Power breaker

Information

  • Patent Grant
  • 6429394
  • Patent Number
    6,429,394
  • Date Filed
    Monday, February 12, 2001
    24 years ago
  • Date Issued
    Tuesday, August 6, 2002
    22 years ago
Abstract
The power breaker is provided with at least one arcing chamber (2) which is filled with SF6 gas, is rotationally symmetrical, and extends along a longitudinal axis (3). The arcing chamber (2) has a power current path with a central contact pin (14), and has a separate rated current path provided with rated current contacts (11). The arcing chamber (2) is operated by a drive linkage (4) which moves the contact pin (14) and the rated current contacts (11). The drive linkage (4) is designed such that, at the start of the disconnection process, the contact pin (14) remains in a first dead point position until the rated current path is interrupted. The contact pin (14) can then be moved in the disconnection direction at a considerably higher speed than the rated current contacts (11). Toward the end of their disconnection travel, the rated current contacts (11) run into a second dead point position. The contact pin (14) does not reach its disconnected position until after the rated current contacts (11) have ended their disconnection movement. At the start of the connection process, the rated current contacts (11) remain in this second dead point position until the pre-arcing of the switch-on arc has taken place. The rated current contacts (11) are in this way advantageously protected against damage caused by an arc.
Description




This application claims priority under 35 U.S.C. ยงยง119 and/or 365 to Appln. No. 100 06 167.2 filed in Germany on Feb. 11, 2000; the entire content of which is hereby incorporated by reference.




FIELD OF THE INVENTION




The invention is based on a power breaker as claimed in the precharacterizing clause of claim


1


.




BACKGROUND OF THE INVENTION




The two laid-open specifications DE 196 13 568 A1 and DE 196 13 569 A1 disclose a power breaker which can be used in an electrical high-voltage network, in particular as a generator switch as well. This power breaker has a cylindrical arcing chamber which is filled with SF


6


gas as a quenching and insulating medium. This arcing chamber has a power current path in which the erosion-resistant consumable contacts are located, which are connected by a bridging contact in the connected state and, furthermore, it has a separate rated current path, in which the rated current contacts are fitted. The contacts in the two current paths are operated via a lever linkage from a drive, with the lever linkage being designed such that the rated current contacts always move at a slower speed than the bridging contact. During disconnection, the rated current contacts and the bridging contact move apart jointly, but the rated current path is always interrupted first, following which the current which is to be disconnected commutates onto the power current path. The power current path then continues to carry the current until it is definitively disconnected. Power breakers such as this generally require a comparatively large amount of drive energy. At the end of the disconnection travel of the contacts, the kinetic energy of the moving parts, in particular that of the rated current contacts which have a comparatively high mass, must be damped out in a complex manner.




SUMMARY OF THE INVENTION




The invention achieves the object of providing a power breaker which can be produced cost-effectively.




The advantages achieved by the invention are that the power breaker requires less drive energy, and can thus be equipped with a weaker, and thus more cost-effective, drive.




The power breaker is provided with at least one arcing chamber which is filled with an insulating medium, in particular SF


6


gas, is rotationally symmetrical, and extends along a longitudinal axis. The arcing chamber has a power current path with a central contact pin and a separate rated current path, which is provided with rated current contacts. The arcing chamber is operated by a drive linkage which moves the contact pin and the rated current contacts. The drive linkage is designed such that, at the start of the disconnection process, the contact pin remains in a first dead point position until the rated current path is interrupted. The contact pin can then be moved in the disconnection direction at a considerably higher speed than the rated current contacts. The rated current contacts run into a second dead point position toward the end of their disconnection travel. The contact pin does not reach its disconnected position until after the rated current contacts have ended their disconnection movement. At the start of the connection process, the rated current contacts remain in this second dead point position until the pre-arcing of the switch-on arc takes place. The rated current contacts are in this way advantageously protected against damage caused by an arc.




