The present invention relates to portable electronic devices and more particularly relates to devices for indicating the charge status of rechargeable power supplies used for powering the portable electronic devices.
Generally speaking, portable electronic devices are included in many aspects of everyday life. Examples of some portable electronic devices may include cell phones, wireless landline telephones, electric razors, calculators, wireless computer peripherals, radios, flashlights, wireless barcode scanners, just to name a few. Typically, these portable devices are powered by primary cell (non-rechargeable) batteries or secondary cell (rechargeable) batteries.
Although rechargeable batteries are normally a better economic choice than primary cell batteries and add less toxic waste to landfills, other power sources are available for powering portable electronic devices. For example, supercapacitors are a battery-free alternative that provides many advantages over conventional batteries.
Although supercapacitors do not hold a charge for as long as batteries, supercapacitors are able to be charged or recharged much faster than rechargeable batteries. Also, supercapacitors can be discharged and recharged hundreds of thousands of times without losing their charging capacity. On the other hand, rechargeable batteries may only be able to be discharged and recharged a few hundred times before their charging capacity declines to a point of no longer being usable.
Another advantage is that supercapacitors do not degrade like rechargeable batteries and therefore may never need to be replaced. Also, since there are no chemical reactions involved in the charging and discharging of supercapacitors, there is therefore no decay of chemical materials. Thus, supercapacitors can eliminate the environmental issues associated with the use and disposal of primary cell batteries and rechargeable batteries.
Because of the familiarity with rechargeable batteries, many users may have become accustomed to the practice of charging, discharging, and recharging of rechargeable batteries. Particularly, users may be aware that charging batteries before a first use may take hours and that recharging the batteries may take 10-30 minutes, depending on the type of batteries being used. Therefore, a user might repeatedly check the status of the battery charging process until the batteries are eventually ready to be used. Typically, there may be a single indicator for indicating that the rechargeable batteries are ready to be used.
However, since supercapacitors are charged, discharged, and recharged much faster than batteries, a new type of charge status indication process would be beneficial for users. Therefore, a need exists for a power status indicator for indicating more information regarding the charge of a rechargeable power supply, particularly a rechargeable supercapacitor. In this way, a user can be informed of the various stages of charge status levels of the supercapacitors.
Accordingly, in one aspect, the present disclosure embraces a wireless electronic device which comprises a rechargeable power supply and a power capacity indicator unit. The rechargeable power supply includes at least one supercapacitor. The power capacity indicator unit comprises one or more sensors configured to detect that the wireless electronic device is out of a base charger and is in an idle state for a predetermined idle threshold. The one or more sensors are further configured to detect when a power level of the rechargeable power supply is within at least one predetermined power threshold range. The power capacity indicator unit further comprises a power level comparing unit configured to compare the detected power level of the rechargeable power supply with a plurality of predetermined power threshold levels to determine the at least one predetermined power threshold range. The control unit is configured to activate at least one power status indicator corresponding to the at least one predetermined power threshold range when the wireless electronic device is detected to be out of the base charger and in the idle state for the predetermined idle threshold, and the detection of the power level of the rechargeable power supply is within at least one predetermined power threshold range. In an exemplary embodiment, the wireless electronic device is a handheld barcode scanner. In an embodiment, the power capacity indicator unit is incorporated in the wireless electronic device.
The activation of the at least one power status indicator corresponds to switching of the at least one power status indicator on and off in a predefined pattern to indicate that the power level of the rechargeable power supply is within the at least one predetermined power threshold range. The activated at least one power status indicator indicates at least one alert to a user. In an embodiment, the control unit is configured to activate a first predefined power status indicator in a predefined pattern when the wireless electronic device is not properly supported on the base charger.
In various embodiments, the at least one predetermined power threshold range corresponds to one of a first threshold designating a “near depletion” status or a second range designating a “ready to use but not fully charged” status. The second range is configurable to include at least an upper sub-range and a lower sub-range. The control unit is further configured to set the activation of the at least one power status indicator in a default-on mode for the first range, a default-on mode for the lower sub-range of the second range, and a default-off mode for upper sub-range of the second range.
