FIELD OF THE INVENTION
The present invention relates to field of connectors, more specifically the field of connectors suitable for providing power.
DESCRIPTION OF RELATED ART
Generally, an electrical connector includes some form of insulative or dielectric housing which mounts one or more conductive terminals. The housing is configured for mating with a complementary mating connector or other connecting device which, itself, has one or more conductive terminals. A connector assembly typically includes a pair of mating connectors, such as plug and receptacle connectors sometimes called male and female connectors of which, corresponding terminals of the connectors, themselves, may be male and female terminals.
Existing computer systems tend to have a power supply positioned in one location and various components that use the provided power in other locations. This allows for desirable thermal management and further allows for the positioning of processors in the preferred location. One issue that results from such a configuration, however, is that the supplied power must be delivered to the various consumption devices. For certain devices this is not an issue. However, for other power consumption devices (such as CPU or other devices that change power states rapidly) the distance creates certain issues.
One issue that is commonly present is the issue of inductance between the power supply and the power consumption device. As is known, current flowing along a path will generate a magnetic field that will act to resist the flow of current. Many modern power consumption devices switch power usage at relatively high frequencies (e.g., up to and beyond 1 MHz). The rapid switching of power causes the voltage being delivered to sag, which can be problematic to the consumption device, depending on the sensitivity of such a device to variations in the provided power. Thus, for certain applications it has been determined that such voltage sag is unacceptable and therefore capacitors are provided adjacent the power consumption device so as to ensure a constant voltage is supplied. Certain individuals would appreciate being able to reduce or eliminate the use of capacitors
BRIEF SUMMARY
The present disclosure generally relates to combined electrical power and signal connectors that can be integrated into a connector system and that can provide desirable operation under high current density conditions. In general, connectors are suitable for use as modular components within modular assemblies. For example, modular assemblies can take, for example, the form of wire-to-board or wire-to-wire connectors and can, when desired, provide a low-profile connector system.
A connector assembly may be provided that includes a plug connector and a receptacle connector. The connector assembly includes one or more blade-type power contacts on the plug connector and multiple-pronged power contacts on the receptacle connector. The plug connector includes signal pin contacts mounted within a shrouded area of the connector. The receptacle connector may include a signal module that is slidably mateable with the receptacle connector. A power contact includes a pair of blade portions forming the mating portion of the power contact with an intermediate insulator spaced between each conductive blade portions. Thus, the connector allows power and signals to be coupled together with a single connector assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
FIG. 1 is a perspective view of an electrical blade connector;
FIG. 2 is an unmated perspective view of the blade connector of FIG. 1;
FIG. 3 is an exploded view of the blade connector of FIGS. 1 and 2;
FIG. 4 is a perspective view of a power module of the electrical blade connector;
FIG. 5 is a perspective view of a power module of the electrical blade connector FIG. 5 looking from the rear of the module;
FIG. 6 is an exploded view of a plug module and receptacle module of the electrical blade connector;
FIG. 7 is an exploded view of an alternative embodiment of a plug module and receptacle module of the electrical blade connector;
FIG. 8 is a perspective view of the plug power module of FIG. 7;
FIG. 9 is a partially explode view of the power module of FIG. 7 looking from the rear of the module;
FIG. 10 is a partially explode view of the power module of FIG. 7;
FIG. 11 is a front view of the power module of FIG. 7; and
FIG. 12 is a perspective view of the receptacle power module of FIG. 7.
DETAILED DESCRIPTION
The detailed description that follows describes exemplary embodiments and is not intended to be limited to the expressly disclosed combination(s). Therefore, unless otherwise noted, features disclosed herein may be combined together to form additional combinations that were not otherwise shown for purposes of brevity.
FIGS. 1 and 2 illustrate an embodiment of the present invention and it is to be understood that the disclosed embodiment is merely exemplary, which may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art.
One or more embodiments of the present disclosure utilizes multiple both signal and power circuits in a connector system that provide proper alignment, mechanical connection and electrical connection, while providing a low profile connection. If desired the configuration can be modified to provide board-to-board, wire-to-board and wire-to-wire connection.
FIGS. 1-3 illustrate an embodiment of a board-to-board connector assembly 10 including a first connector 20 and a second mating connector 80 with each connector 20, 80 including a plurality of modules. The connector system 10 is configured to include a first connector 20 having a plurality of individual modules including both signal 14 and power types 24 and a second connector 80 having a plurality of cooperating mating modules including signal 82 and power types 84. Typically, individual modules 12, 24 are aligned in a linear array with an interlocking structure to secure the modules 12, 24 together in a side by side arrangement. This interlocking arrangement can include and is not limited to a dovetail type interlock (not shown).
A typical signal module 14 generally is comprised of a series of over-molded wafers 16 having a number of signal circuits held within a shroud or holding assembly 18. The wafers 16 are retained in the holding assembly 18 generally by a snap fit and an optional stiffener, which in turn is secured to an adjacent module of either signal 14 or power type 24.