The power breaker has at least one piston-cylinder arrangement which moves such that it is coupled to the rated current contacts and in which a portion of the insulating medium which fills the arcing chamber is pressurized in a compression volume by a piston during disconnection. The pressurized insulating medium produced in this way, which is frequently SF


6


gas, is used to assist the process of blowing out the arc, as a result of which the disconnection capacity of the power breaker is advantageously improved, in particular for small disconnection currents as well.




It has been found to be particularly advantageous that, in this power breaker, at least a portion of the kinetic energy which the rated current contacts have toward the end of their disconnection travel can be used with the aid of the drive linkage for acceleration of the contact pin and for the movement of a pressure piston connected to the contact pin. If this advantage is made use of, the drive can be designed to be considerably weaker, which also has an advantageous effect on the price.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention, its development and the advantages which can be achieved with it are explained in more detail in the following text with reference to the drawing, which illustrates only one possible embodiment approach and in which:





FIG. 1

shows a partial section through a first embodiment of a power breaker, illustrated in a highly simplified form, in the disconnected state,





FIG. 2

shows this embodiment of the power breaker, illustrated in a highly simplified form, in the connected state,





FIGS. 3

,


4


and


5


show various significant positions in the first embodiment of the power breaker in the course of its disconnection movement,





FIG. 6

shows the movement sequence for disconnection in the first embodiment of the power breaker,





FIG. 7



a


,


7




b


and


7




c


each show a partial section through a second embodiment of a power breaker, illustrated in a highly simplified form, in the connected state,





FIGS. 8



a


and


8




b


show highly simplified design details of the second embodiment of the power breaker,





FIGS. 9



a


,


9




b


,


10




a


and


10




b


have two significant positions of the second embodiment of the power breaker in the course of its disconnection movement.











In all the figures, elements which have the same effects are provided with the same reference symbols. Only those elements which are required for direct understanding of the invention are illustrated and described.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a partial section through a first embodiment of a power breaker


1


, illustrated in a highly simplified form, in the disconnected state. The power breaker


1


has an arcing chamber


2


which in this case extends and is mounted along a common longitudinal axis


3


, and is arranged concentrically with respect to said axis. The arcing chamber


2


is driven by a drive (not illustrated) via a drive linkage


4


. A conventional energy storage drive can be provided, for example, as the drive. On the drive side, the arcing chamber


2


is connected to a pressure tight metallic housing


5


which is arranged concentrically with respect to the longitudinal axis


3


, surrounds the drive linkage


4


, and is provided on the side facing away from the arcing chamber


2


with connections (not illustrated) for supplying electrical power. The housing


5


surrounds a first blow-out volume


6


.




On the side facing away from the drive, the arcing chamber


2


is connected to a pressure tight metallic blow-out housing


7


, which is arranged concentrically with respect to the longitudinal axis


3


and is provided, on the side facing away from the arcing chamber


2


, with connections (not illustrated) for supplying electrical power. The blow-out housing


7


surrounds a second blow-out volume


8


. The housing


5


and the blow-out housing


7


are connected to one another rigidly and in a pressure tight manner by means of a pressure tight insulating tube


9


which is arranged concentrically with respect to the longitudinal axis


3


, with the volume surrounded by these components being filled with pressurized SF


6


gas. Depending on the outside temperature to be expected, a filling pressure in the range from about 5 bar to 8 bar is provided for this power breaker


1


. The housing


5


and the blow-out housing


7


are borne by an insulating support (not illustrated) and are insulated from ground. The power is transmitted from the drive to the drive linkage


4


by means of an electrically insulating component.




The arcing chamber


2


has a rated current path and, in parallel with it, a power current path which is located in the center and extends axially. When the power breaker


1


is connected, the rated current path passes from the blow-out housing


7


via an integrally formed annular contact facing


10


, via axially moving rated current contacts


11


to a contact facing


12


, which is integrally formed on the housing


5


, and through the housing


5


. When the power breaker


1


is connected, the power current path passes from the blow-out housing


7


via a contact finger arrangement


13


, a contact pin


14


which is arranged centrally and is used as a bridging contact, into a contact holder


15


which is electrically conductively connected to the housing


5


and in which spiral contacts


16


are inserted, to the housing


5


and through this housing


5


. However, no significant current flows through this power current path until the rated current path has been interrupted.




