The invention relates to a power assisted toy flying device. More specifically, the invention concerns a radio-controlled kite or similar toy.
Kites have been in existence for hundreds of years. They are generally made with wood, solid or tubular fiberglass, carbon rods, light weight plastic, and/or fabric. The kite is a tethered aerodyne and is in a stalled state against the wind. The disadvantage of a kite is that it needs line and wind to fly. Over the years, there have been a number of efforts directed towards the improvement of a power assisted flying device. These efforts have focused on improving the directional controls of radio controlled kite-like objects and airplane models.
In the mid 1990's Dan Kreigh of California developed a radio controlled kite-like flying object. The shape was formed by one fiberglass rod in a simple pattern of a semi-circle. Dan Kreigh's version of the radio controlled kite used rudder and elevators for control. In the late 1990's, Michael Lin of Singapore expanded on Dan Kreigh's approach by making the shapes more elaborate. However, Michael Lin's versions also depended on the use of rudder and elevators for control. All were controlled by moving control surfaces.
Moving control surfaces have been used on aircraft since the dawn of flight; however, they include many disadvantages for controlling kites. By nature, kites are often larger and slower moving than traditional remote controlled aircraft. While flying objects have great advantages for ease of remote controlled flight, slow moving flying objects need to have large lightweight wing areas and proportionally large moving surfaces to control flight. This is because when there is slow or no air rushing across a control surface, the control surface fails to move the object in the intended direction. Since kites by nature are slow moving, to steer them by moving control surfaces require very large moving surfaces, which in turn are difficult for most standard servos to move. Further, by nature, kites are much lighter per size than traditional aircraft and are able to sometimes “stop” and “float” on the wind. Moving control surfaces are completely ineffective at controlling an object that simply “stops” in the air.
In addition, moving control surfaces require hinges attached to ridged structures such as a fuselage or an airframe. Kites rarely have ridged members strong enough to attach the necessary hinges and control surfaces in the correct areas for effective control of the kite. Since moving control surfaces for kite-like flying objects have to be large, this condition results in more performance robbing weight and less room on the kite for lifting surfaces which are so important for an effective flying kite.
In 2006, Peter Loehnert of Solingen, Germany started to develop kite-like flying objects using a new vector thrust concept. Directional control was achieved by the use of a brushless electric motor, propeller and two servos. One servo provided the up-down motion control while the other servo provided the left-right motion control. The brushless electric motor and propeller were directly connected to the moving axle of the left-right servo and thus when the axle of the servo turned clockwise or counterclockwise, the motor and spinning propeller also shifted left and/or right thereby directing thrust and steering the kite left or right. The left-right servo, with the connected motor assembly, was then connected to the moving axle of the up-down servo. Thus, when the axle of the up-down servo turned clockwise or counterclockwise, the left-right servo, motor and spinning propeller moved up and down thus directing thrust to control the pitch of the kite. Pitch, yaw, roll and forward speed were achieved by the combination of up-down and left-right thrust positioning along with proportional speed control of the motor. Since the thrust on the propulsion unit can be totally directed by both magnitude and direction, the propulsion assembly is typically called a vector thrust control unit. In this system, no moving control surfaces are used or needed.
Although the Loehnert system worked well, there are several disadvantages to this system for motorizing and controlling kites. First, commercially available servos to this date are not designed to accommodate the stresses developed by direct linkage to the motor and other servos. Thus many servos were over-stressed and failed frequently, rendering the power unit useless. In addition, of the few servos available that could marginally withstand the stress, these servos were very high in price and difficult for many consumers to afford. Furthermore, all of the components—motor and servos—were glued together in one integral unit, making replacement of individual parts impossible.
U.S. Pat. No. 4,204,656 (Seward) discloses a freeflying miniblimp comprising a frame, a balloon containing lighter-than-air gas and a control system for said miniblimp, said control system consisting of a single drive motor, a propeller attached to said drive motor and rotated by said drive motor, a bracket to which is mounted said drive motor, an ascent/descent motor, first means for attaching said ascent/descent motor to said bracket to tilt said drive motor upward or downward, a left/right motor, second means for attaching said left/right motor to turn said drive motor left or right, a single fixed vertical stabilizer secured to said miniblimp and having an absence of moving parts, an energy source and control means for said motors functionally connected to said motors.
U.S. Pat. No. 7,109,598 (Roberts et al.) discloses one or more tethered platforms, each having three or more mill rotors, that are operated at altitudes in relatively high winds to generate electricity. These windmill kites use one or more electro-mechanical tethers on each platform. Their position, attitude and orientation are monitored by one or more GPS receivers and/or gyros and controlled through differential thrusts and torque-reactions produced by the mill rotors. The kites can be electrically powered from a ground supply during relatively calm periods, or landed if desired. During windy periods the kites may be used to generate electricity by tilting the rotors at an angle, or incidence to the on-coming wind. In this generate mode the mill rotors simultaneously develop thrust while generating electricity. See also U.S. Pat. No. 7,183,663.
U.S. Pat. No. 7,048,232 (Plottner) discloses a kite that is flown by means of two control lines and which has two counter rotating 50 inch rotors and which can be flown in winds of 9 miles per hour and greater. This rotor kite can take off, fly in the air at various heights and then be landed by the operator on its rear legs with no harm to the spinning rotors. Manipulation of the rotor kite in the air is possible at all times as the two major merits of this disclosure are its fly ability and its control ability.
U.S. Pat. No. 6,793,172 (Liotta) discloses an aircraft which is designed for remote controlled slow flight, indoor or in a small outdoor yard or field. The aerial lifting body is defined by a series of lightweight planar or thin airfoil surfaces (A1, A2, A3, A4) arranged in a radially symmetrical configuration. Suspended within the cavity (O) formed by the thin airfoil surfaces (A1, A2, A3, A4) is a thrust generating propeller system (C) that is angled upwardly and that can be regulated remotely so as to change the angle of the thrust vector within the cavity (O) for steering. Lifting, stability, turning, and general control of the direction of motion in flight is accomplished without any formal wings, rudder, tail, or control surfaces.