As best shown in FIG. 4-6 a power module 24 includes a housing 26 and a power contact 27, the power contact having a series of individual power or blade terminals 28, 28′ received therein. In the embodiment shown, each power blade terminal 28, 28′ includes a body portion 30 and a blade portion 36 that is sized according to the current carrying capabilities of the circuit requirements, for instance, circuits requiring a higher current will include power blade terminals or contacts 28, 28′ having a substantially large blade portion 36 providing a greater area surface area allowing for the transmission of greater current. In this embodiment, as shown in FIG. 4 the module 24 includes adjacent pairs of blade terminals 28, 28′ supported on each respective support arm 42 and each pair of terminals 28, 28′ having front edge surfaces that are aligned with each other. Additionally, the front edge surface of the first pair of terminals is spaced apart from the front edge of the second pair of terminals along a mating direction.
As illustrated in FIGS. 6-8 the power module 24 includes a housing 26 that receives the power contact 27 therein, the housing have a main body portion 40 and a support arm 42 having a first side 44 and a second side 46 extending in a first direction D corresponding to the mating face 8 of the connector assembly 10. The support arm 42 is positioned in a vertical or upward direction and spaced in a lateral direction along the connector 20 width.
In FIGS. 7-8, the embodiment shown includes a power module 24 having a power contact 27 and a single pair of blade terminals 28, 28′ arranged in a back to back relationship, with the blade terminals 28, 28′ positioned on either side of the support arm 42 alternatively, a module 24 or connector 20 is contemplated that may include a plurality of terminal power contacts 27 also arranged in a back to back relationship and spaced laterally along the length of the connector 20 in a spaced apart orientation. In this case, each module 24 or connector 20 will include an equal number of vertically formed support arms 32 corresponding to the total number of power contacts 27.
As best shown in FIG. 5-8, each power terminal 28, 28′ includes a main body portion 30 and a blade portion 36 extending from the body portion 30. Terminal mounting pins 34 are formed from another end or edge of the body portion 30. As best shown in FIG. 7, a series of tails project from an adjacent edge of the body portion 30, in this arrangement a right angle is formed between the blade portion 36 and the terminal tails 34 forming a right angle type configuration. In an alternative arrangement, the terminal tails 34 may extend from an apposite end of the body portion 30 from which the blade portions 36 are formed, this case is considered a vertical type configuration (not shown).
FIGS. 7 and 9 show a locking tab 38 that is formed on a top edge of the body portion 30 for engaging a wall of the housing 26 upon assembly. The locking tab 50 has a tip portion 52 that digs into or skives into the housing 26 upon insertion and is angled in the direction of insertion such that it will resist removal when attempted to be withdrawn from the housing 26. A locating tab 54 having an edge 56 is formed from a side surface of the body portion and engages a shoulder 58 in the housing 26 to properly position the terminal 28, 28′ within the housing 26.
As best shown in FIGS. 7-10 the module 24 is assembled with a pair of power blade contacts 28, 28′ arranged in a back-to-back relationship with each respective main body portion 30, 30′ retained in an insulative housing 26. In this case, each blade portion 36 has an interior surface 37 and an exterior surface 39, with the interior surfaces 37 of the pair of blade terminals 28, 28, facing each other and the exterior surfaces 39 of the pair of blade terminals 28, 28′ facing away from each other. Upon insertion of each terminal 28 the blade portion 36 of each terminal 28 is inserted into the cavity 60 from the rear of the module housing 26 with the blade portion 36 protruding through an opening 62 and extending to the mating end of the module 24 with the locating tab 54 aligned with the shoulder 58 formed in the housing 26 to position each terminal 28, 28′ in the cavity 60. Each body portion 30, 30′ of the power contact 28, 28′ is fitted into the insulative module housing 26 with the locking tab 50 digging into or skiving in the side wall of the housing 26 and securing each terminal 28, 28′ in the housing 26, alternatively the power contacts 28, 28′ may also be molded within the insulative housing 26.
Each power module 24 has an interlocking structure (not shown) formed on each side of the housing 26 for being secured to an appropriate adjacent power module 24 or signal module 14. The interlocking structure typically utilizes a dove tail structure with appropriate male and female portions of the dovetail (not shown) on respective sides of each module 14, 24. As can be appreciated, other structures such as a “T” shape or any other suitable interlocking shape may be substituted.