The rated current contacts


11


are operated via a ring


17


, which is connected to the drive linkage


4


but is indicated only schematically here. The ring


17


is mechanically connected via a number of plungers


18


, distributed around the circumference, to the rated current contacts


11


, which are arranged such that they move in an outer arcing chamber volume


19


. The plungers


18


are guided in corresponding apertures in that end wall of the housing


5


which faces the arcing chamber


2


. The ring


17


is also connected to piston rods


20


, which are likewise guided in corresponding apertures in that end wall of the housing


5


which faces the arcing chamber


2


. The piston rods


20


are each connected to a respective piston


21


, each of which separates a cylindrical compression volume


22


from the outer arcing chamber volume


19


. A large number of individual pistons


21


together with the respectively associated compression volumes


22


are arranged concentrically around the longitudinal axis


3


, but it is also feasible for an individual annular piston to cut off an individual annular compression volume, in which case this one piston is then operated by a number of piston rods, in order to prevent it from tilting.




Each compression volume


22


is connected to a common storage volume


24


by means of a flow channel


23


. The storage volume


24


can be regarded as an inner arcing chamber volume which is separated in a pressure tight manner by means of a cylindrical, electrically insulating separating wall


25


from the outer arcing chamber volume


19


. An arcing zone


26


is provided in the center of the storage volume


24


, in the region between the erosion-resistant contact finger arrangement


13


and the tip of the contact pin


14


. An opening


27


is provided in the center of the contact finger arrangement


13


and connects the arcing zone


26


to the blow-out volume


8


. A further opening


28


, which passes through that end wall of the housing


5


which faces away from the drive, connects the arcing zone


26


to the blow-out volume


6


. In the region immediately adjacent to the arcing zone


26


, this opening


28


is provided with a lining


29


which is designed in the form of a nozzle and is composed of an insulating material, for example, PTFE, and which comparatively closely surrounds the contact pin


14


in the connected position.




The contact pin


14


is connected on the drive side to a piston


30


which slides in a cylinder


31


. The cylinder


31


is integrally formed on that end wall of the housing


5


which faces away from the drive. A compression volume


32


is provided on the drive side of the piston


30


and is used to damp out the movement of the contact pin


14


immediately before it reaches the disconnected position. During the remaining period of the disconnection movement of the contact pin


14


, the compression volume


32


is connected to the storage volume


24


by means of flow channels


33


.




The drive linkage


4


has four fixed-position rotation axes


34


,


35


,


36


and


37


, which run parallel to one another. The drive axes


34


,


35


,


36


and


37


run at right angles to the plane of the section in

FIG. 1

, and thus at right angles to the longitudinal axis


3


. The rotation axis


34


is the axis of a rotation shaft (not illustrated) composed of electrically insulating material, which rigidly connects a tip of an angled lever


38


to the drive (not illustrated), which is at ground potential. This electrically insulating rotation shaft is guided through the wall of the housing


5


by means of a pressure tight rotating bushing.




The metallic angled lever


38


has two rotation points


39


and


40


at the ends of its two limbs. A lever


41


of a first linkage element is articulated at the rotation point


39


and connects the angled lever


38


to a rotation point


42


of a tip of an angled lever


43


, which rotates about the fixed-position rotation axis


35


. The rotation point


42


is located at the end of one of the limbs of the angled lever


43


, whose other limb has at its end a second rotation point


44


on which a lever


45


is articulated. The other end of the lever


45


is articulated on the ring


17


by means of a rotation point


46


. In order to ensure that the ring


17


is operated without being tilted, this described lever connection is provided with the ring


17


at two mutually opposite points. This described lever connection to the ring


17


can be seen better in FIG.


3


.