In an embodiment, the at least one power status indicator is a light emitting diode (LED) of a predefined color. In other embodiments, the at least one power status indicator provides one or more of a visual feedback, an audio feedback, or a tactile feedback.
In another aspect, a power capacity indicator unit is disclosed that comprises one or more sensors configured to detect that a wireless electronic device is out of a base charger and is in an idle state for a predetermined idle threshold. The one or more sensors are further configured to detect when a power level of the rechargeable power supply is within at least one predetermined power threshold range. A control unit is configured to activate at least one power status indicator corresponding to the at least one predetermined power threshold range when the wireless electronic device is detected to be out of the base charger and in the idle state for the predetermined idle threshold, and the detection of the power level of the rechargeable power supply is within at least one predetermined power threshold range.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
Handheld and/or wireless barcode scanners (i.e., indicia readers) are typically powered by a rechargeable energy storage unit (RESU). Traditionally the RESU has used a battery as its energy storage component. Batteries are optimized to provide energy for prolonged periods of continuous operation, which suits the needs for most electronic devices (e.g., laptops, cellphones, etc.). Barcode scanners, however, typically operate in a different fashion. Active periods are often followed by periods of non-operation. As a result, other energy storage components may be considered for powering the barcode scanner. A super capacitor (i.e., ultra-capacitor, double layer capacitor, etc.), for example, may be suitable energy storage component for an RESU.
The super capacitor stores energy via a static charge rather than an electrochemical reaction or other process. As a result, the charging/operating characteristics required for super-capacitor RESUs are different from battery RESUs. For example, a super-capacitor can be charged more quickly than a lithium-ion (Li-ion) battery. The super capacitor may be charged/discharged many times and typically has a longer service life than a Li-ion battery. As a result, super capacitors may be used for barcode scanning applications, which may require short-term power bursts followed by quick charging periods.
The charging process (i.e., the currents/voltages applied over time) of a super capacitor is different from a Li-ion battery. For example, the super capacitor may accept larger charge currents. The super capacitor cannot be overcharged and does not require the detection of a full-charge since the charge current stops flowing when the super capacitor has reached its charge limit. A Li-ion battery, on the other hand, requires careful control of charging current/voltage, and care should be taken to stop charging when the battery has reached its charge limit. In addition, safety mandates that the temperature of a Li-ion battery be monitored and the charge/use of the Li-ion battery discontinued when the battery becomes excessively warm.
In a battery-free scanner, one of the primary selling points is the fast-charge capability that the super-capacitor power pack allows. Even though the power pack can be fully charged in about 30 seconds, the scanner is actually ready to scan in much less time. For typical battery-charging, the charger (e.g., a charging cradle) provides a “charging” indication (usually via a flashing LED) as well as a “fully charged” indication (usually through a solid ON LED). In a typical use of a scanner with a super-capacitor power pack, the user would not necessarily need to wait for the full-charge indication if there was an indicator that told them that the scanner was “ready-to-scan” even though it was not fully charged.
On the scanner side, it is equally important to notify the user when the power pack has become substantially depleted but well before it is nearing full depletion. A super-capacitor power pack typically depletes far faster than most scanner users are accustomed to with wireless scanners. Thus, it is desirable for the customer/user to be alerted when the power pack energy level falls below a certain percentage (e.g., 50 percent, 40 percent, 30 percent, 20 percent, 10 percent, and/or 5 percent).
Most typical scanner customers use scanners that have large battery capacities. Therefore, charge times are long and so are use-times. But the super-capacitor power pack provides a very different user experience in which the user gets the benefit of the fast charge but also gets limited use-time as a trade-off. The trade-off is not bad as long as the user gets notified with an easy to understand message about the status of the power pack energy level. In an exemplary scanner, RED, YELLOW, GREEN color coding indicators provide an intuitive indication of “bad” status (near depletion), “caution” status (ready to scan but not fully charged), and “go” status (fully charged). Exemplary scanners may use other colors (e.g., white, blue, pink, purple, orange, etc.) and may provide indications of more than the just “bad” status (near depletion), the “caution” status (ready to scan but not fully charged), and the “go” status (fully charged), such as percentage charged, number of scans left, etc. Furthermore, other power indicators (e.g., audible alerts, tactile feedback, or a wireless signal (e.g., Bluetooth) to another device) may be used to provide such indications. In addition, variations of the notifications (such as adjustments to the threshold levels for the indicators, colors, flashing rates, etc.) can be easily made through configuration or through re-programming. In an exemplary scanner, a change in the indicator may also trigger the initiation of or a change in the charging state or rate, the initiation of or a change in discharge rate, and/or the sending of an alert to another device or the user (e.g., to cause the user to take action).
