The subject matter herein relates generally to electrical connector assemblies.
Electrical connectors are used to electrically connect a circuit board with peripheral or remote devices. Some systems use power connectors to supply power to the circuit board for powering components mounted to the circuit board. For example, the power connector is mounted to the circuit board and a mating power connector is plugged onto the power connector to transfer power to the circuit board. Some known systems require power for peripheral devices, which may be mounted to the circuit board or located remote from the circuit board. The power supplied to the circuit board is routed to a secondary power connector to supply power to the peripheral device. However, the additional power connectors mounted to the circuit board occupy valuable space on the circuit board, increasing the overall size of the circuit board or reducing the number of components that may be mounted to the circuit board.
A need remains for an electrical connector assembly that supplies power to a circuit board and peripheral devices in a cost effective and reliable manner.
In one embodiment, an electrical connector is provided. The electrical connector includes a connector housing having a mating end and a mounting end. The mating end is configured to be mated with a mating connector. The mounting end is configured to be mounted to a circuit board. The connector housing includes a receptacle at the mating end configured to receive the mating connector. The electrical connector includes power contacts held by the connector housing. Each power contact extends between a mating end and a terminating end. The mating end includes a power-in contact interface configured to be coupled to the mating connector. The terminating end includes a power-out circuit board interface configured to be coupled to the circuit board. Each power contact includes a power take-off between the mating end and the terminating end. The power take-off includes a power-out cable plug interface configured to be electrically connected to a cable plug.
In another embodiment, a power contact for an electrical connector is provided. The power contact includes a main body extending between a mating end and a terminating end of the power contact. The power contact includes spring beams at the mating end. Each spring beam includes a power-in contact interface configured to be coupled to a mating power contact of a mating connector. The spring beams being independently deflectable. The power contact includes contact tails at the terminating end. Each contact tail includes a power-out circuit board interface configured to be coupled to a circuit board. The power contact includes a power take-off tab extending from the main body. The power take-off tab includes a power-out cable plug interface being a separable interface configured to be electrically connected to a power take-off terminal of a cable plug. A first power path is defined through the main body between the power-in contact interface and the power-out circuit board interface and a second power path is defined through the main body between the power-in contact interface and the power-out cable plug interface.
In a further embodiment, an electrical connector assembly is provided. The electrical connector assembly includes a circuit board having an upper surface and a lower surface. The circuit board has circuit conductors at the upper surface. The electrical connector assembly includes an electrical connector including a connector housing and power contacts held by the connector housing. The connector housing has a mating end and a mounting end. The mating end is configured to be mated with a mating connector. The mounting end is mounted to the upper surface of the circuit board. Each power contact extends between a mating end and a terminating end. The mating end includes a power-in contact interface configured to be coupled to the mating connector.
The terminating end includes a power-out circuit board interface coupled to the corresponding circuit conductors of the circuit board. Each power contact includes a power take-off between the mating end and the terminating end. The power take-off includes a power-out cable plug interface configured to be electrically connected to a cable plug. The electrical connector assembly includes a power take-off cable plug coupled to the electrical connector. The power take-off cable plug includes a plug housing holding a power take-off terminal. The power-take-off terminal is coupled to the power contact at the power-out cable plug interface. The power take-off cable plug includes a power cable coupled to the power take-off terminal and extending from the plug housing.
In an exemplary embodiment, the mating connector 106 is a plug connector in the electrical connector 102 is a receptacle connector. For example, the electrical connector 102 may include a slot or receptacle to receive a portion of the mating connector 106. In various embodiments, the electrical connector 102 may be a card edge connector having a card slot configured to receive a circuit card of the mating connector 106. In the illustrated embodiment, the mating connector 106 includes a mating card 110 (shown in phantom) having mating contacts 112. Optionally, the mating contacts 112 may be provided on opposite sides of the mating card 110, such as the top side and the bottom side of the mating card 110. For example, the mating contacts 112 may be formed by circuit traces of the mating card 110. The mating connector 106 includes a mating connector housing 114 holding the mating card 110. A power cable 116 extends from the mating connector housing 114. The power cable 116 is electrically connected to the mating contacts 112, such as through the mating card 110. In alternative embodiments, the mating connector 106 may be provided without the mating card 110. For example, individual mating contacts 112 may be held in the mating connector housing 114 and terminated directly to the power cable 116. The mating contacts 112 may be blade contacts, tab contacts, spring beam contacts, or other types of power contacts. Other types of mating connectors 106 may be provided in alternative embodiments.
In an exemplary embodiment, the power takeoff cable plugs 108 are removably coupled to the electrical connector 102. For example, the power takeoff cable plugs 108 may include separable mating interfaces. The power takeoff cable plug 108 includes a plug housing 120 holding power takeoff terminals 122. One or more power cables 124 extend from the plug housing 120. The power cables 124 are electrically connected to the power takeoff terminals 122. For example, the power takeoff terminals 122 may be crimped or soldered to the power cables 124. In an exemplary embodiment, the power takeoff terminals 122 are socket terminals. In alternative embodiments, the power takeoff terminals 122 may be blade terminals or pin terminals. In an exemplary embodiment, the power takeoff cable plug 108 is low-profile. For example, the plug housing 120 may be relatively short and the power cables 124 may exit the plug housing 120 from a side of the plug housing 120 such that the power cables 124 do not add height to the power takeoff cable plug 108. For example, the power cables 124 may exit in a direction parallel to the circuit board 104.