U.S. Pat. No. 6,257,525 (Matlin et al.) discloses a remotely controlled aircraft having a center member and a steering assembly. The steering assembly comprises a carriage, a remote control motor, a center member and a connecting arm. The carriage pivotably is attached to the center member. The remote control motor has a control arm and is disposed within the carriage. The center member arm has a first end and a second end. The first end of the center member arm is fixedly attached to the center member. The center member and the center member arm is arranged in a non-parallel manner. The connecting arm has a first end and a second end. The first end of the connecting arm is pivotably attached to the second end of the center member arm. The second end of the connecting arm is pivotably attached to the control arm of the remote control motor.
U.S. Pat. No. 5,034,759 (Watson) discloses an aerial still camera including: a video camera; a device for elevating the video camera relative ground level; structure for suspending the video camera from the elevating device; first self-leveling structure for leveling the video camera in a first direction; second self-leveling structure for leveling the video camera in a second direction; first drive structure for rotating the video camera to control the image scanned by the video camera along a first axis; second drive structure for rotating the video camera to control the image scanned by the video camera along a second axis; a tether attached at one end to the elevating device for holding the elevating device and the video camera in the elevated position, the tether including electrical conductors; and an electrical control device attached at another end of the tether for controlling the first and second drive structure so as to control the image scanned by the video camera, the control structure further including a video display so to display the image scanned by the video camera.
This disclosure relates to a method of propulsion and control of kites and kite-like objects by means of a remote controlled vector thrust control apparatus mounted to the frame of a kite or kite-like object. No wind or line is necessary to fly this kite-like flying object.
In one embodiment of the disclosure a kite or kite-like flying object is powered by one or more brushless electric motors, propellers, remote controllers, batteries, and is controlled by the use of at least one motor with one or more servos using a gimbal device.
In another embodiment, an assembly for a vector thrust control apparatus is taught for kite or kite-like flying objects in which components are directly connected to each other. In particular, the disclosure relates to an improved connection system for motor and servo components to permit the ease of assembly, including ease of disassembly and convenient structures for anchoring the vector power and control system to the frame of a kite or kite-like flying object.
In another embodiment, a multiple part frame fitting is taught to allow kite or kite frame parts and vector thrust control apparatus parts to be easily detached and re-attached from one another and include provisions for shock absorption at the frame attachment points.
In yet another embodiment, an assembly for a vector thrust control apparatus for kites and kite-like flying objects is disclosed in which the propulsion and vector control components that are combined as an integrated group can be easily detached and re-attached to the propulsion frame and/or frame of the kite.
In yet another embodiment, an assembly for a vector thrust control apparatus for kites is disclosed in which the propulsion and vector control components can be installed and flown in a rotating kite.
In another embodiment, the vector thrust control apparatus supporting the motor includes a gyratory group that allows the motor to pivot up and down and from side to side.
In still another embodiment, the vector thrust control apparatus includes a gimbal mechanism with two brackets and four pivot points.
One further embodiment contemplates a vector thrust control apparatus including a gimbal mechanism with at least one bracket and two pivot points.
Still another embodiment contemplates a vector thrust control apparatus including a gimbal mechanism with at least one bracket and three pivot points.
The vector thrust apparatus may also include a gimbal mechanism with a central spherical pivot, an outer ring around the central spherical pivot, and at least two attachment points for attachment to the servo motors.
It is contemplated, in one embodiment of the invention, that the vector thrust apparatus may include a multi-pivoting bracket behind the propeller and the bracket. The multi-pivoting bracket may tilt up and down and from right to left.
It is also contemplated that the vector thrust apparatus may include an elongated flexible connector to permit directional thrust in up and down and right to left directions.
The kite-like object may include, in one contemplated embodiment, a control surface on a wing.
In another contemplated embodiment, the kite-like object may include a propeller on a shaft, a non-rotating outer ring disposed around the shaft, a rotating inner ring operatively connected to the non-rotating outer ring, and linkage rods connecting the rotating inner ring with the propeller to effectuate either cyclic pitch modulation or teetering hub modulation of the propeller.
Where cyclic pitch modulation is employed, the pitch of at least one of the blades is altered during one complete revolution of the propeller.
Where teetering hub modulation is employed, the propeller is tilted in relation to the rotational axis.
The present invention contemplates that the thrust for the kite-like object may be provided in a tractor mode of operation.
The present invention also contemplated that the thrust for the kite-like object may be provided in a pusher mode of operation.
The figures of the present disclosure appended hereto are not intended to limit the scope of the disclosure in any way. In the figures,
Other embodiments of the present invention will be evident from the following detailed description, with like reference numbers referring to like items throughout.
It is important to understand that the vector thrust control apparatus may be applied to many different shapes and configurations including kite shapes, kite-like shapes, aircraft and aircraft-like shapes and configurations. The kite-like object may take on any suitable shape (any type of aircraft-like or other suitable decorative design). It is also important to understand that, when equipped with the said vector thrust control apparatus, many different shapes and configurations including kite shapes, kite-like shapes, aircraft and aircraft-like shapes, animal shapes, human shapes, inanimate object shapes or any geometric shape can be powered and controlled in the air without the use of moving control surfaces. In other words, the overall shape and appearance of the kite-like flying object encompasses decorative and non-functional aspects that are not relevant to the utilitarian features of the present disclosure.