The recharging device 14 in the embodiment of
In some embodiments, the wireless electronic device 12 may include a power status indicator 22 for indicating the power level of the rechargeable power supply 17. The power status indicator 22 may further indicate other information, such as linking status, decoding state, and instant charge pack condition of at least one supercapacitor of the rechargeable power supply 17. As shown, in an embodiment, the power status indicator 22 may correspond to one or more light sources (e.g., an LED or multiple LEDs) and/or beepers to indicate various power levels, such as full power, lower power, and/or no power. In an alternative or additional embodiment, the power status indicator 22 may correspond to a speaker for providing audible warnings. In yet another alternative or additional embodiment, the power status indicator 22 may correspond to a vibration device to provide tactile feedback to the user. The power status indicator 22 on the wireless electronic device 12 may also provide real time charge status when charging. Furthermore, the functioning of the power status indicator 22 may be programmed to match the user's needs (e.g., by the user, the owner of the device, the manufacturer, and/or the distributor).
In an exemplary embodiment, one or more indicators in the power status indicator 22 may be positioned in two different locations to give the appearance of separate indicators. In an alternative embodiment, the one or more indicators may be located under an opaque window to give the appearance of the same indicator providing two (or more) different colors of light. With an opaque or semi-opaque window, a user would perceive that the light may be coming from the same location and may not notice the difference in the locations of the one or more indicators. Likewise, the one or more indicators may also be positioned in different locations (as shown) or under the same opaque window to give the perception of the same location with different colors.
One embodiment may include incorporating the power status indicator 22 only on the wireless electronic device 12. A second embodiment may include incorporating another power indicator, such as power status indicator 32, similar to the first power status indicator 22 on the wireless electronic device 12, on the base charger 18. A third embodiment may include incorporating the power status indicator 32 only on the base charger 18. Various exemplary implementations of output of the power status indicator 22 and 32, under the control of a power capacity indicator unit, for indicating power status information are indicated by charts 90 to 120 in
According to the embodiment of
The recharging device 14 may further include a power supply indicator 42 incorporated on the base charger 18. The power supply indicator 42 may be configured to indicate when power is being supplied to the recharging device 14 from the electrical outlet allowing the recharging device 14 to properly charge or recharge the rechargeable power supply 17 of the wireless electronic device 12.
According to one implementation, the charging system 10 (
In some embodiments, the handheld electronic device may include a power status indicator 22 for indicating the power status of the rechargeable power supply 17 when the handheld electronic device is detected to be out of the base charger and in the idle state for a predetermined idle threshold, and the detection of the power level of the rechargeable power supply 17 is within at least one predetermined power threshold range. Various exemplary implementations of output of the power status indicator 22 and 32, under the control of a power capacity indicator unit, for indicating power status information are indicated by charts 90 to 120 in
In some embodiments, the power status indicator 22 is incorporated in the handheld electronic device. In another embodiment, the power status indicator 32 is incorporated in the base charger (e.g., recharging device 14). Specifically, the rechargeable power supply 17 may include at least one supercapacitor. The handheld electronic device may be a wireless barcode scanner. The structure and functionality of the power capacity control unit in the handheld electronic device is similar to the power capacity control unit 70 described in detail in
The recharging device 54 in the embodiment of
In some embodiments, the wireless electronic device 52 may include a power status indicator 56 for indicating the power status of the rechargeable power supply 17 when the wireless electronic device 52 is detected to be out of the base charger and in the idle state for a predetermined idle threshold, and the detection of the power level of the rechargeable power supply 17 is within at least one predetermined power threshold range.