A lever


47


of a second linkage element is articulated at the rotation point


40


of the angled lever


38


and connects the angled lever


38


to a rotation point


48


of a tip of an angled lever


49


which rotates about the fixed-position rotation axis


36


. The rotation point


48


is located at the end of one of the limbs of the angled lever


49


, whose other limb has at its end a second rotation point


50


on which a lever


51


is articulated which connects the angled lever


49


to a moving rotation point


52


of an angled lever


53


which rotates about the fixed-position rotation axis


37


. The rotation axis


37


is linked to the end of one limb of the angled lever


53


. The rotation point


52


is located at the tip of the angled lever


53


, while a further rotation point


54


is provided at the end of the other limb of the angled lever


53


. A lever


55


is articulated at this further rotation point


54


, and connects the angled lever


53


to a rotation point


56


. The rotation point


56


is fitted on the drive end of the contact pin


14


, which moves in the axial direction.




The drive linkage


4


is designed such that, during disconnection, the rated current contacts


11


which are operated by the first linkage element always open first and interrupt the rated current path, and the contact pin


14


, which is initially locked in a dead point position, is not operated by the second linkage element until after this. The overall travel and the average speed of the contact pin


14


are always greater than the overall travel and the average speed of the rated current contacts


11


. After an acceleration phase, the contact pin


14


moves at a substantially greater maximum speed, which is in the range from about 10 m/s to 20 m/s, than the rated current contacts


11


, which move at maximum speeds in the range from about 2 m/s to 6 m/s.




During connection, the contact pin


14


always moves first and closes the circuit, and the rated current contacts


11


, which are initially locked in a dead point position, are not connected until this has taken place. The movement profiles during disconnection are illustrated as a function of time in FIG.


6


. Curve A in

FIG. 6

shows the movement of the drive, which moves through the travel H


3


, and the curve B illustrates the movement of the rated current contacts


11


and of the pistons


21


, which move through the travel H


1


, while the curve C illustrates the movement of the contact pin


14


, which moves through the travel H


2


. It can clearly be seen that the contact pin


14


moves through a considerably greater travel than the rated current contacts


11


, and that it moves at a substantially greater maximum speed than the rated current contacts


11


.





FIG. 2

shows the first embodiment of the power breaker


1


, illustrated in a highly simplified form, in the connected state. This corresponds to the time T


1


in FIG.


6


. The angled lever


38


has been rotated counterclockwise by the drive in order to move the power breaker


1


from the disconnected position illustrated in

FIG. 1

to the connected position illustrated in FIG.


2


. The power breaker


1


is disconnected when the angled lever


38


rotates clockwise. The drive linkage


4


can very easily and continuously be matched to the requirements for travel and speed of the respective power breaker type to be driven by varying the length of the limbs and the angle between the limbs of the angled lever


38


. The other components of the drive linkage


4


can also be modified appropriately for further matching operations.





FIGS. 3

,


4


and


5


show various significant positions of the power breaker


1


in the course of its disconnection movement.

FIG. 3

shows the power breaker


1


in the position immediately after interruption of the rated current path, in which the rated current contacts


11


have just been disconnected from the contact facing


10


, and this corresponds to the time T


2


in FIG.


6


. The angled lever


38


has been rotated somewhat counterclockwise, and the ring


17


, and with it the rated current contacts


11


and the pistons


21


, move in the direction of the arrow


57


parallel to the longitudinal axis


3


. The power is transmitted from the angled lever


38


via the lever


41


, the angled lever


43


and the lever


45


to a lug


58


which is rigidly connected to the ring


17


and in which the rotation point


46


is mounted. As already stated, a further such lug and an identical lever connection connected to it are provided symmetrically with respect to this lug


58


. Although the rated current contacts


11


are already moving in the disconnection direction, the contact pin


14


of the power current path still remains in the connected position. At the same time as the rated current contacts


11


, the piston


21


moves and starts to compress the insulating medium in the compression volume


22


. As indicated by an arrow


59


, the pressurized medium flows through the flow channel


23


out of the compression volume


22


into the storage volume


24


, where it is initially stored. The second linkage element, which operates the contact pin


14


, initially still remains in a dead point position, however.