Kite-like objects 101, 102, 103, 104, 105, and 106 can be controlled and flown by the said vector thrust control apparatus alone or with the vector thrust control apparatus in combination with moving control surfaces. In
Kite 100 contains a flexible material covering or skin 107 comprised of plastic, cloth and/or other lightweight material such as expanded plastic foam. The lightweight skin is attached to a kite frame 108 typically, but not always, by constructing sleeves 109 in the fabric skin for the framing material to be secured. Other methods of skin to frame attachment can include adhesive tape, adhesive glue and or heat sealing. In yet another example of frame to skin connection, tensioning lines 110 that go from frame to skin are held in suspension by the frame tension securing the frame to the skin. It is contemplated that one may use a kite without sleeves whose skin is attached to the frame by tensioning lines alone, as shown in
In the embodiment illustrated, the kite frame 108 consists of a longitudinal strut and two opposing cross struts 111 and 112. The kite frame 108 could consist of as few as one strut, but not limited to, a plurality of struts in any orientation. In the embodiment illustrated, the kite frame 108 is constructed out of lightweight carbon rod. While lightweight carbon rod may be used, it is also contemplated that the frame could be made out of natural material such as bamboo or wood or other man-made materials such as fiberglass, metal, aluminum, or plastic or any other suitable material (or combination of materials) that may be incorporated onto at least one portion of the kite frame 108. Further, it is also contemplated that the kite frame 108 could rely on air inflation as in the case of a pumped-up sealed bladder or ram-air inflation similar to a double surfaced parafoil kite.
Further it is contemplated that the kite frame 108 and flexible skin 107 could be made out of foam material such as expanded polystyrene in which case the frame and flexible skin material would be integrated as one entity. This integration could be used to simplify mass production of the kite-like objects.
In the embodiment illustrated in
Making the kite and kite-like object frame fittings out of different components and different materials have numerous advantages. Since the open channel component 118 is made out of a flexible material such as rubber or a man-made elastomer, the fitting can absorb shock and trauma such as in an inadvertent crash of a kite or kite-like object. On the other hand, a stiffer material such as plastic used for the receiver module 119 and the constrictor collar 120 provide for a firm grip on the attaching framing material 122.
The ability to easily construct different framing angles on kites and kite-like objects is another embodiment of the disclosure. Aperture 123 is provided for nuts and bolts, pins and/or but not limited to pop rivets that join the open channel component 118 and the receiver module 119 together. The two parts 118 and 119 can be rotated to different angles before assembly thus allowing a great freedom of framing attachment angles. The orientation of the two part system can be either fixed by a firm connection at aperture 123 such as with a pop-rivet or the orientation can be user adjustable, as such the case with a nut and bolt.
In the embodiment illustrated in
The tensioning lines in the first illustrated embodiment are made out of a nylon cord material; however, polyester cord, high-modulus polyethylene fiber (Spectra), para-aramid (Kevlar), synthetic fiber, cotton fiber, elastic cord, metal wire and/or plastic synthetic cordage may also be employed to secure the propulsion frame 115 and vector thrust control unit 116 to the kite frame.
As indicated in the embodiment illustrated in
The propulsion frame 115 could consist of at least one strut, but typically may include a plurality of struts in many different geometric and structural forms. In another words, depending on the shape of the kite, the propulsion frame 115 may take on different structural forms.
In the embodiment illustrated, the propulsion frame 115 is constructed out of lightweight carbon rod. While lightweight carbon rod may be used, it is also contemplated that the frame may be made out of other man-made materials such as fiberglass, metal, aluminum, plastic and/or natural materials such as wood, bamboo and or any other suitable material (or combination of materials) that may be incorporated onto at least a portion of the frame 115.
In the embodiment illustrated in
In the embodiment illustrated for kite 100 and the embodiment illustrated in
Kite and kite-like flying objects need to have some method of adjusting the center of gravity for optimum aerodynamic characteristics. As illustrated in
In the present embodiment illustrated in
In the present embodiment, a motor mount 154 is provided that connects the motor 136 to the inner gimbal bracket 156. The motor 136 has an annular rear body that slides into a receiving aperture on the motor mount 158 and the motor 136 is secured by a set screw 155. The motor mount 154 has at least one, but may have a plurality of, attachment plates 157 that are connected by common bolts 158 to the inner gimbal bracket 156. Regardless of the exact construction and shape of the motor body, motor mount 158 and inner gimbal bracket 156 all that is required is to have a secure and stable connection between the motor body and the inner gimbal bracket 156. The current embodiment shows an inner gimbal bracket 156 made out of machined aluminum. The inner gimbal bracket 156 could easily be molded or machined out of a ridged material such as plastic, reinforced plastic, metal, steel, aluminum, brass or other materials.
The current embodiment shows a motor-to-inner gimbal connection system comprised of three main parts: the motor 136, the motor mount 154 and the inner gimbal bracket 156. Alternately it is contemplated that the inner gimbal bracket 156 could be fabricated by the means listed above to include an integrated motor mount reducing the said three, parts down to two parts—the motor and the inner gimbal bracket with an integrated motor mount. Alternately it is contemplated that the motor mount 154, and inner gimbal bracket 156 may be an integral part of the motor body thus reducing the said three parts down to one. These additional simplified motor mounting systems could reduce weight, allow faster mass production, and increase reliability. The three part system is merely one embodiment contemplated for use with the present disclosure and other motor mounting systems as mentioned directly above.
In the present embodiment, the inner gimbal bracket 156 is connected to the outer gimbal bracket 159 at two inner gimbal bracket pivot points 160 and 161. The inner gimbal bracket pivot points 160 and 161 are comprised of annular apertures and annular pins or protrusions that allow the inner gimbal bracket 156 to freely rotate within the outer gimbal bracket 159. The inner gimbal bracket 156 should freely rotate inside the outer gimbal bracket 159. The inner gimbal bracket pivot points 160 and 161 are comprised of drilled holes through the outer gimbal bracket 159 and small machine bolts inserted through the outer gimbal bracket 159 that terminate in a secure fashion in the inner gimbal bracket 156. Since the small machine bolts are annular in nature and the holes in the outer gimbal bracket 159 are annular in nature and at a slightly larger diameter than the machine bolts, the entire inner gimbal is allowed to pivot around the inner gimbal “X-axis” 170.
Other methodologies of constructing the pivot points 160 and 161 include, but are not limited to the use of: ball-bearing pivot points, rotational bushings made out of plastic and or fiberglass, carbon, brass, stainless steel, steel, aluminum and or other durable metals or man-made composites. Alternately, the small machine bolt may terminate and be fixed in the outer gimbal bracket 159 and the inner gimbal bracket 156 may have an aperture at both ends that would receive the fixed bolt and thus allow the inner gimbal bracket to rotate inside the outer gimbal bracket 159. This coupling method is simply a reverse of what is mentioned in the present embodiment. Further, it is also contemplated that since the pivot points 160 and 161 do not need to rotate a full 360 degrees to practice this disclosure, semi-rotational but fixed elastic pivots made out of rubber, silicon, nylon and or any strong flexible material may be used as a pivot point.
