Power clamp mechanism

Information

  • Patent Grant
  • 6655673
  • Patent Number
    6,655,673
  • Date Filed
    Wednesday, September 19, 2001
    23 years ago
  • Date Issued
    Tuesday, December 2, 2003
    21 years ago
Abstract
A power clamp apparatus, comprised of, a single metal body with an interior cavity running there through, a unit assembly which is inserted into said interior cavity, and said unit assembly including, a piston for slidable back and forth movement within said cavity, a lower portion of said cavity acting as a chamber for said piston, a piston rod connected to said piston, a floating head member on the piston rod, a link mechanism connected proximate to an upper end of said piston rod, a lower cap member which closes off said cavity near a bottom end of said metal body, an upper cap member which closes off the metal body proximate to a top end thereof after said unit assembly is inserted into said cavity, a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism, a clamp arm attached to said drive shaft on the outside of said metal body, and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.
Description




BACKGROUND OF THE INVENTION




This invention broadly relates to a new power clamp mechanism which has unique features and which can be manufactured economically and at low cost. More particularly, this invention relates to a new power clamp mechanism which is made from a single extrusion body.




In the past, power clamping mechanisms have been relatively expensive to manufacture and also have generally required the usage of two separate body components; namely, one body component which houses a piston and piston rod assembly for driving the clamp and a second body component used to house a linkage mechanism which is connected to a clamp arm for opening and closing the clamp arm into a clamped locked position or open position.




Accordingly, it is a primary object of this invention to provide a unique new power clamp mechanism which can be produced at a relatively low cost and which is formed through the use of a single body member.




Another object of the invention is to provide a new power clamp mechanism which is made utilizing a single extruded body for the clamp mechanism and which provides its power locking operation to the clamp arm through the usage of either a wedge lock link mechanism or a toggle link mechanism.




Another object of the present invention is to provide a specially designed power clamp apparatus which utilizes a wedge lock system to move the clamp arm into a closed clamped position.




Another object of the invention is to provide a new power clamp mechanism which utilizes a straight extruded body, with no offsets or doglegs being present in the body of the clamp mechanism.




Another object of the invention is to provide a new power clamp mechanism capable of using at least three different types of clamp arms; namely, a U-arm, a side arm/U-arm, or a regular side arm type clamping bar.




Another object of the invention is to provide a unique new clamp mechanism wherein a unit assembly including a piston, a piston rod, a floating head member, and a link mechanism, are all assembled together prior to being inserted as a unit into the body of the clamp mechanism.




Another object of the invention is to provide a new clamp mechanism wherein a special track mechanism is used to guide the up-and-down movement of the piston rod to thereby provide a technically advanced and uniquely operative clamp mechanism.




Another object of the invention is to provide a novel clamp mechanism which is made using a single metal body and which includes a centrally located push-pull rod (or piston rod) which is generally centered in the middle of that single body, which houses the clamp mechanism, to thereby accomplish uniform force distribution and longevity for the clamp mechanism.




Another object of the invention is to provide a unique and novel clamp mechanism which utilizes a floating head mounted on the rigid tracks, which floating head when fixed in position within the clamp body acts as the upper cylinder head for the chamber (or cavity) within which the piston moves.




Other objects features and advantages of the present invention will become apparent from the subsequent description and the appended claims taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates an exploded view of the power clamp mechanism in accordance with the invention which utilizes a wedge lock linkage mechanism to drive the clamp arm;





FIG. 2

illustrates another exploded view of the invention illustrating the use of a U-shaped clamp arm;





FIG. 3

illustrates another exploded view of the invention, basically the same as

FIGS. 1-2

, except taken from the opposite side thereof and with the track mechanism attached to the floating head;





FIG. 4

shows an interior view of the power clamp mechanism of the invention with the piston member being driven near to its top position within its piston chamber;





FIG. 5

illustrates a top view of the clamp mechanism of the invention in exploded view format;





FIG. 6

shows a view of the interior assembly of the clamp mechanism of the invention;





FIG. 7

shows another cross-sectional view of the clamp mechanism of the invention in partially cut-away cross-section;





FIG. 8

shows an alternate embodiment of the power clamp mechanism of the invention, which utilizes a toggle linkage mechanism to drive the shaft which rotates the clamp arm;





FIG. 9

shows a sectional view taken along the line


9





9


in

FIG. 8

;





FIG. 10

shows a top view of

FIG. 8

partially in phantom view to show the interior workings of the

FIG. 8

clamp mechanism;





FIG. 11

shows an enlarged view of the left end of

FIG. 8

, to show more detail of the toggle linkage mechanism used.





FIG. 12

shows a second alternate embodiment of a power clamp according to the present invention.





