD.
  • 19. The method as recited in claim 18, wherein performing shut-down sequence further comprises: sequencing off the regulators;sequencing off the clocks;sequencing off the load switches; andsequencing off the bias current generators.
  • 20. The method as recited in claim 12, further comprising: detecting a wake-up signal; andinitiating a start-up sequence of the load switches and the bias current generators of the AOD, to enable circuitry outside of the AOD, including the functional blocks of the power control device and loads controlled by the power control device.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/901,905, filed Nov. 8, 2013, entitled “POWER ARCHITECTURE FOR LOW POWER MODES IN STORAGE DEVICES”, which is incorporated herein by reference.

US Referenced Citations (339)
Number Name Date Kind
5345347 Hopkins et al. Sep 1994 A
6014283 Codilian et al. Jan 2000 A
6052076 Patton, III et al. Apr 2000 A
6052250 Golowka et al. Apr 2000 A
6067206 Hull et al. May 2000 A
6078453 Dziallo et al. Jun 2000 A
6091564 Codilian et al. Jul 2000 A
6094020 Goretzki et al. Jul 2000 A
6094362 Domingo Jul 2000 A
6101065 Alfred et al. Aug 2000 A
6104153 Codilian et al. Aug 2000 A
6122133 Nazarian et al. Sep 2000 A
6122135 Stich Sep 2000 A
6141175 Nazarian et al. Oct 2000 A
6160368 Plutowski Dec 2000 A
6181502 Hussein et al. Jan 2001 B1
6195222 Heminger et al. Feb 2001 B1
6198584 Codilian et al. Mar 2001 B1
6198590 Codilian et al. Mar 2001 B1
6204988 Codilian et al. Mar 2001 B1
6243223 Elliott et al. Jun 2001 B1
6281652 Ryan et al. Aug 2001 B1
6285521 Hussein Sep 2001 B1
6292320 Mason et al. Sep 2001 B1
6310742 Nazarian et al. Oct 2001 B1
6320718 Bouwkamp et al. Nov 2001 B1
6342984 Hussein et al. Jan 2002 B1
6347018 Kadlec et al. Feb 2002 B1
6369972 Codilian et al. Apr 2002 B1
6369974 Asgari et al. Apr 2002 B1
6462896 Codilian et al. Oct 2002 B1
6476996 Ryan Nov 2002 B1
6484577 Bennett Nov 2002 B1
6493169 Ferris et al. Dec 2002 B1
6496324 Golowka et al. Dec 2002 B1
6498698 Golowka et al. Dec 2002 B1
6507450 Elliott Jan 2003 B1
6534936 Messenger et al. Mar 2003 B2
6538839 Ryan Mar 2003 B1
6545835 Codilian et al. Apr 2003 B1
6549359 Bennett et al. Apr 2003 B1
6549361 Bennett et al. Apr 2003 B1
6553501 Yokoe Apr 2003 B1
6560056 Ryan May 2003 B1
6568268 Bennett May 2003 B1
6574062 Bennett et al. Jun 2003 B1
6577465 Bennett et al. Jun 2003 B1
6608729 Willems et al. Aug 2003 B1
6614615 Ju et al. Sep 2003 B1
6614618 Sheh et al. Sep 2003 B1
6636377 Yu et al. Oct 2003 B1
6690536 Ryan Feb 2004 B1
6693764 Sheh et al. Feb 2004 B1
6707635 Codilian et al. Mar 2004 B1
6710953 Vallis et al. Mar 2004 B1
6710966 Codilian et al. Mar 2004 B1
6714371 Codilian Mar 2004 B1
6714372 Codilian et al. Mar 2004 B1
6724564 Codilian et al. Apr 2004 B1
6731450 Codilian et al. May 2004 B1
6735041 Codilian et al. May 2004 B1
6738220 Codilian May 2004 B1
6747837 Bennett Jun 2004 B1
6760186 Codilian et al. Jul 2004 B1
6788483 Ferris et al. Sep 2004 B1
6791785 Messenger et al. Sep 2004 B1
6795268 Ryan Sep 2004 B1