The outer gimbal bracket 159 is connected to the propulsion frame 115 by outer gimbal bracket pivot points 162 and 163. In the present embodiment, the outer gimbal ring pivot points are installed at the ends of gimbal mounting struts 126 and 127. The gimbal mounting struts 126 and 127 provide a rigid structure to connect the gimbal mechanism 153 into the propulsion frame 115. In the present embodiment, the outer gimbal bracket pivot points 162 and 163 are comprised of annular apertures and pins that allow the outer gimbal bracket 159 to freely rotate within the gimbal mounting struts 126 and 127. In this embodiment, the outer gimbal bracket 159 must freely rotate inside the gimbal mounting struts 126 and 127. Similarly, in the present embodiment, the outer gimbal bracket pivot points 162 and 163 are comprised of drilled holes through metal flanges 164 and 165 located at the ends of the gimbal mounting struts 126 and 127. Small machine bolts are inserted through the top of metal flanges 164 and 165 and terminate in a fixed manner in the outer gimbal bracket 159 at outer gimbal bracket pivot points 162 and 163. Since the machine bolts are annular in nature and the holes in the metal flanges 164 and 165 are annular in nature and a slightly larger diameter than the bolts, the entire outer gimbal bracket 159 is allowed to pivot inside the gimbal mounting struts 126 and 127 according to the “Z-axis” 171. Other methodologies of constructing the pivot points 162 and 163, include, but are not limited to: ball-bearing pivot points, annular bushings made out of plastic and or fiberglass, carbon, brass, stainless steel, steel, aluminum and or other durable metals or man-made composites. In another approach, the small machine bolt may terminate and be fixed in metal flanges 164 and 165 and that the outer gimbal bracket 159 may have an aperture at both ends that would receive the fixed bolt and thus allow the outer gimbal bracket 159 to rotate inside the gimbal mounting struts 126 and 127. Further, it is also contemplated that since the pivot points 164 and 165 do not need to rotate a full 360 degrees to practice this disclosure, semi-rotational but fixed elastic pivots made out of rubber, silicone, nylon and or any strong flexible material may be used as a pivot point.
In the present embodiment the rotational movement of the inner gimbal bracket 156 is modulated by servo 142. A servo is a commercially available device that is electro-mechanical in nature and is commonly used for remote control devices. In the present embodiment, the servo 142 is securely attached to the vector thrust control unit 116 on servo attachment mounts 144. The servo 142, through the input of electrical energy, moves the servo arm 145 in a rotational manner both clockwise and counterclockwise depending on the input by the operator. The rotational energy of servo arm 145 is transferred into reciprocating movement as provided by the servo-to-gimbal linkage rod 148. The reciprocating movement of the servo-to-gimbal linkage rod 148 is transferred to the inner gimbal bracket 156. The servo-to-gimbal linkage rod is connected by swivel joints 149 and 151. The swivel joints 149 and 151 are standard small ball joints common in the remote control hobby industry. In the present embodiment the servo arm 145 is made out of plastic, but could also be made out of metal, aluminum, carbon or fiberglass or any other suitable material. Similarly, servo-to-gimbal linkage rod 148 can be made out of metal, aluminum, plastic, carbon or fiberglass or any other suitable material. The swivel joints 149 and 151 are made out of a combination of plastic and metal, but could also be made out of only plastic or metal or any other suitable material.
In the present embodiment the rotational movement of the outer gimbal bracket 159 is modulated by servo 143. The servo 143 is securely attached to the vector thrust control unit 116 on servo attachment mounts 144. The servo 143, through the input of electrical energy, moves the servo arm 146 in a rotational manner both clockwise and counterclockwise depending on the input by the operator. The rotational energy of servo arm 146 is transferred into reciprocating movement as provided by the servo-to-gimbal linkage rod 147. The reciprocating movement of the servo-to-gimbal linkage rod 147 is transferred to the outer gimbal bracket 159. The servo-to-gimbal linkage rod is connected by swivel joints 150 and 152.
In the present embodiment, servos 142 and 143, each one measures 35 mm×45 mm×29 mm, weighs 29.5 grams and develops 2.6 kg per cm of rotational torque at 6.0 volts. The two servos 142 and 143 are known in the hobby industry as “micro” class servos because of their size and weight. Of course, almost any size or weight of servo could be used.
In the present embodiment, control wires 169 and 167 transfer specific amounts of electricity from the remote control receiver 140 to servo 142 and 143. Electrical wires 166 and 168 transfer electricity from the battery 132 to the components on the vector thrust unit. The purpose of the remote control receiver 140 is to receive signals from transmitter 173 (
In the present embodiment, when a motor 136 that is generating thrust through spinning propeller 137 is pointed in a rightward direction, the kite 100 or kite-like object will go left. In the same manner, when the motor 136 that is generating thrust through spinning propeller 137 is pointed in a leftward direction, the kite 100 or kite-like object will go right. When the motor 136 that is generating thrust through spinning propeller 137 is pointed down, the kite 100 or kite-like object will go up. And of course, when the motor 136 that is generating thrust through spinning propeller 137 is pointed up, the kite 100 or kite-like object will go down. The above applies to kites or kite-like objects that place the vector thrust control apparatus in the front of the kite or kite-like object. When the vector thrust control apparatus is placed on the back of a kite or kite-like object, the control becomes opposite. When thrust is applied down, the flying object goes down instead of up as in the case for a front mounted vector thrust control apparatus. When thrust is applied right, the kite goes right.
