The present disclosure relates to wireless hand-held game controllers and, in particular, to an electrical power conserving system that enables such wireless controllers to conserve electrical power as they operate with electrical power supplied by replaceable batteries or rechargeable battery packs. Preferred embodiments of the power conserving system detect electrical resistance of a user's hands and thereby enables delivery of different amounts of electrical power as required.
Wireless hand-held game controllers operate with electrical power supplied by limited battery power sources and necessitate either battery recharging or replacement. A constant game play power demand requires that the controllers operate most efficiently in their consumption of power. Conserving electrical power also especially applies to premium controllers that have added power requirements stemming from, for example, cooling devices such as blowers or fans, or special player feedback devices typically such as vibration, forced feedback, or lighting. Such added features place an even greater demand upon their limited power sources.
The typical solution for limiting power consumption is use of a fixed time period that forces the microprocessor unit (MPU) of the controller into a watchdog sleep state, in which the power consumption is diminished to a bare minimum. The beginning of this sleep state occurs after no buttons on the controller have been pressed and after the expiration of a typical countdown or timeout period that typically varies from 3 minutes to 10 minutes. During this timeout period, the controller is fully powered but unused for actual game play. If the controller has requirements for additional power in amounts required by premium controllers, such as power requirements imposed by forced air cooling, there is an even greater demand on the battery power source. The constant drain of power in this manner accumulates, especially with shorter times of game play, and will force an even greater cumulative loss of power. This can be exacerbated during game play if there are numerous pauses between game play sequences, during which the buttons are not pressed for a time shorter than the timeout period so that the unit remains activated and does not time out into the lowest drain mode.
In exemplary embodiments of the present disclosure, electronic manual-contact sensing circuitry enables more rapid turn off of the controller during periods of game play inactivity. This eliminates a long timeout period and allows electrical current drain only when the controller is actually being held by a user. In one embodiment, the sensing circuitry is of a resistive type that is implemented with a Darlington Pair transistor circuit to sense resistance of the user's hand. The Darlington Pair circuit senses a condition in which the user no longer holds the controller and thereby allows the controller or just the primary electrical current draining accessories to be turned off. The sensing circuitry itself also draws a small, minor amount (microamperes) of electrical current, which may even further be eliminated by allowing only the sensing circuitry itself to be powered while a main microprocessor unit (MPU) in the controller is operational. In this embodiment, the timeout period of the MPU may be lowered to 15 seconds, after which the controller not only deactivates the functions of the controller, and goes into a watchdog state low drain sleep mode, but also turns off all power to the sensing circuitry to eliminate the minor sensing circuitry current drain.
In another embodiment, the actual power setting of a device, such as a cooling blower or fan, exhibiting larger electrical current drain can have its speed set automatically. This can be accomplished by measuring the average typical skin resistance of the user and allowing the device to consume a greater amount of electrical current when less resistance is measured and consume less electrical current when presence of the user's hand is detected and more resistance is measured. In this manner, the actual power drain can be further meted out as required, generally based upon whether a user's hand is determined to be sweating or not sweating.
Additional aspects and advantages will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.
With reference to
Each of left-hand grip 30 and right-hand grip 32 has on its lateral side an opening into which fits a perforated plastic grip insert 70 of generally elliptical shape. Grip inserts 70 form outer surface gripping regions. Perforations or holes 72 in grip inserts 70 allow flow of air propelled by a cooling fan or blower mechanism 74 installed in interior region 16 of housing 18 to reach the palms of a user's hands covering grip inserts 70 while gripping hand grips 30 and 32. Four elongated manual-contact sensing elements or strips 80 extend along the length of and intersect each of grip inserts 70. For each grip insert 70, two spaced-apart contact sensing strips 80 are located on, or alternatively embedded in, the surface of each of upper and lower shell sections 22 and 24. This arrangement allows for eight contact sensing strip locations to efficiently sense whether a user is holding controller 10.