FIG. 13

shows a top end view of the second alternate embodiment of the power clamp.





FIG. 14

shows a cross section taken along the line A—A in

FIG. 13

of the second alternate embodiment of the power clamp.





FIG. 15

shows a top end view of the power clamp according to the second alternate embodiment with the head cap removed.





FIG. 16

shows a cross section taken along line B—B in

FIG. 15

of the power clamp according to the second alternate embodiment.





FIG. 17

shows an exploded view of a third alternate embodiment of the power clamp.





FIG. 18

shows a clamp mechanism with T-slots for mounting.











SUMMARY OF THE INVENTION




Briefly stated, the present invention involves a power clamp apparatus comprised of, a single metal body with an interior cavity running there through, a unit assembly which is inserted into said interior cavity, and said unit assembly including, a piston for slidable back and forth movement within said cavity, a lower portion of said cavity acting as a chamber for said piston, a piston rod connected to said piston, a floating head member attached to the rigid tracks, a link mechanism connected proximate to an upper end of said piston rod, a lower cap member which closes off said cavity near a bottom end of said metal body, an upper cap member which closes off the metal body proximate to a top end thereof after said unit assembly is inserted into said cavity, a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism, a clamp arm attached to said drive shaft on the outside of said metal body, and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.




From another aspect, this invention involves a power clamp apparatus comprised of, a single body with an interior cavity running there through, a unit assembly which is inserted into said interior cavity, and said unit assembly including, a piston for slidable back and forth movement within said cavity, a lower portion of said cavity acting as a chamber for said piston, a piston rod connected to said piston, a floating head member through which the piston rod moves, a link mechanism connected proximate to an upper end of said piston rod, a lower cap member which closes off said cavity near a bottom end of said metal body, an upper cap member which closes off the metal body proximate to a top end thereof after said unit assembly is inserted into said cavity, a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism, a clamp arm attached to said drive shaft on the outside of said metal body, and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.




DESCRIPTION OF PREFERRED EMBODIMENTS




The preferred embodiments of the invention are now to be described with reference to the drawings. Like numerals in different drawing figures indicate like elements.





FIGS. 1-7

show various exploded views of the power clamp mechanism designated


10


. In the clamp mechanism


10


there is utilized an elongated body member


12


which has a central cavity there through designated


14


. The body


12


has numerous holes or apertures therein designated


16


, which are used for mounting of the clamp body to a stationary surface (not shown), and which supports the clamp mechanism for working operation thereof. At each end of the clamp body


12


there is positioned a cap member, with the upper cap number being designated


18


and the lower cap number designated


20


. The interior of the power clamp mechanism


10


is basically comprised of a piston


30


, a piston rod


32


, a floating head


34


and a driven plate


36


.




The drive shaft


40


is shown in

FIGS. 1

,


2


and


3


, such that the drive shaft is positioned transversely through the two apertures


42


and


44


. The drive shaft


40


is typically supported for rotational movement by bearings designated


50


. Circular bushings (preferably made of steel or polymer materials) are pressed into the extruded body


12


at the apertures


42


and


44


; and, then the metal bearings


50


(preferably sintered) are pushed over the square section drive shaft to mate with and be seated within the steel bushings.




The wedge lock linkage is designated


36


. The driven plate


36


or wedge lock linkage mechanism


36


is connected to the upper end of the piston rod


32


through usage of the clevis pin


64


. The clevis pin


64


is supported at the upper end of the piston rod


32


by the U-shaped frame member


64




a


, which is mounted at the left end of the piston rod (see FIGS.


1


-


2


). When the piston rod


32


is driven to its full upward position the wedge lock link is driven upwardly to rotate the square cross-section drive shaft such that the clamp arm


66


on the exterior of the clamp mechanism is rotated in a downward direction to thereby closed the clamp arm


66


against a work piece.




The piston


30


is driven in a back and forth direction, that is in an up-and-down direction, through introduction of hydraulic fluid or gases to the chamber


80


through use of the hydraulic inlet and outlet ports


82


and


84


.




The clamp arm


66


has its two recesses


67


and


69


placed over the complementary mating end portions


71


and


73


of the square cross-section drive shaft


40


, and once the clamp arm recesses


67


and


69


are placed thereover, the fastening plates


75


are secured (with fasteners) across the drive shaft


40


to hold the clamp arm


66


thereon.




The track mechanism is comprised of two tracks


91


and


93


. The track members


91


and


93


permit the slidable up-and-down movement of the rolling bearings


65


within the tracks


91


and


93


to properly align the up-and-down movement of the piston rod


32


. Also the lower portion of the track members


91


and


93


have small shoulder members


95


and


97


which buttress against the floating head


34


at the receiving ramps


103


and


105


(i.e., complementary receiving shoulder recesses thereon).