In a rear mounted vector thrust control apparatus, when the thrust is applied right, the kite's tail rotates oppositely to the left and then the nose points right and the whole assembly is driven right. In the vernacular of aircraft construction, the front powered arrangement would be considered a “tractor” aircraft and the rear powered arrangement would be considered a “pusher” aircraft. In the present embodiment, the vector thrust control apparatus is acting in the tractor style of propulsion. In another words the vector thrust control apparatus is located in the front of the kite-like object and is pulling the kite-like object as opposed to pushing it. The vector thrust control mechanism may be used to pull a kite-like object or push a kite-like object.
By manipulating the remote signal from transmitter 173, the remote control receiver 140 sends the proper amount of electricity to servos 142 and 143 that move servo arms 145 and 146. The servo arms 145, 146 push servo-to-gimbal linkage rods 147 and 148 back and forth which proportionally adjusts and manipulates the position of the inner and outer gimbal brackets 156 and 159. The movement of the servo-to-gimbal linkage rods 147, 148 causes the gimbal 153 to be proportionally manipulated along the “up-down” “X-axis” 170 and along the “right-left” “Z-axis” 171 or in any combination of the two axis. The propulsion motor 136 and thrust producing spinning propeller 137 are rigidly attached to the gimbal 153 and thus can be moved in any combination of up and down and/or left and right. The propulsion motor 136 and propeller 137 provide the means of thrust to move the kite or kite-like object forward and the gimbal mechanism 153 can be controlled up or down and/or left or right to direct the flow of the thrust emanating from the propulsion motor. The direction of thrust is what controls the kite or model aircraft up or down or left or right or any combination in-between. The propulsion motor's rpm usually, but not always, can be varied in amount to allow fast or slow speeds or slower or faster turning.
Since the direction of thrust can be manipulated, the kite or kite-like object can be powered forward into the wind with the nose of the flying object pointing downward and thus off-setting the normal tendency of a kite to simply stall with nose upward and being pushed downwind and out of control.
In the vernacular of the model aircraft hobby, ROG (rise off ground) take offs are when the flying object, unassisted by a human or mechanical means, rises off the ground under the object's own power. Aircraft with conventional moving surfaces usually must roll along a smooth surface with wheels or low friction skids to obtain the necessary airspeed to both take off from the ground and for the moving control surfaces to effectively manipulate the flying object. In a vector powered object, the kite or kite-like object can simply lift off the ground by the use of directional thrust. Since there is no need for landing gear and/or wheels and skids, a vector thrust powered kite or kite-like object can be made lighter in weight. Further, since there is no need for the kite or kite-like object to move along a smooth surface for take off, the kite or kite-like object can perform ROG take offs on almost any surface including, but not limited to grass, rough dirt, gravel, high grass and almost any uneven surface.
The present embodiment illustrates only one vector thrust control unit 116, but two or more vector thrust control apparatuses, as illustrated in
As readily experienced with common gyroscopes, the inertial forces of spinning objects, as in the spinning motor 136 and propeller 137, causes the motor to strongly resist movement along its spinning axis. In light of this, the vector control method is predicated on moving the motor axis to different placements and thus great strain is placed on the directly connected servos that try to overcome the gyroscopic force. The gimbal mechanism 153 has several important advantages than directly coupled servos. First, the gimbal mechanism 153 relieves the stresses of the delicate servo components by bearing the weight of the motor. Second, the gimbal mechanism 153 bears the strain of the propulsion motor 136 and spinning propeller 137 and thus further protects the servo components 142, 143 from these harsh inertial forces as explained above. Also, since the gimbal mechanism 153 bears the strain of the propulsion motor 136 and spinning propeller 137, heavier and more powerful motors and larger propellers may be used on the kite and kite-like objects without breaking the control servos. Second, because larger and stronger propulsion units can be made use of, larger kites and kite-like objects can be built and flown by vector thrust. The gimbal mechanism 153 allows easy replacement of different motors 136 and easy replacement of different servo components 142, 143. Yet another advantage of servo and gimbal structure is that in a crash or impact trauma of a kite or kite-like object, the force of the impact is displaced through the gimbal linkages and causes less damage on the delicate and valuable servos than in a vector thrust mechanism that uses direct contact of the vector thrust components. Further, it is contemplated that servo-to-gimbal linkage rods 147, 148 may be constructed to intentionally break in an accidental crash thus protecting the valuable vector thrust mechanism. Finally, because leverage arms are used as illustrated in servo arms 145 and 146, different degrees of mechanical advantage can be utilized for different proportional movements in control.
Other shapes and forms of gimbal mechanisms can be employed to fly kites and kite-like objects with vector propulsion.
In the first and second embodiments illustrated of the vector thrust control apparatus, the gimbal rotates either on four pivot points or one pivot point to achieve the movement around the “X-axis” 170 and “Z-axis” 171 that enable the practice of this disclosure. Any number from one to four pivot points may be employed.
As illustrated in
In the illustrated embodiment, the receiving protrusions 210 and 211 and receiving apertures 212 and 213 amount to two receiving pairs. The receiving protrusion 210 and 211 and receiving apertures 212 and 213 may number comprise at least one pair, and may even comprise a plurality of protrusions and aperture pairs. The vector thrust control apparatus 201 may have no receiving protrusions or receiving apertures at all but simply rely on a suitable release fitting that is structurally strong enough to hold the vector thrust control apparatus 201 securely in place.
Vector thrust control apparatus may attach directly to a kite frame as seen in kites 104, 105, shown in
The creation of vector thrust control mechanisms that can be easily attached and re-attached to kites and kite-like objects offer advantages. In particular, a single vector thrust control apparatus has the capability to power many different shaped kites and kite-like objects. It has been contemplated that an operator may have only one vector thrust control apparatus that can fit many kites. Thus, one would only need a single vector thrust control apparatus and be able to fly many different styles of kite and kite-like objects.
The propulsion frame 115 on the canard kite 100 could easily be removed out of fittings 113, 114 and tension line 110a and the said kite may be flown as a traditional kite with wind and string. Kites, such as kites 104 and 105, which are shown in
Some successful attempts at flying kites and kite-like objects with vector thrust were achieved by gluing directly together motors and servos to realize the necessary motor movement around the “X-axis” 170 and “Z-axis” 171. The discourse above has described and taught a mechanism for connecting the motor to the servo units through the gimbals described and as illustrated in
Such interconnecting devices can be conveniently molded out of metal, aluminum, plastic, reinforced plastic and/or other moldable materials such as rubber and/or flexible compounds as well as ridged compounds. Alternatively, such interconnecting devices can be made out of pressed metal or milled metal such as aluminum, brass, steel, stainless steel or any metal that can be machined or press bent.