Contact sensing strips 80 shown in
Sensor block 102 receives signals delivered on a communication link 130 between sensor block 100 and primary controller circuitry 132, the latter of which includes user-actuated buttons and switches such as those described above for control pads 34 and 44, a main MPU, wireless communication circuitry, and electrical power delivery conductors, all of which are available in a conventional wireless game controller. Power supply 86 has an interruptible device connection to primary controller circuitry 132, which in certain embodiments delivers over communication link 130 electrical power to resistance sensing circuitry 102.
Power conservation in the operation of controller 10 can be achieved in any one of several embodiments.
In a first embodiment, the main MPU of primary controller circuitry 132 delivers electrical power to resistance sensing circuitry 102 separately from the remainder of sensor block 100 and is set to a timeout period (e.g., 15 minutes). Upon expiration of the set timeout period during which there is no user gripping of contact sensing strips 80 and no actuation of a control button or switch, primary controller circuitry 132 delivers electrical power only to resistance sensing circuitry 102. This first embodiment allows resistance sensing circuitry 102 to drive the high-current drain load devices 92 such as lights, blowers, Peltier junctions, and pumps only when the main MPU is powered and only when resistance sensing circuitry 102 senses that controller 10 is being held by a user.
In a second embodiment, power supply 86 can be of a constant voltage type and continuously applied to resistance sensing circuitry 102 to keep it always in an activated state. This second embodiment enables application of no electrical power to all of the remaining components of controller 10, thereby keeping them in an unpowered, nonactivated state until resistance sensing circuitry 102 senses that controller 10 is being held by a user. Upon sensing a user holding controller 10, resistance sensing circuitry 102 delivers a signal that activates the interruptible device connection between power supply 86 and primary controller circuitry 132 to cause application of electrical power to the main MPU.
In a third embodiment, resistance sensing circuitry 102 can be set to sense the average resistance of the user's hands holding controller 10 and apply electrical current appropriately to drive blower mechanism 74 at a higher level of performance to provide greater airflow when a lesser resistance (indicative of perspiring hands of the user) has been detected by sensing circuitry 102. This operational performance can be accomplished by the circuitry of the embodiment of controller 10 shown in
Electrical power is applied to resistance sensing circuitry 102 when primary controller circuitry 132 is activated and operational. To save on battery power consumption, no electrical power is typically applied when primary controller circuitry 132 is not operating. Resistance sensing circuitry 102 detects the electrical resistance between members of each pair 104 and 106 of contact sensing strips 80. If the measured resistance is low (indicating high conductivity), then the signals produced at outputs 120 and 122 provide higher electrical power to a left grip blower 124 and a right grip blower 126, thereby driving them at a faster speed to increase airflow output. If the measured resistance is high (indicating low conductivity), then the signals produced at outputs 120 and 122 provide lower electrical power to left grip blower 124 and right grip blower 126, thereby driving them at a lower speed to decrease airflow output. This then equates to more use of power only when generally necessary and thereby less consumption of battery capacity. As described for the second embodiment, it is practical to consider that resistance sensing circuitry 102, when powered all the time, can also provide electrical power to activate primary controller circuitry 132. In this manner, the typical timeout period functionality of primary controller circuitry 132 would not be required because electrical power applied to it would be eliminated when resistance sensing circuitry 102 has sensed that controller 10 is not being held.
In a fourth embodiment, user adjustable settings are interposed between outputs 120 and 122 to grip blowers 124 and 126 and the electrical power provided by resistance sensing circuitry 102. This configuration enables by user adjustable settings further division into higher and lower airflow outputs, even when sensor block 100 delivers at outputs 120 and 122 signals commanding a higher or lower airflow output from grip blowers 124 and 126.
The above examples represent only general examples of how sensing of a user's hand can be achieved. Skilled persons will appreciate that other typical sensing circuits such as those implemented with capacitive, inductive, temperature, or pressure sensing technology, alternatively with use of operational amplifiers, comparators, or similar circuitry, can also be employed. The embodiments described demonstrate the primary spirit of the disclosure and are not meant to limit the nature of the concept.
It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the invention should, therefore, be determined only by the following claims.
This application claims benefit of U.S. Provisional Patent Application No. 61/056,270, filed May 27, 2008.
Number | Date | Country | |
---|---|---|---|
61056270 | May 2008 | US |