1. Field of the Invention
This invention relates generally to rolling mills producing hot rolled long products such as bars, rods and the like, and is concerned in particular with an improvement to the water boxes employed to cool such products.
2. Description of the Prior Art
Conventional water boxes typically comprise a housing containing a plurality of nozzles arranged sequentially along the path of the hot rolled product. The nozzles are subdivided into base and top sections which coact to define tubular enclosures containing replaceable sleeves. The base sections are fixed in place on a common underlying manifold, and the top sections are adjustable between closed positions and open positions allowing access to the sleeves. The nozzles are supplied via the manifold with pressurized water which serves to cool the hot rolled product.
Conventionally, the nozzle top sections are closed by so called “C clamps” that are manually set by mill personnel. This is a time consuming task requiring attention to detail to insure that the necessary high level of torque is applied to each clamp. Failure to do so can result in nozzle leakage and a loss of cooling efficiency.
The present invention addresses these problems by providing a mechanism for automatically applying a correct clamping force to the closed top sections, and in a preferred embodiment, for also simultaneously opening and closing the nozzle top sections.
In accordance with one aspect of the present invention, a water box comprises a plurality of nozzles arranged sequentially along a first axis. The nozzles are subdivided into base and top sections, with the top sections being pivotally adjustable about a second axis parallel to the first axis between closed positions coacting with the base sections to define tubular enclosures containing replaceable sleeves through which a hot rolled product is directed, and open positions allowing access to the sleeves. A torque shaft is rotatable about a third axis parallel to the first and second axes. A linkage connects the nozzle top sections to the torque shaft. Clamp members are carried by the torque shaft. The torque shaft is rotatably adjustable between an open setting at which the clamp members are separated from the nozzle top sections and the top sections are in the open positions, and a closed setting at which the top sections are closed and the clamp members are in contact with and urging the top sections into the closed positions.
In accordance with another aspect of the present invention, the clamp members include springs for resiliently urging the top sections into their closed positions.
In accordance with still another aspect of the present invention, the nozzles are enclosed within a housing having a door pivotally adjustable about a fourth axis parallel to the first, second, and third axes. Arm members project radially from the torque shaft. The arm members are engageable with the door during rotation of the torque shaft between its open and closed settings to pivotally adjust the door about the fourth axis between open and closed positions.
In accordance with still another aspect of the present invention, the clamp members are carried by a vertically adjustable support in the form of a beam extending in parallel relationship with the first axis. In this embodiment, the nozzle top sections are manually adjusted between their open and closed positions, with the vertically adjustable beam support serving only to automatically apply a closure force acting through the clamp members to urge the nozzle top sections into their closed positions.
These and other features and attendant advantages will now be described in greater detail with reference to the accompanying drawings, wherein:
With reference initially to
As can best be seen in
With reference additionally to
A torque shaft 24 is rotatable about a third axis A3 parallel to the first and second axes A1, A2. The torque shaft 24 is connected to each of the nozzle top sections 18b by a linkage assembly comprising a crank arm 26 projecting radially from the torque shaft, a flange 28 projecting laterally from the nozzle top section 18b, and an intermediate connecting link 30. Clamp members 34 are carried by and are rotatable with the torque shaft 24. The clamp members preferably include one or more packages of disc springs 36.
Operating means in the form of linear actuators 38 are provided externally at opposite ends of the water box. Each linear actuator is mechanically coupled to the torque shaft 24 by a linkage 40. The linear actuators serve to rotatably adjust the torque shaft 24 between an open setting (as shown in
The water box interior is closed by covers 42 mounted for pivotal movement about a fourth axis A4 between closed positions as shown in
Referring now to
With this embodiment, the nozzle top sections are individually and manually adjusted between their open and closed positions, and the covers 42 are also manually opened and closed. The linear actuators 38 serve to adjust the beam supports 50 between raised positions (left hand side of
In light of the foregoing, it will now be appreciated by those skilled in the art that the present invention offers significant advantages to mill operating personnel. For example, the nozzles serving a pass line can be opened and closed in unison without having to manually loosen and tighten individual clamps. The nozzle top sections are held in their closed positions by resilient forces that insure water tight integrity, again without the need for individual attention by operating personnel.