One embodiment may include incorporating the power status indicator 56 only on the wireless electronic device 52. A second embodiment may include incorporating the power status indicator 62 only on the recharging device 54. A third embodiment may include incorporating the two power status indicators 56, 62 on both the wireless electronic device 52 and recharging device 54, respectively. Various exemplary implementations of output of the power status indicator 56 and 62, under the control of a power capacity indicator unit, for indicating power status information are indicated by charts 90 to 120 in
In an embodiment, the power status indicator 56 on incorporated on the wireless electronic device 52 may primarily include two color coding indicators, such as RED and YELLOW indicators, to provide an intuitive indication of “bad” status (near depletion) and “caution” status (ready to scan but not fully charged). The RED and the YELLOW indicators may be in a default-on mode. The wireless electronic device 52 may further include a GREEN indicator to provide an intuitive indication of “go” status (fully charged). The GREEN indicator may be in a default-off mode.
According to the embodiment of
The power status indicator 62 may be built into an oval page button that may be used for paging the wireless electronic device 52. The oval page button may include an opaque or semi-opaque material through which light from one or more indicators may be diffused. One side (e.g., the left side) of the oval page button may comprise the power status indicator 62, which may include one or more colored visual indicators underneath the opaque or semi-opaque material. The user may perceive the color change when one or the other of the indicators is illuminated, but may not necessarily notice the change in the location of the indicators underneath the button. In some embodiments, the other side (e.g., the right side) of the oval page button may include additional indicator (e.g., a RED LED) used for other indications, such as a “power on” indication or a paging operation.
In this embodiment, the power capacity indicator unit 70 may include one or more sensors 72, a memory 74, a power level comparing unit 76, a control unit 78, an output device control unit 80, and output devices 82 (i.e. power status indicators). In an embodiment, the one or more sensors 72 may be configured to detect that the wireless electronic device 12 is out of the base charger 18 of the recharging device 14, i.e. not in contact with the recharging device 14. The one or more sensors 72 may be further configured to detect that the wireless electronic device 12 is in idle state for a predetermined idle threshold, for example 5 seconds. The one or more sensors 72 may further include, for example a power sensor, configured for detecting when the stored power level of the rechargeable power supply 17 is within at least one predetermined power threshold range. The control unit 78 may be configured to poll data from the one or more sensors 72 after regular time intervals. At any instant, when the poll data indicates that the wireless electronic device 12 is out of the base charger 18 and the wireless electronic device 12 is in idle state for a predetermined idle threshold, the control unit 78 may receive the power level of the rechargeable power supply 17 detected by the power sensor. The power level comparing unit 76, in conjunction with the control unit 78, is configured to compare the power level detected by the one or more sensors 72 (when it is detected that the wireless electronic device 12 is out of the base charger 18 and the wireless electronic device 12 is in idle state for the predetermined idle threshold) with the various predetermined power threshold levels, such as “10%”, “30%”, and “50%, stored in the memory 74. In an embodiment, based on the comparison, the power level comparing unit 76 may be configured to determine one of multiple different power threshold ranges within which the detected power level lies. In various exemplary embodiments, the at least one predetermined power threshold ranges may primarily correspond to a first range (such as “10%” charge left) designating a “near depletion” status or a second range (such as “50%” charge left) designating a “ready to use but not fully charged” status. In additional embodiment, the at least one predetermined power threshold ranges may further correspond to a third range (such as “down to 50%”) designating a “fully charged” status. In an embodiment, the second range is configurable to include at least an upper sub-range (such as “50%” charge left), and a lower sub-range (such as “30%” charge left).
In an embodiment, the control unit 78 may be further configured to set the activation of the at least one power status indicator in a default-on mode for the first range, a default-on mode for the lower sub-range of the second range, and a default-off mode for upper sub-range of the second range.