Also, such interconnecting devices can be fabricated with convenient receptors for the use of fastening devices such as screws, nuts and bolts, integral locking clips, pop-rivets, wire, clamps and/or cable ties, or with integrally molded pins that are spring enabled and can connect the vector thrust control unit's components together in a convenient manner without secondary fasteners.
In another embodiment as illustrated in
Also provided is a servo-to-servo bracket 217 that connects the above motor-to-servo assembly 230 with first servo 224 to the second servo 225. In an embodiment illustrated in
In another embodiment of the disclosure, convenient apertures that are integral to the bracket are made to receive the servo unit's pre-existing apertures located on the factory incorporated flanges. In one embodiment, the motor-to-servo assembly 230 is connected to the second servo 225 and servo bracket 217 by simple machine nuts, bolts and/or washers that allow ease of assembly and disassembly. The motor-to-servo assembly 230 may also be connected to the second servo 225 by integrated molded pins located on the bracket that lock into apertures 228 located on the servo unit's factory incorporated flanges 229.
An improved off-set brace 218 connects the motor-to-servo assembly 230 and the second servo 224 to the mounting frame 231 with a pre-measured and integral shape that can be conveniently repeated in production by use of molds and mold casting. (See
Convenient apertures 233 are included in the off-set brace 218 for the use of fastening devices such as screws, nuts and bolts, integral locking clips, pop-rivets, wire, clamps and/or cable ties to connect the final servo 225 and preceding vector thrust components 230 to the off-set brace 218. The improved off-set brace is provided with apertures that are so dimensioned to receive and secure the final servo unit's pre-existing apertures 228 located on the factory incorporated flanges 229 with nuts and bolts.
An improved off-set brace with a chamber or chambers are dimensioned to receive one or several struts from the propulsion frame and/or the direct frame of the kite or kite-like object. In the present embodiment as illustrated in
A convenient means of angular adjustment of the off-set brace to the propulsion frame and/or the frame of a kite or kite-like object is shown. Adjusting the fixed angle of the vector propulsion unit from kite to kite allows for improved flying performance and also versatility in vector powering many different types of kites and kite-like objects. As vector propulsion units are switched from kite to kite per the above discourse and as kites are flown in different wind conditions, adjusting and locking in the vector propulsion unit's “X-axis” 170 and “Z-axis” in relation to the centerline “Y-axis” of a kite or kite-like object is important.
Vector thrust is used to fly and control a rotating kite-like object.
In the present embodiment, the composition of the rotating box kite 242, elongated pendulum frame structure 246 and vector thrust control unit 241 are comprised of the same materials as described above work, sail work and other mechanisms and are not intended to be limited only to the shapes and materials of the featured embodiments. The swiveling connection 245 is made of hollow fiberglass rod, carbon, plastic, nylon, metal, aluminum or any suitable material that could be fashioned into an annular aperture that would allow the outside material or materials to rotate around the said aperture. It is also contemplated that a bearing devise could be used to allow lower friction for the rotating connection. It is important to note that the elongated pendulum frame and swiveling connection may be used with either the gimbal method of vector propulsion for kites and kite-like objects and/or the method and structure described that involves direct servo to motor connections. The elongated pendulum frame may be used with any vector propulsion unit that incorporates a convenient attachment and re-attachment fitting(s).
The multi-pivoting bracket 302 is composed of three main components. First is the up-down bracket 308 which, in the present embodiment, functions to hold the motor mount 310 and includes at least two apertures to act as pivot points 312. The pivot points 312 enable freedom of movement up and down when activated by the up-down servo 314 and the up-down servo push-rod 315. The up-down movement of the motor guides the direction of the motor's thrust as specified by the operator. In the present embodiment, the up-down bracket 308 is made out of plastic. It is known to the inventors that other materials for the up-down bracket 308 such as reinforced plastic or metal would be suitable for this component and would still remain within the intended scope of the present invention.
The second component of the multi-pivoting bracket 302 is the left-right bracket 316. In the present embodiment, the left-right bracket 316 functions to hold the multi-pivoting bracket 302 into the frame 318 of the vector control apparatus 300. The left-right bracket 316 includes at least two apertures to act as pivot points 320. The pivot points 320 enable freedom of movement left and right when activated by the left-right servo 322 and the left-right servo push-rod 324. This in turn allows the motor 304 and thrust generated by the motor 304 to go left and right. In the present embodiment, the left-right bracket 316 is made out of plastic. It is known to the inventors that other materials for the left-right bracket 316 such as reinforced plastic or metal (including aluminum) would be suitable for this component and would still remain within the intended scope of the present invention.
At the center of the multi-pivoting bracket 302 is the cross axle 326. The cross axle 326 connects the left-right bracket 316 and up-down bracket 308 by means of four pivotal points in two groups 312, 320 that allow freedom of movement up and down, left and right and all combinations of up-down and left-right movement of the motor 304. In the present embodiment, the cross axle 326 is made out of brass. It is known to the inventors that other materials for the cross axle 326 such as reinforced plastic and/or other types of metals (including aluminum) would be suitable for this component and would still remain within the intended scope of the present invention.