The rated current contacts


11


and the piston or pistons


21


move comparatively slowly further in the disconnection direction but, as soon as the dead point of the second linkage element is passed, the contact pin


14


, as can be seen from

FIG. 4

, starts its disconnection travel at a comparatively high maximum speed. This corresponds to the time T


3


in FIG.


6


. The piston


30


compresses the insulating medium in the compression volume


32


. As indicated by an arrow


60


, the pressurized medium flows through the flow channels


33


out of the compression volume


32


into the storage volume


24


, where it is initially stored.




On reaching its travel H


1


, the rated current contacts


11


still have considerable kinetic energy owing to their comparatively large mass. This kinetic energy is emitted via the drive linkage


4


to the contact pin


14


which, at this time T


3


, is still well away from reaching its maximum disconnection speed, in order to accelerate it further. The drive of the power breaker


1


can thus be designed to be somewhat weaker and hence cheaper since, during the acceleration of the contact pin


14


, it is advantageously assisted by this kinetic energy, which otherwise cannot be used.





FIG. 5

shows the power breaker


1


immediately after contact disconnection in the power current path, with an arc


61


burning between the erosion-resistant contact finger arrangement


13


and the contact pin


14


and heating the arcing zone


26


and, with it, the storage volume


24


. A portion of the hot gas has, however, already flown out of the arcing zone


26


through the opening


27


into the blow-out volume


8


. This corresponds to the time T


4


in FIG.


6


. The rated current contacts


11


and the pistons


21


have already reached their definitive disconnected position, so that no pressurized insulating medium continues to flow into the storage volume


24


from the compression volumes


22


. The piston


30


, which is connected to the contact pin


14


, compresses the insulating medium in the compression volume


32


and it continues to flow through the flow channels


33


into the storage volume


24


, in order to assist the process of blowing out the arc


61


, provided the pressure conditions there allow this.




The contact pin


14


now moves further in the disconnection direction and then releases the opening


28


, which allows an additional flow of hot gases out of the arcing zone


26


into the blow-out volume


6


. The cooling of the arc


61


in this region is particularly intensive, so that it is generally quenched before the contact pin


14


has reached its definitive disconnected position. Immediately before reaching this disconnected position, the piston


30


closes the inlets of the flow channels


33


, so that the remaining residue of the compression volume


32


can from now on be used as a pneumatic damping volume, in order effectively to damp out the remaining kinetic energy of the contact pin


14


on reaching the disconnected position. The disconnected position illustrated in

FIG. 1

is reached definitively at the time T


5


.




The connection movement of the power breaker


1


takes place in the opposite sense to the disconnection movement described above. At the start of the connection process, the rated current contacts


11


remain in a dead point position until the pre-arcing of the switch-on arc between the already moving contact pin


14


and the erosion-resistant contact finger arrangement


13


takes place. They do not move away from one another in the connection direction until after this, and do not close the rated current circuit until the switch-on arc is no longer burning, that is to say once the contact pin


14


has moved into the contact finger arrangement


13


.





FIGS. 7



a


,


7




b


and


7




c


illustrate a second embodiment of the power breaker


1


in the connected state. This position corresponds to the time T


1


in FIG.


6


. The arcing chamber


2


and the blow-out housing


7


are constructed in the same way as in the first embodiment. A partially cut-through intermediate wall


62


has additionally been inserted into the housing


5


, and extends at right angles to the longitudinal axis


3


. The blow-out volume


6


thus extends as far as the side of the intermediate wall


62


facing away from the arcing chamber


2


. The blow-out volume


6


is closed off by a wall


63


which is integrally formed in a pressure tight manner on the housing


5


and extends at right angles to the longitudinal axis


3


.