In an embodiment, the control unit 78, in response to the information provided by the one or more sensors 72 and the power level comparing unit 76, may be configured to determine charge pack status information of the one or more super capacitors in the rechargeable power supply 17. Accordingly, the control unit 78, in conjunction with the output device control unit 80, may be configured to control the output devices 82 to activate a power status indicator, such as the power status indicators 22, corresponding to the predetermined power threshold range to indicate the detected charge pack status information to the user. The output devices 82 may include the one or more power status indicators. The one or more power status indicators may provide one or more of a visual feedback, an audio feedback, or a tactile feedback. The activation of the one or more power status indicators may correspond to switching a power status indicator on and off in a predefined pattern to indicate the predetermined power threshold range of the rechargeable power supply 17. For example, the control unit 78 may be configured to switch a power status indicator (e.g. a RED LED) on and off in a predefined pattern (e.g. 3 sets of flashes) to indicate the first range of the rechargeable power supply 17.
In an embodiment, the output device control unit 80 may be configured to select the one or more power status indicators, such as the power status indicator 22 incorporated on housing of the wireless electronic device 12 and/or the power status indicator 32 incorporated on housing of the base charger 18, for the activation by the control unit 78 in accordance with detected power level of the rechargeable power supply 17 within the first range or the second range. The selected one or more power status indicators may be light emitting diodes of predefined colors. Various possible implementations for activation of power indicators on the wireless electronic device 12 and the recharging device 14 have been described in detail in
Thus, the detected charge pack status information is indicated to the user by activating the power status indicators 22, when the one or more sensors 72 detect that the wireless electronic device 12 is out of the base charger 18 and the wireless electronic device 12 is in the idle state for the predetermined idle threshold. Accordingly, the activation of the power status indicators 22 and/or 32 (such as a series of beeps and flashes) post the predetermined idle threshold prevents the user from confusing a power status indication for a “good scan” or “bad scan” indicator and vice versa. In other words, in accordance with the disclosure, the activation of the power status indicators 22 and/or 32 (such as a series of beeps and flashes) post the predetermined idle threshold does not confuse the user while the user is actively scanning (e.g. the user does not consider such series of beeps and flashes for a scan error while scanning). Therefore, to prevent any confusion for the user, the power status indicators 22 and/or 32 are only activated when the wireless electronic device 12 is idle and the user is not actively using the wireless electronic device 12. Thus, the power status indicator 22 is activated, for example an alert is sounded, after the predetermined idle threshold, i.e. when the user is not performing the scanning operation. For example, in case the predetermined idle threshold is configured to be “10 seconds” based on scanning of a configuration barcode, the power status indicator 22, for example a RED LED, is activated after “10 seconds” when the power level of the rechargeable power supply 17 is detected by the power sensor to be in the first range designating a “near depletion” status. Exemplary implementations of output of the output devices 82 for indicating the charge pack status information of one or more super capacitors in the rechargeable power supply 17 are indicated by chart 90 in
In another embodiment, the control unit 78, in conjunction with the output device control unit 80, may be configured to control the output devices 82 to indicate the status information of the wireless electronic device 12 and the recharging device 14 to the user. Exemplary implementations of output of the output devices 82 for indicating the status information of the wireless electronic device 12 in conjunction with the recharging device 14 are indicated by chart 100 in
Various exemplary barcodes have been illustrated in
The configuration barcode illustrated in
The configuration barcode illustrated in
The configuration barcode illustrated in
The configuration barcode illustrated in
The configuration barcode illustrated in
The configuration barcodes in
The output devices 82 may include visual and/or audible indicating devices. For example, the output devices 82 may include multiple LEDs for visually indicating the information, such as the power status, the status information, or the charge pack status information. In an exemplary embodiment, to indicate the power status, a RED LED may provide intuitive indication of a power level nearing depletion, a YELLOW LED may provide intuitive indication of a power level which is ready to scan but not fully charged), and a GREEN LED to provide an intuitive indication of a power level fully charged. As described above, the one or more power status indicators corresponding to the predetermined power threshold range are activated when the wireless electronic device 12 is detected to be out of the base charger 18 and the idle state of the wireless electronic device 12 for the predetermined idle threshold, and the detection of the power level of the rechargeable power supply 17 within the predetermined power threshold range. Various possible implementations for activation of power indicators on the wireless electronic device 12 and the recharging device 14 have been described in detail in
According to one embodiment, the power capacity indicator unit 70 may include a power sensing device (e.g., one or more sensors 72) configured to detect the power level of a rechargeable power supply 17 when the one or more sensors 72 detect that the wireless electronic device 12 is out of the base charger 18 and the wireless electronic device 12 is in idle state for the predetermined idle threshold. The power capacity indicator unit 70 may further include a detection device (e.g., power level comparing unit 76) configured to compare the detected power level with a plurality of predetermined levels in order to determine one of a plurality of predetermined power threshold ranges of the rechargeable power supply 17. The power capacity indicator unit 70 also includes the output devices 82, such as colored LEDs. The output device control unit 80 may be further controlled by the control unit 78 to activate switching the colored LEDs on and off in a predefined pattern to indicate the predetermined power threshold range of the rechargeable power supply 17.