Once the internal workings of the clamp mechanism are inserted into the clamp body


12


, the track members


91


and


93


buttress up against the receiving ramps


103


and


105


(as best shown in

FIG. 4

) to position the floating head


34


in a stationary position; and, once so positioned the floating head then acts as the upper head for the piston chamber


80


.





FIG. 6

shows the internal working mechanism in assembled format, such that it is ready for insertion into the body


12


, that is, to the interior cavity


14


of the body


12


. Once the internal mechanism is inserted, then the drive shaft member


40


is positioned transversely through the openings


42


,


44


to link with the wedge lock link mechanism


36


.





FIGS. 4 and 7

show cross-sectional views of the clamp mechanism


10


, with the unit assembly of

FIG. 6

inserted therein, and with the drive shaft


40


being positioned through the transverse holes


42


,


44


.





FIGS. 8

,


9


,


10


and


11


show an alternate embodiment of the invention wherein a toggle linkage mechanism is utilized to drive the shaft member


140


. In the toggle linkage version of the invention the piston rod


132


is connected to the lower portion of a toggle link


133


, which in turn is connected to another toggle link


135


. When the piston rod


132


is retracted, or moved in a downward direction, this pulls on the link member


133


to thereby also exert a pulling action on the link


135


, which rotates the drive shaft


140


into an open position to thereby open the clamp arm


166


(not shown). Likewise when the piston rod


132


is driven in an upward direction, the link


133


is rotated back to the position as shown in

FIG. 11

, to thereby force the link


35


to rotate the drive shaft


140


, which in turn closes or clamps the clamp arm


66


against a work piece.




Also as shown in

FIGS. 8

,


9


,


10


and


11


, the top plate member


118


is of greatly strengthened capacity, as is necessary for the additional forces required when a toggle link mechanism


133


,


135


is used in carrying out the invention.




There are many new and advantageous features of the power clamp mechanism disclosed herein. For example, the clamp mechanism of the invention utilizes a metal body with a cavity there through, and preferably this metal body is made from extruded metal. In some alternative embodiments, however, the metal body may be machined. When an extruded body is used, it is a single extruded metal body, instead of a separate body and attached cylinder; and this enables greatly lower cost of manufacturing for the clamp mechanism of the invention. Furthermore, this enables the clamp mechanism of the invention to be light weight and compact which are very important features for automotive tooling components.




As will be shown from the drawings herein, there is porting through the sides of the metal body to permit driving of the piston in an up-an-down movement to thereby power the clamp arm into an open or closed-locked position. There are also direct mounting holes drilled and tapped into the non-pressure portions of the clamp body, which enable the clamp mechanism to be mounted from either side thereof, or from the front and rear portions of the clamp mechanism as well. No CNC machining is required in preparing the clamp mechanism of the invention and this enables greatly lower cost of manufacturing. Still further the clamp body may be extruded with or without the four (4) longitudinal holes shown on the end caps thereof, and the end caps can be separately made such that the holes are drilled into the body after the extruding operation is carried out.




With respect to the porting holes or apertures in the clamp mechanism, the pressure ports can be located in the extruded body or in the end caps


18


and


20


. The porting holes can be from the sides, the front, or the back of the clamp body


12


or


112


.




The internal workings of the clamp mechanism (for example as shown in the left side of

FIG. 1

, or in FIG.


6


), enables a single unit assembly, namely the pneumatic piston rod and dividing plate to be assembled outside the body of the clamp, and then the whole unit assembly is inserted into the metal body of the clamp. Also the internal mechanism is either supported by the end cap


18


(or fasteners which are inserted through the body) to locate and hold the mechanism. The divider plate, or floating head member


34


, is fastened to tracks


91


and


93


which in turn are fastened to the end cap


18


. The roller bearings


65


are used to facilitate the release of the clamp from a wedge linkage locked condition (or from a toggle linkage locked condition). The piston rod clevis can be either a separate unit or machined or formed onto the end of the piston rod


32


(or


132


) itself




With respect to the drive shafts and/or bearings used to house the drive shaft, the drive shaft


40


is inserted through the body member


12


and through the driven plate. The drive shaft is generally made up of four parts instead of a single machining. Hardened steel bushings are pressed into the extruded body and centered, and then metal bearings are pushed over the square cross-section drive shaft to be seated (within the bushings) to thereby mount the drive shaft


40


for rotational movement, which in turn moves the clamp arm up-and-down from an open position to a locked position. The square drive shaft may need to be fastened to the drive plate with some means other than just a press fit to resist failure due to fatigue. If this is done small pins can be driven into the drive shaft to fasten it to the drive plate and this can be done just prior to closure of the upper cap member


18


onto the body member


12


.