As shown in

FIG. 7



a


, guide grooves


64


and


65


which are precisely opposite and parallel to one another are incorporated in the intermediate wall


62


and in the wall


63


, and are used as guides for a guide plate


66


. The guide grooves


64


and


65


run radially with respect to the longitudinal axis


3


. This guide plate


66


is connected by means of an electrically insulating tie rod


67


to the drive (not illustrated), and can move upward in the direction of the arrow


68


. The tie rod


67


is passed through the wall of the housing


5


in a pressure tight manner. Guide grooves


69


and


70


are milled into the guide plate


66


, and the end of a bolt


71


is guided in them. The bolt


71


is mounted at one end in a retaining fork


72


which is rigidly connected to the contact pin


14


. As can be seen from

FIG. 7



c,


the retaining fork


72


surrounds the guide plate


66


, so that the bolt


71


can engage in the guide grooves


69


and


70


from above. The retaining fork


72


is designed such that the bolt


71


cannot become disengaged from the guide grooves


69


and


70


. The retaining fork


72


is guided in the axial direction in the intermediate wall


62


.




As can be seen from

FIGS. 7



b


and


7




c,


further guide grooves


73


and


74


are incorporated in the intermediate wall


62


and in the wall


63


parallel to the guide grooves


64


and


65


and at a distance from them, and are used as guides for a guide plate


75


. This guide plate


75


is connected by means of an electrically insulating tie rod


76


to the drive (not illustrated) and can move in the direction of the arrow


77


. The tie rod


76


is passed in a pressure tight manner through the wall of the housing


5


. Guide grooves


78


and


79


are milled in the guide plate


75


, and the end of a bolt


80


is guided in them. The bolt


80


is mounted at one end in a retaining fork


81


which is rigidly connected to the ring


17


. As can be seen from

FIG. 7



c,


the retaining fork


81


surrounds the guide plate


75


, so that the bolt


80


can engage in the guide grooves


78


and


79


from above. The retaining fork


81


is designed such that the bolt


80


cannot become disengaged from the guide grooves


78


and


79


. The retaining fork


81


is guided in the axial direction in the intermediate wall


62


.




In order to prevent the ring


17


from tilting during operation of the rated current contacts


11


and of the pistons


21


, a further identical guide plate


82


is provided on the other side of the guide plate


66


and at the same distance from it as the guide plate


75


, and this is designed identically and is guided and operated in the same way as the guide plate


75


, and its retention need therefore not be described in any more detail here.




The guide plate


66


for operation of the contact pin


14


is illustrated schematically in

FIG. 8



a.


The arrows


83


in the guide groove


69


indicate the direction in which the bolt


71


is moved when the guide plate


66


is drawn upward during disconnection of the power breaker


1


. The bolt


71


is used to move the retaining fork


72


and, with it, the contact pin


14


, axially in the disconnection direction. The speed of the drive and the curve shape of the guide groove


69


are chosen so that the contact pin


14


carries out the movement illustrated by curve C in FIG.


6


.




Shortly before the contact pin


14


reaches its disconnected position, a flap


84


, on which a spring (not illustrated) acts, is pressed against the force of this spring into a depression in the wall of the guide groove


69


, so that the bolt


71


can pass. As soon as the bolt


71


has passed the flap


84


, the flap


84


blocks the guide groove


69


, and the bolt


71


is moved back into the position illustrated in

FIG. 8



a


by means of the force of a spring (not illustrated). During connection, when the guide plate


66


is pressed downward, the bolt


71


is moved in the direction of the arrow


85


in the guide groove


70


. The profile of the connection movement of this second embodiment of the power breaker


1


therefore differs somewhat from that of the first embodiment of the power breaker


1


. Shortly before the contact pin


14


reaches its connected position, a flap


86


, on which a spring (not illustrated) acts, is pressed out of the way against the force of this spring so that the bolt


71


can pass. As soon as the bolt


71


has passed the flap


86


, the flap


86


blocks the guide groove


70


, and the contact pin


14


and, with it, the bolt


71


are now located in their definitive connected position.