Furthermore, the rechargeable power supply 17 may include at least one supercapacitor and may be incorporated in a wireless barcode scanner. The power capacity indicator unit 70 may additionally or alternatively be incorporated in a cradle (e.g., recharging device 14) that is configured to support the wireless barcode scanner during a charging process, wherein the cradle may be further configured to provide electric charge to the wireless barcode scanner during the charging process to recharge the supercapacitor of the wireless barcode scanner.
In addition, the switching circuit (e.g., in the output device control unit 80), under the control of the control unit 78, may be configured to switch a predefined power status indicator, for example a RED LED, in a predefined pattern when the base charger 18 is not charging the rechargeable power supply 17 or when the wireless electronic device 12 is not properly supported by the base charger 18. The switching circuit may also be configured to switch to a predefined power status indicator, in another predefined pattern, such as rapid on/off, when the power sensing device or detection device (e.g. e.g., the power level comparing unit 76) detects at least one of a charging error or a condition in which the charging has been suspended.
In another embodiment, the power capacity indicator unit 70 of
In an embodiment, the output device control unit 80 may be configured to control the output devices 82 (i.e. the visual and/or audio indicators in the power status indicator 32) to indicate the status information of the recharging device 14 to the user.
The power status indicator 32 may include colored indicators to indicate the status information of the recharging device 14, verify the communication between the recharging device 14 and a host system (now shown), and indicate instant charge pack status information of the wireless electronic device 12.
In an embodiment, the output device control unit 80, based on communication status information provided by the one or more sensors 72, may be configured to control the output devices 82 to indicate the communication status information and scanning status between the wireless electronic device 12 and the recharging device 14 to the user. Exemplary implementations of output of the output devices 82 for indicating the communication status information and scanning status between the wireless electronic device 12 and the recharging device 14 are indicated by chart 110 in
In another embodiment, the output device control unit 80, based on the charge pack status information provided by the control unit 78, may be configured to control the output devices 82 to indicate the progress when charging, when the wireless electronic device 12 resides in the recharging device 14. Exemplary implementations of output of the output devices 82 for indicating the charge pack status information are indicated by chart 120 in
Various exemplary barcodes have been illustrated in
For example, the configuration barcodes in
The configuration barcode illustrated in
The configuration barcodes in
According to the chart 90 of
According to the chart 100 of
According to the chart 120 of
A1. A wireless electronic device, comprising:
a rechargeable power supply;
a power capacity indicator unit comprising:
wherein the power capacity indicator unit is configured to:
A2. The wireless electronic device of embodiment A1, the rechargeable power supply comprises a supercapacitor.
A3. The wireless electronic device of embodiments A1 and/or A2, wherein the wireless electronic device is a barcode scanner.
A4. The wireless electronic device of embodiments A1, A2, and/or A3, wherein the predetermined idle threshold is configurable.
A5. The wireless electronic device of embodiments A1, A2, A3, and/or A4, wherein the power status indicator comprises an LED.
A6. The wireless electronic device of embodiments A1, A2, A3, A4, and/or A5, wherein the power status indicator comprises an audio indicator.