With respect to the cap member


18


, on the wedge lock embodiment the cap supports the whole internal mechanism of track members, piston rod, floating head


34


, and piston


30


. The cap is made from a machining, investment casting, by a die casting, or by other similar process. The cap will have an opening through which a position sensor will be placed to monitor the extent to which the clamp arm is opened or closed to a locked position. The cap member


18


is then sealed off from the environment when the cap


18


is fixedly positioned to the end of the metal body member


12


. In the toggle linkage embodiment, the cap


118


member takes up extensive loading generated during toggling so that high loading is not put on the aluminum extrusion, from which the metal body member


12


is preferably made.




With respect to the sensor unit, the sensor unit is inserted from the top of the clamp mechanism, unlike other clamps where the unit is inserted from the back or front. The sensor unit may include an angle of opening adjustment so that the clamp owner can easily remove the sensor, change the chicklet position, and adjust the angle of opening of the clamp arm at the same time. The clamp mechanism has space allotted for the sensor/angle of adjustment feature.




With respect to T-slot mounting, the extrusion shape of the body member


12


permits the use of a single T-slot


19


or multiple T-slots located in the body member


12


or the body member


112


to facilitate mounting thereof, see FIG.


18


. This T-slot type mounting can replace or augment the technique of bolting and/or doweling the clamp to its work station.




A second alternate embodiment of a power clamp


210


according to the present invention is shown in

FIGS. 12-16

. The power clamp


210


includes an extruded clamp body


212


that generally has a rectangular shape. In this embodiment the clamp body


212


is an extruded metal material that includes an interior cavity


214


there through. In the second embodiment the shape of the interior cavity


214


is a true ellipse when viewed from an end or through cross section. It should be noted that the clamp body


212


can be extruded from any type of hard ceramic, plastic, aluminum or any other type of extrudable material but in the second embodiment metal is used. It should also be noted that in the preferred embodiment a rectangular shaped clamp body


212


is used but that any other shape capable of being extruded may be used depending on the clamp environment and design needs of the clamp operation. The extruded clamp body


212


also includes a plurality of orifices


216


on the sides of the clamp body


212


. The orifices


216


are used to connect to the work piece being clamped or to receive and hold drive shafts or other components for the power clamp


210


.




The power clamp


210


also includes an internal assembly which is inserted through one end of the clamp body


212


into the interior cavity


214


. The internal assembly is a single unitary member that is assembled separate from and outside of the clamp


210


and is then inserted as a single unitary member into the clamp body


212


from the top end. The internal assembly includes a piston


230


connected to a piston rod


232


on one end of the piston rod


232


. The piston rod


232


also has a head assembly


234


arranged on the opposite end of the piston rod


232


from the piston


230


. The piston rod


232


has a reduced radius portion


231


on one end thereof where the piston


230


connects thereto. The piston


230


includes a first and second seal plate


233


,


235


which surround a first and second piston plate


237


,


239


and a first seal anti-extrusion plate


241


. A first and second piston seal


243


,


245


surround the outer edge or periphery of the piston


232


and are adjacent to the seal anti-extrusion plate


241


. The piston


232


is arranged on the reduced radius portion


231


of the piston rod


232


and is secured by any known securing means


247


in contact with a shoulder of the reduced portion of the piston rod


231


and connected by the securing means


247


on the end opposite of the shoulder.




The head assembly


234


is arranged on the opposite end of the piston rod


232


from the piston


230


and includes a seal plate


249


engaging a piston plate


251


on one end thereof. On the opposite end of the piston plate


251


a seal anti-extrusion plate


253


is engaged therewith. A piston seal


255


is placed around the outside of the piston plate


251


while a rod seal


257


is arranged between the outer circumference of the piston rod


232


and the inner circumference of the piston plate


25




1


. A track assembly


259


generally comprising a first and second track or channel


291


,


293


which have their openings face one another is engaged with the seal anti-extrusion plate


253


of the head assembly


234


and is connected by any known means to the head assembly


234


. On the opposite end of the track assembly or member


259


is a first and second rivet


261


,


263


which are used to connect to a head cap


218


. It should be noted that any other type of connecting device may be used, but in this embodiment a rivet is used.