The guide plate


75


for operation of the rated current contacts


11


and of the pistons


21


is illustrated schematically in

FIG. 8



b


. The arrow


87


in the guide groove


78


indicates the direction in which the bolt


80


is moved when the guide plate


75


is drawn upward during disconnection of the power breaker


1


. The bolt


80


is used to move the retaining fork


81


and, with it, the ring


17


axially in the disconnection direction. The speed of the drive and the curve shape of the guide groove


78


are chosen such that the ring


17


and, with it, the rated current contacts


11


carry out the movement illustrated by curve B in FIG.


6


. Shortly before the rated current contacts


11


reach their disconnected position, a flap


88


, on which a spring (not illustrated) acts, is pressed to the side against the force of this spring, so that the bolt


80


can pass. As soon as the bolt


80


has passed the flap


88


, the flap


88


blocks the guide groove


78


. During connection, when the guide plate


75


is pressed downward, the bolt


80


is moved in the direction of the arrow


89


in the guide groove


79


. The profile of the connection movement in this second embodiment of the power breaker


1


therefore differs somewhat from that of the first embodiment of the power breaker


1


. Shortly before the rated current contacts


11


reach their connected position, a flap


90


, on which a spring (not illustrated) acts, is pressed out of the way against the force of this spring, so that the bolt


80


can pass. As soon as the bolt


80


has passed the flap


90


, the flap


90


blocks the guide groove


79


, and the rated current contacts


11


and, with them, the bolt


80


are located in their connected position. As already stated, the guide plate


82


is designed to be exactly identical to the guide plate


75


described here.




In order to reduce the number of pressure-tight bushings for the tie rods


67


and


76


, these operating elements can be combined for joint operation in the interior of the housing


5


, so that only a single bushing is required through the wall of the housing


5


. However, in principle, it is also possible to move the contact pin


14


and the rated current contacts


11


by means of two separate drives, in order in this way to achieve a greater range of adjustable movement profiles.





FIGS. 9



a


and


9




b


show the power breaker


1


in the position which corresponds approximately to the time T


4


in FIG.


6


.

FIG. 9



a


shows the operation of the contact pin


14


, and

FIG. 9



b


shows the rated current contacts


11


in a dead point position. An arc


61


burns between the erosion-resistant contact finger arrangement


13


and the contact pin


14


, and heats the arcing zone


26


and, with it, the storage volume


24


. However, a portion of the hot gas has already flowed out of the arcing zone


26


, etc., as has already been described above.

FIGS. 10



a


and


10




b


show the second embodiment, illustrated in a highly simplified form, of the power breaker


1


in the definitively disconnected state.




The power breaker


1


is designed for particularly large currents, in particular also large rated currents and short-circuit currents, such as those that can occur, for example, in the area downstream of the generator in a power station. Particularly if large short-circuit currents flow in the event of a fault, stay currents can occur in all the metal parts over the vicinity of the current path. It has thus been found to be worthwhile, in order to avoid consequential damage caused by stray currents, to design the metal parts of the drive linkage


4


such that there can be no metallic contact between them.




The described movement sequences can also be achieved very easily by means of a hydraulic drive. Such a drive is particularly advantageous wherever hydraulic control systems are already used for other purposes, as is the situation in many power stations, so that there is no need to produce a separate hydraulic system, thus allowing a further cost-effective drive version to be used.