In the embodiment shown in FIGS. 7-10 the power module 24 of the embodiment has a power contact 27 that is split apart and formed with an insulator placed between two individual power terminals 28, 28′. The module 24 includes a housing 26 with support arm 42 extending from the main body portion 30 of the module housing 26 and towards the mating face of the connector 20 in a direction D. A variation in the support arm is shown in FIGS. 7-8 and includes a channel 70 disposed on each of the side walls or faces 44, 46 of the support arm 42 and extending along the support arm 42. Each channel 70 is defined having a bottom surface 72 and opposing side walls 74. Each respective blade portion 36 of the corresponding terminal 28 is disposed in the channel 70 with only the outside or exterior surface 39 of the blade portion 36 being exposed. That is, the interior side surface 37 of the blade portion 36 abut the bottom surface 72 of the channel 70 and each of the side surfaces or edges of the blade portions 36 being adjacent a respective side wall 74 in the channel 70. Similarly, these power terminals can be either press fitted or molded into the insulative module or brick.
In certain instances, it is desirable to have different current carrying loads for individual circuits in certain power applications. For instance, one application may require high current and thus require a power terminal with a large blade portion. Of course, with increased current loads the power terminals will exhibit a temperature increase. The surface area also aids in the dissipation of this heat, consequently each blade portion of certain power terminals can be formed with a different surface area and in the embodiment shown, the lengths of the individual power contact blade portions have different lengths. In another embodiment, the blade portions lengths can be the same for each power contact but the lengths of adjacent power contacts are different. By the use of different lengths and the insulative barrier, the thermal characteristics and electrical characteristics can be tuned accordingly.
A similar arrangement is shown for the receptacle module 84. As illustrated in FIGS. 3 and 7 a pair of receptacle terminals 86 is positioned and secured in an insulative housing 96 for mating with the power contacts 28 of the plug module 24. Each receptacle terminal 96 has a plurality of spring fingers or contacts 98 with a contacting portion 99 that slideably engage the blade portions 36 of the power contacts 28 of the plug module 24. In an alternative embodiment, shown in FIG. 6 an insulative spacer 87 is positioned between the individual receptacle terminals 86 of the receptacle module 84 and similarly providing the ability to modify or tune the electrical characteristics of the receptacle module 84 and the connector assembly 10.
The receptacle also includes a passageway 85 that extends through the housing 96 allowing for airflow through the receptacle module 84 as well. In this instance as best shown in FIG. 12, the passageway 85 is formed between the receptacle terminals 86 so that upon mating of the plug 24 and receptacle 84 a continuous passageway is created through both the plug 24 and receptacle 84 across the mating interface of the blade terminal 28 and the receptacle terminal 86 to allow direct cooling of the connector system 10.
As shown in FIGS. 11-12 the housing 26 of the power module 24 includes a passageway 25 formed thorough the housing 26 and adjacent each side of the support arm 42. Upon assembly of the terminals 28, 28′ the passageway 25 provides a non-restricted area allowing air to flow past the each blade terminal 28, 28′ to aid in the cooling of the power terminals. The receptacle also includes a passageway 85 that extends through the housing 96 allowing for airflow through the receptacle module 84 as well. In this instance as best shown in FIG. 12, the passageway 85 is formed between the receptacle terminals 86 so that upon mating of the plug 24 and receptacle 84 a continuous passageway is created through both the plug 24 and receptacle 84 across the mating interface of the blade terminal 28 and the receptacle terminal 86 to allow direct cooling of the connector system 10
As can be appreciated, the placement of two blades close to each other has a beneficial impact on the electrical performance of the connector. As noted above, a current flowing along a path will generate a magnetic field that resists the flow of current. If current is flowing in the opposite direction in close proximity then the two magnetic fields can cancel out and the loop inductance and resultant impedance will be reduced. The depicted embodiments thus allow for a connector that provides for desirable electrical performance while still providing good electrical isolation between positive and negative terminals. In addition, in certain embodiments the blades can be kept in close proximity substantially the entire length of the blades, thus providing a desirable improvement in impedance such that the system can reduce voltage lag. Consequentially, in a system the number of local capacitors that would normally be used to protect against voltage sag can be reduced.
As shown in FIG. 2 the end configurations of each connector assembly 20, 80 include a separate module or end cap 4, 6 that is used to provide an alignment structure to guide the connector system 10 together to prevent stubbing between respective mating modules 24, 84 and individual electrical terminal contacts 28, 86 therein. The guiding element typically is constructed of a post 5 and receiving hole 3 both of which having tapered ends to provide a lead in upon connector mating. Various keying features and may also be included to insure that mis-matching of the connectors does not occur. This arrangement allows for any number of signal and power configurations in a low profile form factor.
It should be noted that in general, while plug connectors and receptacle receptors have been described as having certain features, the depiction of whether a connector is a plug or receptacle type in the figures is done merely for illustrative purposes. Therefore, it is envisioned that a particular connector could be configured to be a plug or a receptacle type or a combination of plug and receptacle, as desired. For example, a connector could include a power contact that is a plug type or a receptacle type and also include a signal contact that is a plug type or a receptacle type. Therefore, unless otherwise noted, the determination of whether a contact is a receptacle or plug is not intended to be limiting.
The disclosure provided herein describes features in terms of preferred and exemplary embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.