A clevis


264


generally having a U-shape with an orifice


265


through each end thereof and an orifice


267


through its base is connected by any known securing means to the end of the piston rod


232


nearest the head assembly


234


. The clevis


264


also includes a roller pin


201


arranged in the orifices


265


at the top end of the clevis


264


with a roller bearing


203


attached to each end of the roller pin


201


at the outside surface of the clevis


264


. The clevis


264


is then inserted within the track assembly


259


such that the roller bearings


203


will roll along the first and second channels of the track assembly


259


. The clevis


264


is also, via the orifice


267


, connected via any known securing means


205


, in the second embodiment a screw is used to the end of the piston rod


232


nearest the head assembly


234


.




A drive plate


236


generally having a body


207


and an appendage


209


that extends therefrom is also a part of the internal assembly. The appendage


209


has a predetermined angle from a center line of the drive plate body


207


. The appendage


209


also includes a shoulder portion


211


that creates a stop for the power clamp


210


. The drive plate


236


has an orifice


213


through its body portion that mates with a drive shaft


240


male member for the power clamp


210


. A channel


215


is located in the appendage


209


of the drive plate


236


and is arranged such that the roller pin


201


is placed through the channel


215


and allows for the drive plate


236


to be connected to the clevis


264


which is located within the track assembly


259


. It should also be noted that a toggle link may also be used according to this second alternate embodiment.




The power clamp


210


also includes in the second alternate embodiment a two piece drive shaft


240


that generally has a square cross section, however it should be noted that any other type of shape such as round or any other known shape may be used for the drive shaft


240


. The second alternate embodiment also could use a one piece drive shaft


240


or any other number of pieces depending on the design and needs of the clamp environment. The first and second members


217


,


219


of the drive shaft


240


engage with and are non-rotatably secured within the orifice


213


of the drive plate


236


such that any rotational movement of the drive shaft


240


will also cause rotation of the drive plate


236


. The drive shaft


240


is supported within the clamp body


210


by a first and second bushing


251


and a first and second bearing


250


. The bushing


251


and bearings


250


are located through a first and second orifice


242


,


244


on the sides of the clamp body


212


. In the second embodiment the bearings


250


are made of a Teflon material but any other known type of bearing may also be used depending on the design and needs of the power clamp


210


and its environment. The first member


217


of the drive shaft


240


includes an orifice through the entire length thereof The second member


219


of the drive shaft


240


includes a threaded orifice through a predetermined portion. After insertion in the power clamp


210


, any known securing means, a screw


221


in this embodiment is placed through the first member


217


of the drive shaft and secured into the second drive shaft member


219


.




The power clamp


210


also includes an end cap


220


located on a bottom end of the clamp body


212


. The end cap


220


is sealed by a gasket


223


between the end cap


220


and the clamp body


212


. In the second alternate embodiment the internal unitary assembly is placed through the top end of the extruded body clamp


212


into the interior cavity


214


until the piston rod


232


engages with the end cap


220


of the clamp body


212


. Then the drive shaft


240


is inserted through the first and second orifice


242


,


244


of the clamp body


212


and its two pieces


217


,


219


are connected to each other and supported by the bearings


250


and bushings


251


. The two pieces


217


,


219


also engage with and are secured within the orifice


213


of the drive plate


236


. Finally, a head cap


218


is connected to the clamp body


212


after being centered by any known appropriate means to the center line of the ellipse or other shape of the cavity. It should be noted that the cavity in the second alternate embodiment is a true ellipse but that any other known shape such as a circle or oval or any other known extrudable shape may be used. The head cap


218


is connected by rivets


261


,


263


to the end of the track assembly


259


opposite the head assembly


234


. A gasket may also be used between the head cap


218


and the end of the clamp body


212


.




After completion of the assembly of the clamp


210


a clamp arm


66


is connected via the first and second bushings


251


to the drive shaft


240


, thus allowing for automatic or manual operation of the power clamp


210


by a computer, machine or manual operation. In operation when the clamp is in an open position the piston


230


is located near the end cap


220


, within the cavity portion defined as the piston chamber


280


. The piston chamber


280


is defined by the head assembly


234


and the end cap


220


. When the clamp


210


is put into its closed position the clamp arm


66


is rotated by a rotation of the drive shaft


240


. The drive shaft


240


is rotated by the drive plate


236


, i.e., the roller pin


201


will move within the channel


215


of the drive plate appendage


209


until the shoulder portion


211


of the appendage contacts a surface of the head cap


218


. Once the shoulder portion contacts the surface of the head cap


218


a positive stop for the power clamp


210


is created thus securing the power clamp


210


in its closed position. The piston


230


will slide axially towards the head assembly


234


when the power clamp


210


is moving to its closed position, due to the hydraulic pressures acting on the piston


230


, those pressures will also hold the power clamp


210


in its closed position. Therefore, the design of the clamp


210


can be changed such that the angle of the channel through the appendage


209


of the drive plate


236


creates a quicker movement towards the positive stop of the power clamp


210


thus reducing the axial movement of the piston


230


within the piston chamber


280


and reducing the forces necessary to hold the clamp or increase the forces necessary to hold the clamp in a closed position. The roller bearings


203


and clevis


264


have axial movement within the track assembly


259


due to the forces being translated by the piston rod


232


.