Claims
  • 1. A power breaker having at least one arcing chamber, which is filled with an insulating medium, in particular SF6 gas, is rotationally symmetrical, extends along a longitudinal axis, has a power current path with a centrally located contact pin and has a separate rated current path which is provided with rated current contacts, and having a drive linkage which operates the contact pin and the rated current contacts, characterizedin that the drive linkage is designed such that, at the start of the disconnection process, the contact pin remains in a first dead point position until the rated current path is interrupted, in that the contact pin can then be moved in the disconnection direction at a higher average speed than the rated current contacts, in that the rated current contacts run into a second dead point position toward the end of their disconnection travel, and in that the contact pin does not reach its disconnected position until after the rated current contacts have ended their disconnection movement.
  • 2. The power breaker as claimed in claim 1, characterizedin that, at the start of a connection process, the rated current contacts remain in the second dead point position until the pre-arcing of the switch-on arc takes place.
  • 3. The power breaker as claimed in claim 1, characterizedin that at least one first piston-cylinder arrangement is provided which moves such that it is coupled to the rated current contacts and which a portion of the insulating medium is pressurized in a compression volume by a piston during disconnection.
  • 4. The power breaker as claimed in claim 1, characterizedin that at least a portion of the kinetic energy which the rated current contacts have toward the end of their disconnection travel can be used with the aid of the drive linkage for acceleration of the contact pin.
  • 5. The power breaker as claimed in claim 1, characterizedin that the overall travel and the average speed of the contact pin are always greater than the overall travel and the average speed of the rated current contacts.
  • 6. The power breaker as claimed in claim 5, characterizedin that the contact pin is driven at maximum connection and disconnection speeds in the range from 10 to 20 m/s, and in that the rate current contacts are driven at maximum connection and disconnection speeds in the range from 2 to 6 m/s.
  • 7. The power breaker as claimed in claim 3, characterizedin that at least one second piston-cylinder arrangement is provided, in which a portion of the insulating medium in a compression volume is compressed by means of a piston, which is coupled to the contact pin, during disconnection, so that it can be used for blowing out the arc, and in which, furthermore, the compression volume is used as a pneumatic damping volume toward the end of the disconnection travel of the contact pin.
  • 8. The power breaker as claimed in claim 1, characterizedin that the drive linkage has two linkage elements, the first of which is provided for operating the rated current contacts and pistons, and the second of which is provided for operating the contact pin.
  • 9. The power breaker as claimed in claim 8, characterizedin that the two linkage elements are articulated on a respective limb of an angled lever, which can rotate at the tip about a fixed-position rotation axis and in that the two linkage elements each pass through the same path, in the opposite direction in each case, both during disconnection and during connection.
  • 10. The power breaker as claimed in claim 8, characterizedin that, in the first linkage element, a lever connects the angled lever to a first limb of a second angled lever whose tip can rotate about a second fixed-position rotation axis, and in that a second limb of the second angled lever is connected by means of a lever to a rotation point on a ring, and in that, in the second linkage element, a lever connects the angled lever to a first limb of a third angled lever whose tip can rotate about a third fixed-position rotation axis, and in that a second limb of the third angled lever is connected by means of a lever to a moving rotation point at the tip of the fourth angled lever, wherein a first limb of the fourth angled lever can rotate about a fourth fixed-position rotation axis, while a second limb is connected in a hinged manner by means of a lever to a rotation point which moves axially and is fitted on the contact pin.
  • 11. The power breaker as claimed in claim 8, characterizedin that the first linkage element is provided with a first moving guide plate, and in that the second linkage element is provided with at least one second moving guide plate, and in that the first guide plate and the at least one second guide plate are designed such that they can be driven jointly or separately.
  • 12. The power breaker as claimed in claim 11, characterizedin that at least one of the two linkage elements in each case passes through an at least partially different path during connection and during disconnection.
  • 13. The power breaker as claimed in claim 11, characterizedin that there are two second guide plates, wherein these two guide plates are each arranged at the same distance on either side of the first guide plate.
  • 14. The power breaker as claimed in claim 11, characterizedin that guide grooves are incorporated in the guide plates, in that a bolt in each guide plate, engages with the guide grooves, in that the bolts are held in retaining forks, and in that these retaining forks are guided such that they move parallel to the longitudinal axis.
  • 15. The power breaker as claimed in claim 14, characterizedin that the guide grooves are provided with flaps which ensure that the bolt is guided along different paths during connection and disconnection.
Priority Claims (1)
Number Date Country Kind
100 06 167 Feb 2000 DE
US Referenced Citations (2)
Number Name Date Kind
5902978 Zhender May 1999 A
6013888 Thuries Jan 2000 A
Foreign Referenced Citations (4)
Number Date Country
4211156 Oct 1993 DE
19517580 Nov 1996 DE
19613568 Oct 1997 DE
19613569 Oct 1997 DE