6819518 Melkote et al. Nov 2004 B1
6826006 Melkote et al. Nov 2004 B1
6826007 Patton, III Nov 2004 B1
6847502 Codilian Jan 2005 B1
6850383 Bennett Feb 2005 B1
6850384 Bennett Feb 2005 B1
6867944 Ryan Mar 2005 B1
6876508 Patton, III et al. Apr 2005 B1
6882496 Codilian et al. Apr 2005 B1
6885514 Codilian et al. Apr 2005 B1
6900958 Yi et al. May 2005 B1
6900959 Gardner et al. May 2005 B1
6901520 Odaohhara et al. May 2005 B2
6903897 Wang et al. Jun 2005 B1
6914740 Tu et al. Jul 2005 B1
6914743 Narayana et al. Jul 2005 B1
6920004 Codilian et al. Jul 2005 B1
6924959 Melkote et al. Aug 2005 B1
6924960 Melkote et al. Aug 2005 B1
6924961 Melkote et al. Aug 2005 B1
6934114 Codilian et al. Aug 2005 B1
6934135 Ryan Aug 2005 B1
6937420 McNab et al. Aug 2005 B1
6937423 Ngo et al. Aug 2005 B1
6952322 Codilian et al. Oct 2005 B1
6954324 Tu et al. Oct 2005 B1
6958881 Codilian et al. Oct 2005 B1
6963465 Melkote et al. Nov 2005 B1
6965488 Bennett Nov 2005 B1
6967458 Bennett et al. Nov 2005 B1
6967811 Codilian et al. Nov 2005 B1
6970319 Bennett et al. Nov 2005 B1
6972539 Codilian et al. Dec 2005 B1
6972540 Wang et al. Dec 2005 B1
6972922 Subrahmanyam et al. Dec 2005 B1
6975480 Codilian et al. Dec 2005 B1
6977789 Cloke Dec 2005 B1
6980389 Kupferman Dec 2005 B1
6987636 Chue et al. Jan 2006 B1
6987639 Yu Jan 2006 B1
6989954 Lee et al. Jan 2006 B1
6992848 Agarwal et al. Jan 2006 B1
6992851 Cloke Jan 2006 B1
6992852 Ying et al. Jan 2006 B1
6995941 Miyamura et al. Feb 2006 B1
6999263 Melkote et al. Feb 2006 B1
6999267 Melkote et al. Feb 2006 B1
7006320 Bennett et al. Feb 2006 B1
7016134 Agarwal et al. Mar 2006 B1
7023637 Kupferman Apr 2006 B1
7023640 Codilian et al. Apr 2006 B1
7027256 Subrahmanyam et al. Apr 2006 B1
7027257 Kupferman Apr 2006 B1
7035026 Codilian et al. Apr 2006 B2
7046472 Melkote et al. May 2006 B1
7050249 Chue et al. May 2006 B1
7050254 Yu et al. May 2006 B1
7050258 Codilian May 2006 B1
7054098 Yu et al. May 2006 B1
7061714 Yu Jun 2006 B1
7064918 Codilian et al. Jun 2006 B1
7068451 Wang et al. Jun 2006 B1
7068459 Cloke et al. Jun 2006 B1
7068461 Chue et al. Jun 2006 B1
7068463 Ji et al. Jun 2006 B1
7088547 Wang et al. Aug 2006 B1
7095579 Ryan et al. Aug 2006 B1
7110208 Miyamura et al. Sep 2006 B1
7110214 Tu et al. Sep 2006 B1
7113362 Lee et al. Sep 2006 B1
7113365 Ryan et al. Sep 2006 B1
7116505 Kupferman Oct 2006 B1
7126781 Bennett Oct 2006 B1
7158329 Ryan Jan 2007 B1
7180703 Subrahmanyam et al. Feb 2007 B1
7184230 Chue et al. Feb 2007 B1
7196864 Yi et al. Mar 2007 B1
7199966 Tu et al. Apr 2007 B1
7203021 Ryan et al. Apr 2007 B1
7209321 Bennett Apr 2007 B1
7212364 Lee May 2007 B1
7212374 Wang et al May 2007 B1
7215504 Bennett May 2007 B1
7224546 Orakcilar et al. May 2007 B1
7248426 Weerasooriya et al. Jul 2007 B1
7251098 Wang et al. Jul 2007 B1
7253582 Ding et al. Aug 2007 B1
7253989 Lau et al. Aug 2007 B1
7265933 Phan et al. Sep 2007 B1
7289288 Tu Oct 2007 B1
7298574 Melkote et al. Nov 2007 B1
7301717 Lee et al. Nov 2007 B1
7304819 Melkote et al. Dec 2007 B1
7330019 Bennett Feb 2008 B1