In assembling the power clamp


210


according to the second alternate embodiment, first the metal body


212


is extruded with an ellipse shaped cavity


214


there through. Next, the internal clamp assembly is assembled and the head cap


218


is attached to an end of the track member


259


. Next, the end cap


220


is connected to the clamp body


212


on a bottom end of the clamp body. Then, the one unitary internal clamp assembly, which was pre-built, is inserted through the top end of the clamp body


212


into the cavity


214


until the end of the piston rod


232


engages the inside surface of the end cap


220


. Then, the drive shaft


240


is inserted into the clamp body


212


and engages with the drive plate


236


of the internal clamp assembly such that the drive plate


236


is non-rotatably connected to the drive shaft


240


. Finally, the head cap


218


is secured to the clamp body


212


by positioning the head cap


218


with respect to the center line of the ellipse of the interior cavity


214


and not by the outer surfaces of the head cap


218


with respect to the outer surfaces of the clamp body


212


.





FIG. 17

shows a third alternate embodiment of the clamp


310


according to the present invention and operates in the same manner as that described for

FIGS. 12-16

.




While it will be apparent that the preferred embodiments of the invention disclosed are well calculated to fulfill the objects, benefits, and/or advantages of the invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope or fair meaning of the subjoined claims.



Claims
  • 1. A power clamp apparatus, comprised of,a single metal body with an interior cavity running there through a unit assembly which is inserted into said interior cavity, and said unit assembly including; a piston for slidable back and forth movement within said cavity; a lower portion of said cavity acting as a chamber for said piston; a piston rod connected to said piston; a floating head member on the piston rod; a link mechanism connected proximate to an upper end of said piston rod; a lower cap member which closes off said cavity near a bottom end of said metal body; an upper cap member which closes off the metal body proximate to a top end thereof after said unit assembly is inserted into said cavity; a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism; a clamp arm attached to said drive shaft on the outside of said metal body; and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.
  • 2. The clamp apparatus of claim 1 wherein said link mechanism is a wedge lock link mechanism.
  • 3. The clamp apparatus of claim 1 wherein said link mechanism is a toggle link mechanism.
  • 4. The clamp apparatus of claim 1 wherein said metal body is made of a material selected from at least one of the group consisting of an extruded metal and a machine formed metal.
  • 5. The clamp apparatus of claim 1 wherein the unit assembly of piston, piston rod, floating head member, and link mechanism are assembled outside the metal body and then inserted into the metal body.
  • 6. The clamp apparatus of claim 1 wherein the unit assembly also includes at least one track member which mates proximate with an upper end of the piston rod to guide same in its back and forth movement in said cavity.
  • 7. The clamp apparatus of claim 1 wherein porting conduits are included near the bottom of the apparatus and proximate to a mid-point thereof, to provide for introduction of a pressurized fluid to both sides of said piston to effect back and forth movement thereof.
  • 8. The clamp apparatus of claim 5 wherein said unit assembly is supported by said upper cap member for insertion of the unit assembly into the metal body.
  • 9. The clamp apparatus of claim 6 wherein said floating head member once inserted into said cavity is held in a fixed position therein by attachment of said head member to said track member.
  • 10. The clamp apparatus of claim 1 wherein roller bearings are included in the unit assembly proximate to a top end of said piston rod to facilitate release of the clamp arm from a locked condition.
  • 11. The clamp apparatus of claim 1 wherein the upper cap member has an opening through which a position sensor is inserted into the interior of the metal body.
  • 12. The clamp apparatus of claim 3 wherein said upper cap member is made of a high strength steel to take up more extensive load forces in the toggle link mechanism.
  • 13. The clamp apparatus of claim 11 wherein said position sensor includes an angle of opening adjustment member which adjustment member can be moved to thereby adjust an angle of opening for the clamp arm.
  • 14. The clamp apparatus of claim 1 wherein said metal body includes at least one T-slot on an exterior surface thereof to facilitate mounting of the clamp apparatus.
  • 15. The clamp apparatus of claim 1 wherein a plurality of mounting holes are formed in the exterior of the metal body to facilitate mounting of the clamp apparatus.
  • 16. The clamp apparatus of claim 1 wherein said drive shaft is mounted through the usage of steel bushings which are pressed into opposing sides of the metal body and metal bearings which are placed over a cross-section of the drive shaft.