It is important to note that the multi-pivoting bracket 302 does not allow twisting rotational movement of the motor 304 in relation to the frame 318 of the vector thrust control apparatus 300 around the center point of the “Y-axis” 172 (which is designated in
In
In yet another embodiment illustrated in
The elongated flexible material 330 in the vector control apparatus 328 is, at one end, connected to the vector control apparatus frame 332 and, at the other end, connected to the control flange 334 and in turn to the motor mount 336. The motor mount 336 is connected to the motor 338 and in turn to the propeller 340. When the servos 342 move the servo arms 344, the elongated flexible material 330 allows the control flange 334, the motor mount 336, the motor 338 and the propeller 340 to move to the direction as prescribed by the operator. Since the elongated flexible material is flexible in all directions in relation to the “X-axis” 170 and “Z-axis” 171 (
In the vector control apparatus 328, passive stabilizer rods 346 and elongated apertures 348 are used to prevent adverse twisting movement between the vector control apparatus frame 332 and the control flange 334. Although, in the present embodiment, the vector control apparatus 328 passive stabilizer rods 346 and elongated apertures 348 are annular in shape, other shapes have been contemplated such as square, polygonal and ovoid. It has also been contemplated by the inventors that the passive stabilizer rods 346 and elongated apertures 348 could be two reciprocal shapes that are not a closed tubular channel as in the case with the elongated apertures 348, as shown in the present embodiment, but slide by the means of a semi-closed channel and a reciprocal track. Whether the elongated apertures are open channels or closed tubular channels, both methods could be used. Moreover, both embodiments are intended to fall within the scope of the present invention.
As noted above, the embodiment shown in
In the embodiment encompassing the vector control apparatus 328, the control flange 334 is made out of plastic however it has been contemplated by the inventors that other materials such as metal, aluminum, fiberglass, carbon, reinforced plastics or a mixture of natural and synthetic materials could be used and still fall within the scope of the patent. In the embodiment illustrated in
It has also been contemplated by the inventors that the control flange 334 and the motor mount 336 could be molded, machined or constructed as one integral component as opposed to two or more pieces. Of course, as would be appreciated by those skilled in the art, the control flange 334 and motor mount 336 may be a single element without departing from the intended scope of the present invention.
It has also been contemplated by the inventors that the control flange 334 may be constructed as an integral part of the motor housing for advantages of lighter weight and/or mechanical simplicity. Regardless of whether the control flange 334, motor mount 336 and motor 338 are comprised of a plurality of components or one single component, what is required to practice the present invention, among other features, is that the movements of the control servos 342 are able to directly articulate reciprocating movement to the thrust motor.
It is also known to the inventors that it is possible to have a stationary motor 402 that provides a stationary spinning power source, whereby thrust direction is controlled by the means of manipulating the angle of attack of the propeller blades 404, 406 as they revolve around a fixed central axle 408 and as the axle is mounted in a horizontal manner in relation to a kite-like object.
Object 410 is a kite-like object designed in a Canard style, and object 412 is a kite-like object that resembles a traditional aircraft. It is known by the inventors that many different kite-like shapes may be flown and controlled with the present invention. In other words, the overall shape and appearance of the kite-like flying object may encompass many different structures and forms that are not critical to the practice of the present invention.
It is known in common propeller design that changes in blade pitch results in changes in thrust. As all blades on a propeller increase their angle of attack, thrust also increases. The thrust increase and decrease is directly proportional to a propeller's increase and decrease in the angle of attack, or pitch, until the angle of attack is too great or too small to provide effective lift in relation to the cross section of the propeller blade. In the vernacular of helicopter rotor technology, this increase and decrease of thrust in relation to all propeller blades combined is called “collective pitch”.
Another important term in helicopter rotor technology is “cyclic pitch” modulation. Cyclic pitch modulation refers to the ability to control the angle of attack or pitch of individual propeller blades at any given point around one complete revolution of a central axle. In another words, cyclic pitch modulation is the ability to change each propeller blade's pitch as it rotates around a hub so that all propeller blades will change their angle the same amount at the same point in one rotational cycle. Cyclic pitch modulation allows more or less thrust directed away from any specified point around the circumference of a propeller.
Cyclic pitch modulation allows a kite or kite-like aircraft to be controlled right and left, up and down or any combination in-between.
As the linkage rods are moved up and down, the pitch of propeller blades 404 and 406 are changed to create more or less thrust per the directions of the operator. It is the tilt of the swash plate 424 in relation to the stationary spinning axle 408 that is directly linked to the propeller blades 404, 406 and changes the angle of attack of the blades as they revolve through each revolution. Because the swash plate can be tilted at any given point around the stationary spinning axle 408, the propeller blades 404, 406 can be modulated to reflect more or less angle of attack at any given point around one revolution of the propeller blades 404 and 406.
It is, therefore, possible to achieve complete control of a kite-like object by modulating the thrust around the rotational cycle of the propeller blades 404, 406.
As seen in
As discussed, the vector thrust produced by cyclic thrust modulation is the result of changing the individual blade pitch more and less as it travels around the 360 degrees of the circle. If a certain amount of control input is given to the swash plate 424 for an extended period of time, the same amount of pitch change and pitch recovery will result over and over again as the propeller blades spin around the main rotor hub.
In the present embodiment, vector control apparatus 414 utilizes two propeller blades 404 and 406. While this is the suggested number of propeller blades, it should be noted that only two propeller blades are preferred to practice the present invention. Any number greater than one is believed to be sufficient to produce controlled thrust around the rotational cycle of the propeller blades. Of course, as would be appreciated by those skilled in the art, three, four, five, six or a multiple of separate propeller blades may be employed without departing from the intended scope of the present invention.
In the present embodiment, the vector control apparatus 414 contains components and materials attributed to the micro size class of toy radio control helicopters. As would be appreciated by those of ordinary skill in the art, the vector control apparatus 414 may take on many different sizes, components and materials and still remain within the intended scope of the present invention. In other words, the overall size, components and materials of the vector control apparatus 414 can vary as long as cyclic controlled thrust can be achieved on a horizontal axis as attached to a kite-like object.
Although the present embodiment features vector thrust control through horizontally mounted cyclic pitch modulation, it is known to the inventors that collective pitch modulation may also be employed to augment total thrust levels for the purposes of increasing or decreasing speed or enhancing control of the kite-like object.
As discussed in previous discourse, the embodiment as seen in
In yet another embodiment, which is illustrated in
In this embodiment, which encompasses teetering hub modulation, the servos 508 and 510 manipulate push rods 512 and 514 that in turn move swash plate 504 at different angles along the stationary spinning axle 516. The stationary spinning axle 516 is powered by motor 518. As in the previous embodiments, the motor 518 is stationary.