A7. The wireless electronic device of embodiments A1, A2, A3, A4, A5, and/or A6, wherein:
the power status indicator comprises:
the power capacity indicator unit is configured to:
A8. The wireless electronic device of embodiment A7, wherein:
the power status indicator comprises a third LED having a different color from the first LED and the second LED; and
the power capacity indicator unit is configured to:
A9. The wireless electronic device of embodiments A7 and/or A8, wherein the audio indicator beeps twice when activated.
A10. The wireless electronic device of embodiments A7, A8, and/or A9, wherein:
the first LED is yellow; and
the second LED is red.
A11. The wireless electronic device of embodiments A8 and/or A9, wherein:
the first LED is yellow;
the second LED is red; and
the third LED is green.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present disclosure is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
The present application is a continuation of U.S. patent application Ser. No. 16/288,915 for a Power Capacity Indicator filed Feb. 28, 2019, which is a continuation of U.S. patent application Ser. No. 15/870,010 for a Power Capacity Indicator filed Jan. 12, 2018, now U.S. Pat. No. 10,263,443 issued Apr. 16, 2019, which claims the benefit of U.S. Patent Application No. 62/445,811 for a Cradle for Scanner with Power Capacity Indicator filed Jan. 13, 2017, each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5493707 | Kamitani | Feb 1996 | A |
5590343 | Bolan et al. | Dec 1996 | A |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7639019 | Bosse et al. | Dec 2009 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8044815 | Du et al. | Oct 2011 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8595539 | Funada | Nov 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692921 | Nakagawa et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham, IV | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein, Jr. | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9203992 | Ohhashi | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Smith | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey et al. | May 2016 | B2 |
9360304 | Xue et al. | Jun 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein, Jr. | Aug 2016 | B2 |
9412242 | Van et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van et al. | Aug 2016 | B2 |
9423318 | Liu et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
10263443 | Colavito | Apr 2019 | B2 |
10797498 | Colavito | Oct 2020 | B2 |
20040147293 | Park | Jul 2004 | A1 |
20060061332 | Neu et al. | Mar 2006 | A1 |
20070014105 | Noguchi | Jan 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080042621 | Miglioranza | Feb 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100134072 | Neu et al. | Jun 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100317413 | Tan | Dec 2010 | A1 |
20110111801 | De Weerd | May 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140132201 | Tsang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | Digregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150042287 | Liu et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150310243 | Ackley et al. | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150312827 | Okita et al. | Oct 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160081151 | Wang | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160179132 | Harr | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Franz | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini et al. | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | Dipiazza et al. | Jun 2016 | A1 |
20160192051 | Dipiazza et al. | Jun 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggerty et al. | Jul 2016 | A1 |
20160204636 | Allen | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160277202 | Davis | Sep 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160316190 | McCloskey et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Germaine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress, Jr. | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170108838 | Todeschini | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | D'Armancourt et al. | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Celinder et al. | Jul 2017 | A1 |
20170193727 | Van et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2005211521 | Mar 2006 | AU |
2013163789 | Nov 2013 | WO |
Entry |
---|
U.S. Appl. No. 16/288,915, filed Feb. 28, 2019, US 2019-0207400 A1, Pending. |
U.S. Appl. No. 15/870,010, filed Jan. 12, 2018, now U.S. Pat. No. 10,263,443, Patented. |
Non-Final Rejection dated Jun. 22, 2018 for U.S. Appl. No. 15/870,010. |
Non-Final Rejection dated Sep. 16, 2019 for U.S. Appl. No. 16/288,915. |
Notice of Allowance and Fees Due (PTOL-85) dated Dec. 10, 2018 for U.S. Appl. No. 15/870,010. |
Notice of Allowance and Fees Due (PTOL-85) dated Jan. 31, 2020 for U.S. Appl. No. 16/288,915. |
Notice of Allowance and Fees Due (PTOL-85) dated May 28, 2020 for U.S. Appl. No. 16/288,915. |
Number | Date | Country | |
---|---|---|---|
20200259350 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62445811 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16288915 | Feb 2019 | US |
Child | 16859406 | US | |
Parent | 15870010 | Jan 2018 | US |
Child | 16288915 | US |