  • 17. A power clamp apparatus, comprised of,an extruded metal body with an interior cavity running there through; a unit assembly which is inserted into said interior cavity, and said unit assembly including; a piston for slidable back and forth movement within said cavity; a lower portion of said cavity acting as a chamber for said piston; a piston rod connected to said piston; a floating head member on the piston rod; a link mechanism connected proximate to an upper end of said piston rod; a lower cap member which closes off said cavity near a bottom end of said metal body; an upper cap member which closes off the metal body proximate to a top end thereof after said unit assembly is inserted into said cavity; a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism; a clamp arm attached to said drive shaft on the outside of said metal body; and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.
  • 18. The clamp apparatus of claim 17 wherein said link mechanism is a wedge lock link mechanism.
  • 19. The clamp apparatus of claim 17 wherein said link mechanism is a toggle link mechanism.
  • 20. The clamp apparatus of claim 17 wherein the unit assembly of piston, piston rod, floating head member, and link mechanism are assembled outside the metal body and then inserted into the metal body.
  • 21. The clamp apparatus of claim 17 wherein the unit assembly also includes at least one track member which mates proximate with an upper end of the piston rod to guide same in its back and forth movement in said cavity.
  • 22. The clamp apparatus of claim 17 wherein porting conduits are included near the bottom of the apparatus and proximate to a mid-point thereof, to provide for introduction of a pressurized fluid to both sides of said piston to effect back and forth movement thereof.
  • 23. The clamp apparatus of claim 20 wherein said unit assembly is supported by said upper cap member for insertion of the unit assembly into the metal body.
  • 24. The clamp apparatus of claim 21 wherein said floating head member once inserted into said cavity is held in a fixed position therein by attachment of said head member to said track member.
  • 25. The clamp apparatus of claim 17 wherein roller bearings are included in the unit assembly proximate to a top end of said piston rod to facilitate release of the clamp arm from a locked condition.
  • 26. The clamp apparatus of claim 17 wherein the upper cap member has an opening through which a position sensor is inserted into the interior of the metal body.
  • 27. The clamp apparatus of claim 19 wherein said upper cap member is made of a high strength steel to take up more extensive load forces in the toggle link mechanism.
  • 28. The clamp apparatus of claim 26 wherein said position sensor includes an angle of opening adjustment member which adjustment member can be moved to thereby adjust an angle of opening for the clamp arm.
  • 29. The clamp apparatus of claim 17 wherein said metal body includes at least one T-slot on an exterior surface thereof to facilitate mounting of the clamp apparatus.
  • 30. The clamp apparatus of claim 17 wherein a plurality of mounting holes are formed in the exterior of the metal body to facilitate mounting of the clamp apparatus.
  • 31. The clamp apparatus of claim 17 wherein said drive shaft is mounted through the usage of steel bushings which are pressed into opposing sides of the metal body and metal bearings which are placed over a cross-section of the drive shaft.
  • 32. A power clamp apparatus, comprised of,a single body with an interior cavity running there through; a unit assembly which is inserted into said interior cavity, and said unit assembly including; a piston for slidable back and forth movement within said cavity; a lower portion of said cavity acting as a chamber for said piston; a piston rod connected to said piston; a floating head member on the piston rod; a link mechanism connected proximate to an upper end of said piston rod; a lower cap member which closes off said cavity near a bottom end of said metal body; an upper cap member which closes off the metal body proximate to a top end thereof; a drive shaft inserted through apertures in a generally transverse position through said metal body, with a central portion of said drive shaft inside the metal body being connected to an end of said link mechanism; a clamp arm attached to said drive shaft on the outside of said metal body; and wherein when said piston rod attached to said link mechanism is moved from its retracted position to its extended position, it causes the clamp arm to be moved between an open position and a clamped positioned relative to a work piece being clamped.
  • 33. The clamp apparatus of claim 32 wherein said link mechanism is a wedge lock link mechanism.
  • 34. The clamp apparatus of claim 32 wherein said link mechanism is a toggle link mechanism.
  • 35. The clamp apparatus of claim 32 wherein said metal body is made of a material selected from at least one of the group consisting of an extruded metal and a machine formed metal.
  • 36. The clamp apparatus of claim 32 wherein the unit assembly of piston, piston rod, floating head member, and link mechanism are assembled outside the metal body and then inserted into the metal body.
  • 37. The clamp apparatus of claim 32 wherein the unit assembly also includes at least one track member which mates proximate with an upper end of the piston rod to guide same in its back and forth movement in said cavity.