It is noted that, in the embodiment shown in
The swash plate 504 is able to tilt in all directions and is composed of a non-rotating outer ring 520 with a central ball joint 524 and a rotating inner ring 522 with a central ball joint 526. The non-rotating outer ring 520 does not rotate with the turning axle 516, but is held stationary by the attached outer ring pin 521 that rides back and forth in pin stabilizer 523 which is attached to the stationary frame 525. The center ball joints 524, 526 allow the swash plate 504 to tilt in relation to the stationary spinning axle 516. Linkage rods 528 allow the tilt of the swash plate 504 to be transferred to the teetering hub 506. The multi-pivoting element 507 is connected to the teetering hub 506 and allows the teetering hub and propellers 509 to tilt up and down, left and right and any direction in-between. As the linkage rods 528 are moved up and down and or left and right, the angle of the teetering hub 506 is directly changed to create different directions of thrust as prescribed by the operator.
In the present embodiment, the multi-pivoting element 507 is similar to the multi-pivoting bracket 302 described in
In the present embodiment, vector thrust control apparatus 502 utilizes two propeller blades 509. While this is the suggested number of propeller blades, it should be noted that two propeller blades are preferred to practice the present invention. On the other hand, any number greater than one is believed to be sufficient to produce controlled thrust with vector thrust control apparatus 502 that utilizes a teetering hub. Of course, as would be appreciated by those skilled in the art, three, four, five, six or a multiple of separate propeller blades may be employed without departing from the intended scope of the present invention.
Although a teetering hub uses a swash plate similar to the cyclic pitch modulation apparatus, the teetering top rotor hub apparatus differs from cyclic pitch modulation in that the entire rotational plane of the propeller changes angles. The teetering hub design works closer to the principle of the gimbal vector thrust control apparatus, however, the main difference is that the motor and drive axle stay stationary while the propeller blades change rotational plane angles through the use of a swash plate. A stationary motor and drive axle in conjunction with a movable swash plate is also a notable feature of the cyclic pitch modulation thrust apparatus.
The construction of vector thrust apparatus using swash plates to control and propel kite-like objects offers other advantages that are not present in prior art. In particular, it is known to the inventors that keeping the drive motor and main axle stationary in a vector thrust apparatus may have advantages in applications that would prohibit or be difficult in terms of installing certain size or certain type motors in a gyratory gimbal system. Also, it is known to the inventors that miniature swash plates, linkage rods, ball joints and other parts used in common toy helicopter design may be utilized to aid production and quality of mass produced vector thrust apparatus for kite-like objects.
It is also know to the inventors that a combination of cyclic pitch modulation, collective pitch modulation, teetering hub modulation and gimbal thrust modulation may all be used together, in selected groups or individually on one vector thrust control apparatus to use vector thrust to control and propel a kite-like object. For example, it has been contemplated that teetering hub modulation and cyclic pitch modulation could be integrated and used together on a single vector thrust control apparatus for more effective control of a kite-like object. In another example, it has been contemplated that cyclic pitch modulation and collective pitch modulation could be integrated and used together on a single vector thrust control apparatus for more effective control of a kite-like object. In other words, the present invention, as defined by the claims appended hereto, is intended to encompass all of the aspects taught in the present invention whether used as separate elements or a combination of elements.
While various aspects of the present invention have been described in connection with specific, contemplated embodiments, the features are not intended to be limited to any particular embodiment. In other words, features and aspects of one embodiment may be employed and/or combined with features of another embodiment without departing from the scope of the present invention.
While there has been described in connection with the preferred embodiments of the disclosure, various changes and modifications may be aimed, therefore, to cover in the appended claims all such changes and modifications as fall within the true spirit of the disclosure.
This is a Continuation-In-Part Non-Provisional Patent Application that relies for priority on U.S. patent application Ser. No. 12/588,623, filed on Oct. 21, 2009, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
857949 | Malloy | Jun 1907 | A |
1186630 | Warchalowski | Jun 1916 | A |
1229114 | Meng et al. | Jun 1917 | A |
1326760 | Macinante | Dec 1919 | A |
1879345 | Lawrence | Sep 1932 | A |
2131155 | Waller | Sep 1938 | A |
2318862 | Iredell et al. | May 1943 | A |
2478847 | Stuart | Aug 1949 | A |
3361388 | Girard et al. | Jan 1968 | A |
3940882 | Mabuchi | Mar 1976 | A |
4180221 | Harris | Dec 1979 | A |
4204656 | Seward, III | May 1980 | A |
5034759 | Watson | Jul 1991 | A |
5383627 | Bundo | Jan 1995 | A |
5906335 | Thompson | May 1999 | A |
6257525 | Matlin et al. | Jul 2001 | B1 |
6364251 | Yim | Apr 2002 | B1 |
6386480 | Perry et al. | May 2002 | B1 |
6471159 | Bundo | Oct 2002 | B1 |
6708920 | Fukuyama | Mar 2004 | B2 |
6793172 | Liotta | Sep 2004 | B2 |
6892980 | Kawai | May 2005 | B2 |
6976899 | Tamanas | Dec 2005 | B1 |
7048232 | Plottner | May 2006 | B1 |
7109598 | Roberts et al. | Sep 2006 | B2 |
7183663 | Roberts et al. | Feb 2007 | B2 |
7377832 | Chamberlain | May 2008 | B2 |
7874515 | Kinkopf et al. | Jan 2011 | B2 |
8245966 | Colting | Aug 2012 | B2 |
20080179452 | Kinkopf et al. | Jul 2008 | A1 |
20100224722 | Colting | Sep 2010 | A1 |
Entry |
---|
Office Action and Form 892, mailed Feb. 17, 2012 from corresponding U.S. Appl. No. 12/588,623. |
Examination Report dated Jan. 3, 2013, in corresponding German Patent Application No. 10 2010 037 916.6-15. |
Number | Date | Country | |
---|---|---|---|
20110089288 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12588623 | Oct 2009 | US |
Child | 12761457 | US |