7330327 Chue et al. Feb 2008 B1
7333280 Lifchits et al. Feb 2008 B1
7333290 Kupferman Feb 2008 B1
7339761 Tu et al. Mar 2008 B1
7365932 Bennett Apr 2008 B1
7386661 Perozo et al. Jun 2008 B2
7388728 Chen et al. Jun 2008 B1
7391583 Sheh et al. Jun 2008 B1
7391584 Sheh et al. Jun 2008 B1
7433143 Ying et al. Oct 2008 B1
7440210 Lee Oct 2008 B1
7440225 Chen et al. Oct 2008 B1
7450334 Wang et al. Nov 2008 B1
7450336 Wang et al. Nov 2008 B1
7453661 Jang et al. Nov 2008 B1
7457071 Sheh Nov 2008 B1
7466509 Chen et al. Dec 2008 B1
7468855 Weerasooriya et al. Dec 2008 B1
7477471 Nemshick et al. Jan 2009 B1
7480116 Bennett Jan 2009 B1
7489464 McNab et al. Feb 2009 B1
7492546 Miyamura Feb 2009 B1
7495857 Bennett Feb 2009 B1
7499236 Lee et al. Mar 2009 B1
7502192 Wang et al. Mar 2009 B1
7502195 Wu et al. Mar 2009 B1
7502197 Chue Mar 2009 B1
7505223 McCornack Mar 2009 B1
7542225 Ding et al. Jun 2009 B1
7548392 Desai et al. Jun 2009 B1
7551390 Wang et al. Jun 2009 B1
7558016 Le et al. Jul 2009 B1
7573670 Ryan et al. Aug 2009 B1
7576941 Chen et al. Aug 2009 B1
7580212 Li et al. Aug 2009 B1
7583470 Chen et al. Sep 2009 B1
7595954 Chen et al. Sep 2009 B1
7602575 Lifchits et al. Oct 2009 B1
7616399 Chen et al. Nov 2009 B1
7619844 Bennett Nov 2009 B1
7626782 Yu et al. Dec 2009 B1
7630162 Zhao et al. Dec 2009 B2
7639447 Yu et al. Dec 2009 B1
7656604 Liang et al. Feb 2010 B1
7656607 Bennett Feb 2010 B1
7660067 Ji et al. Feb 2010 B1
7663835 Yu et al. Feb 2010 B1
7675707 Liu et al. Mar 2010 B1
7679854 Narayana et al. Mar 2010 B1
7688534 McCornack Mar 2010 B1
7688538 Chen et al. Mar 2010 B1
7688539 Bryant et al. Mar 2010 B1
7697233 Bennett et al. Apr 2010 B1
7701661 Bennett Apr 2010 B1
7710676 Chue May 2010 B1
7715138 Kupferman May 2010 B1
7729079 Huber Jun 2010 B1
7733189 Bennett Jun 2010 B1
7746592 Liang et al. Jun 2010 B1
7746594 Guo et al. Jun 2010 B1
7746595 Guo et al. Jun 2010 B1
7760461 Bennett Jul 2010 B1
7800853 Guo et al. Sep 2010 B1
7800856 Bennett et al. Sep 2010 B1
7800857 Calaway et al. Sep 2010 B1
7839591 Weerasooriya et al. Nov 2010 B1
7839595 Chue et al. Nov 2010 B1
7839600 Babinski et al. Nov 2010 B1
7843662 Weerasooriya et al. Nov 2010 B1
7852588 Ferris et al. Dec 2010 B1
7852592 Liang et al. Dec 2010 B1
7864481 Kon et al. Jan 2011 B1
7864482 Babinski et al. Jan 2011 B1
7869155 Wong Jan 2011 B1
7876522 Calaway et al. Jan 2011 B1
7876523 Panyavoravaj et al. Jan 2011 B1
7916415 Chue Mar 2011 B1
7916416 Guo et al. Mar 2011 B1
7916420 McFadyen et al. Mar 2011 B1
7916422 Guo et al. Mar 2011 B1
7929238 Vasquez Apr 2011 B1
7961422 Chen et al. Jun 2011 B1
8000053 Anderson Aug 2011 B1
8031423 Tsai et al. Oct 2011 B1
8054022 Ryan et al. Nov 2011 B1
8059357 Knigge et al. Nov 2011 B1
8059360 Melkote et al. Nov 2011 B1
8072703 Calaway et al. Dec 2011 B1
8077428 Chen et al. Dec 2011 B1
8078901 Meyer et al. Dec 2011 B1
8081395 Ferris Dec 2011 B1
8085020 Bennett Dec 2011 B1
RE43211 Schlumberger Feb 2012 E
8116023 Kupferman Feb 2012 B1
8145934 Ferris et al. Mar 2012 B1
8179626 Ryan et al. May 2012 B1