  • 38. The clamp apparatus of claim 32 wherein porting conduits are included near the bottom of the apparatus and proximate to a mid-point thereof, to provide for introduction of a pressurized fluid to both sides of said piston to effect back and forth movement thereof.
  • 39. The clamp apparatus of claim 32 wherein said unit assembly is supported by said upper cap member for insertion of the unit assembly into the metal body.
  • 40. The clamp apparatus of claim 32 wherein said floating head member once inserted into said cavity is held in a fixed position therein by attachment of said head member to said track member.
  • 41. The clamp apparatus of claim 32 wherein roller bearings are included in the unit assembly proximate to a top end of said piston rod to facilitate release of the clamp arm from a locked condition.
  • 42. The clamp apparatus of claim 32 wherein the upper cap member has an opening through which a position sensor is inserted into the interior of the metal body.
  • 43. The clamp apparatus of claim 32 wherein said upper cap member is made of a high strength steel to take up more extensive load forces in the toggle link mechanism.
  • 44. The clamp apparatus of claim 42 wherein said position sensor includes an angle of opening adjustment member which adjustment member can be moved to thereby adjust an angle of opening for the clamp arm.
  • 45. The clamp apparatus of claim 32 wherein said metal body includes at least one T-slot on an exterior surface thereof to facilitate mounting of the clamp apparatus.
  • 46. The clamp apparatus of claim 32 wherein a plurality of mounting holes are formed in the exterior of the metal body to facilitate mounting of the clamp apparatus.
  • 47. The clamp apparatus of claim 32 wherein said drive shaft is mounted through the usage of steel bushings which are pressed into opposing sides of the metal body and metal bearings which are placed over a cross-section of the drive shaft.
  • 48. A power clamp, said clamp including:a unitary body extruded from a predetermined material, said body having a cavity there through; an internal assembly arranged within said cavity; said internal assembly including: a piston movable within said cavity; a piston rod connected to said piston; a drive plate connected to said piston rod; a drive shaft non-rotatably connected to said drive plate; a track arranged within said cavity to receive said piston rod therein; an end cap attached to a bottom end of said body; a head cap attached to a top end of said body, said track is secured to said head cap; and an arm connected to said drive shaft.
  • 49. The power clamp of clam 48 wherein said drive shaft having a first and second member.
  • 50. The power clamp of claim 48 wherein said internal assembly is a separate unitary component, said internal assembly is inserted in said cavity through said top end of said body.
  • 51. The power clamp of claim 48 wherein said cavity having a true ellipse shape.
  • 52. The power clamp of claim 51 further including a plurality of seals within said cavity, said seals having a round shape.
  • 53. The power clamp of claim 48 wherein said drive plate having an appendage.
  • 54. The power clamp of claim 53 wherein said appendage creates a positive stop for the clamp by contacting said head cap.
  • 55. A clamp, said clamp including:a metal unitary extruded body with an interior cavity, said body having a top and bottom end; a unitary internal assembly inserted into said interior cavity; said unitary internal assembly including: a piston slidable in an axial direction in a portion of said cavity; a piston rod connected to said piston on one end thereof; a head member arranged on said piston rod on an end opposite of said piston; a track member connected to said head member on one end and engaging said head cap on an opposite end thereof; a clevis connected to an end of said piston rod; and a drive plate connected to said clevis at an end opposite of said rod; a drive shaft rotatably supported within said body; an end cap secured to said bottom end of said body; a head cap secured to said top end of said body; and an arm secured to said drive shaft.
  • 56. The clamp of claim 55 wherein said drive shaft having a first and second member, said drive shaft is connected to said drive plate.
  • 57. The clamp of claim 56 wherein said drive plate rotates within a channel of said track member due to axial movement of said clevis within said track member which is axially moved by said piston rod and said piston until said drive plate engages said head cap at a positive stop.
  • 58. The clamp of claim 56 wherein said drive shaft is supported by a first and second Teflon bearing and a first and second bushing in a first and second orifice of said body.
Parent Case Info

This is a continuation of Provisional Application Ser. No. 60/240,738 filed Oct. 16, 2000.

US Referenced Citations (13)
Number Name Date Kind
4396183 Lymburner Aug 1983 A
4570914 Blatt Feb 1986 A
4778163 Spear Oct 1988 A
5460358 Sendoykas Oct 1995 A
5490663 Stojkovic et al. Feb 1996 A
5687961 Horn Nov 1997 A
5884903 Sawdon Mar 1999 A
5975605 Kot Nov 1999 A
5996984 Takahashi Dec 1999 A
6003850 Crorey Dec 1999 A
6059277 Sawdon et al. May 2000 A
6065743 Roudier et al. May 2000 A
6070864 Crorey Jun 2000 A
Provisional Applications (1)
Number Date Country
60/240738 Oct 2000 US