8189286 Chen et al. May 2012 B1
8213106 Guo et al. Jul 2012 B1
8254222 Tang Aug 2012 B1
8300348 Liu et al. Oct 2012 B1
8315005 Zou et al. Nov 2012 B1
8320069 Knigge et al. Nov 2012 B1
8351174 Gardner et al. Jan 2013 B1
8358114 Ferris et al. Jan 2013 B1
8358145 Ferris et al. Jan 2013 B1
8390367 Bennett Mar 2013 B1
8432031 Agness et al. Apr 2013 B1
8432629 Rigney et al. Apr 2013 B1
8433937 Wheelock et al. Apr 2013 B1
8451697 Rigney et al. May 2013 B1
8472157 Yin et al. Jun 2013 B2
8482873 Chue et al. Jul 2013 B1
8498076 Sheh et al. Jul 2013 B1
8498172 Patton, III et al. Jul 2013 B1
8508881 Babinski et al. Aug 2013 B1
8531798 Xi et al. Sep 2013 B1
8537486 Liang et al. Sep 2013 B2
8542455 Huang et al. Sep 2013 B2
8553351 Narayana et al. Oct 2013 B1
8564899 Lou et al. Oct 2013 B2
8576506 Wang et al. Nov 2013 B1
8605382 Mallary et al. Dec 2013 B1
8605384 Liu et al. Dec 2013 B1
8610391 Yang et al. Dec 2013 B1
8611040 Xi et al. Dec 2013 B1
8612779 More et al. Dec 2013 B2
8619385 Guo et al. Dec 2013 B1
8630054 Bennett et al. Jan 2014 B2
8630059 Chen et al. Jan 2014 B1
8634154 Rigney et al. Jan 2014 B1
8634283 Rigney et al. Jan 2014 B1
8643976 Wang et al. Feb 2014 B1
8649121 Smith et al. Feb 2014 B1
8654466 McFadyen Feb 2014 B1
8654467 Wong et al. Feb 2014 B1
8665546 Zhao et al. Mar 2014 B1
8665551 Rigney et al. Mar 2014 B1
8670206 Liang et al. Mar 2014 B1
8687312 Liang Apr 2014 B1
8693123 Guo et al. Apr 2014 B1
8693134 Xi et al. Apr 2014 B1
8699173 Kang et al. Apr 2014 B1
8711027 Bennett Apr 2014 B1
8717696 Ryan et al. May 2014 B1
8717699 Ferris May 2014 B1
8717704 Yu et al. May 2014 B1
8724245 Smith et al. May 2014 B1
8724253 Liang et al. May 2014 B1
8724524 Urabe et al. May 2014 B2
8737008 Watanabe et al. May 2014 B1
8737013 Zhou et al. May 2014 B2
8743495 Chen et al. Jun 2014 B1
8743503 Tang et al. Jun 2014 B1
8743504 Bryant et al. Jun 2014 B1
8749904 Liang et al. Jun 2014 B1
8760796 Lou et al. Jun 2014 B1
8767332 Chahwan et al. Jul 2014 B1
8767343 Helmick et al. Jul 2014 B1
8767354 Ferris et al. Jul 2014 B1
8773787 Beker Jul 2014 B1
8779574 Agness et al. Jul 2014 B1
8780473 Zhao et al. Jul 2014 B1
8780477 Guo et al. Jul 2014 B1
8780479 Helmick et al. Jul 2014 B1
8780489 Gayaka et al. Jul 2014 B1
8792202 Wan et al. Jul 2014 B1
8797664 Guo et al. Aug 2014 B1
8804267 Huang et al. Aug 2014 B2
8824081 Guo et al. Sep 2014 B1
8824262 Liu et al. Sep 2014 B1
20040095815 Chloupek et al. May 2004 A1
20100035085 Jung et al. Feb 2010 A1
20110188146 Oh et al. Aug 2011 A1
20120194953 Mikolajczak Aug 2012 A1
20120200967 Mikolajczak Aug 2012 A1
20120284493 Lou et al. Nov 2012 A1
20130120870 Zhou et al. May 2013 A1
20130148240 Ferris et al. Jun 2013 A1
Foreign Referenced Citations (1)
Number Date Country
2008010795 Jan 2008 WO
Non-Patent Literature Citations (2)
Entry
John R. Agness, et al., U.S. Appl. No. 14/040,426, filed Sep. 27, 2013, 40 pages.
Timothy A. Ferris, et al., U.S. Appl. No. 14/146,555, filed Jan. 2, 2014, 33 pages.
Provisional Applications (1)
Number Date Country
61901905 Nov 2013 US