In an exemplary embodiment, the circuit board 104 includes a cutout 130 that receives the electrical connector 102 and the mating connector 106. The cutout 130 is defined by one or more edges 132 of the circuit board 104. The electrical connector 102 is coupled to the circuit board 104 at the edge 132. Optionally, a portion of the electrical connector 102 and a portion of the mating connector 106 extend through the cutout 130 such that a portion of the electrical connector 102 and the mating connector 106 extend through the circuit board 104. Optionally, a portion of the electrical connector 102 and the mating connector 106 may be located above an upper surface 134 of the circuit board 104 and a portion of the electrical connector 102 and the mating connector 106 may be located below a lower surface 136 of the circuit board 104. By recessing the electrical connector 102 and the mating connector 106 in plane with the circuit board 104 and overall height or profile of the electrical connector assembly 100 may be reduced.
In an exemplary embodiment, the upper power contacts 142 include power takeoffs 146 extending from the connector housing 140. The power takeoffs 146 are configured to interface with the power takeoff cable plugs 108 (shown in
The electrical connector 102 extends between a mating end 150 and a mounting end 152. The mating end 150 is configured to be electrically connected to the mating connector 106 (shown in
The connector housing 140 is manufactured from a dielectric material, such as a plastic material. The connector housing 140 may be a molded component, such as formed by an injection molding process. The upper and lower power contacts 142, 144 may be loaded into the connector housing 140 after the connector housing 140 is formed. In alternative embodiments, the connector housing 140 may be an overmolded component, which is overmolded over the upper power contacts 142 and/or the lower power contacts 144.
The connector housing 140 extends between a front 160 and the rear 162. The connector housing 140 includes a top 164 and a bottom 166 opposite the top 164. The connector housing 140 includes sides 168 extending between the front 160 and the rear 162 and extending between the top 164 and the bottom 166. In the illustrated embodiment, the mating end 150 is provided at the front 160 of the connector housing 140 and the mounting end 152 is provided at the bottom 166 of the connector housing 140. Other arrangements are possible in alternative embodiments, such as having the mounting end 152 at the rear 162 or having the mating end 150 at the top 164.
The connector housing 140 includes a shroud 170 extending forward of the mounting base 156. The shroud 170 is provided at the mating end 150. The upper and lower power contacts 142, 144 extend into the shroud 170. The shroud 170 surrounds a receptacle 172 of the connector housing 140. The receptacle 172 receives a portion of the mating connector 106 (shown in
The upper power contacts 142 extend into the mounting base 156 for termination to the circuit board 104. In various embodiments, the upper power contacts 142 may be press-fit into plated vias of the circuit board 104. Alternatively, the upper power contacts 142 may be surface mounted to pads at the upper surface 134 of the circuit board 104. The upper power contacts 142 may be soldered to the pads of the upper surface. Alternatively, the upper power contacts 142 may be spring biased against the pads at the upper surface 134 at separable mating interfaces. In various embodiments, the lower power contacts 144 extend into the mounting base 156 termination to the upper surface 134 of the circuit board 104. In various embodiments, the lower power contacts 144 may be press-fit into plated vias of the circuit board 104. Alternatively, the lower power contacts 142 may be surface mounted to pads at the upper surface 134 of the circuit board 104. In other various embodiments, the connector housing 140 may include a lower mounting base (not shown) configured to extend along the lower surface 136 of the circuit board 104. The lower power contacts 144 may extend into the lower mounting base for termination to the circuit board 104 at the lower surface 136. For example, the electrical connector 102 may be straddle-mount connector straddling the edge 132 of the circuit board 104 in the cutout 130.
In an exemplary embodiment, the upper power contact 142 is a multipiece power contact having a first contact member 210 and a second contact member 212 separate and discrete from the first contact member 210. The first and second contact members 210, 212 are stacked in direct contact along at least a section of the upper power contacts 142. For example, the first contact member 210 includes a lower plate 214 and the second contact member 212 includes an upper plate 216. The lower plate 214 is coupled to the upper plate 216 to form a portion of the main body 200. The lower plate 214 may be welded to the upper plate 216.
In an exemplary embodiment, the first contact member 210 includes a mounting plate 218 extending from the lower plate 214. The mounting plate 218 may be oriented perpendicular to the lower plate 214. The mounting plate 218 extends to the terminating end 204.
In an exemplary embodiment, the second contact member 212 includes a power takeoff tab 206 forming the power takeoff 146 of the power contacts 142. The power takeoff tab 206 extends from the main body 200. For example, the power takeoff tab 206 may extend generally perpendicular to the upper plate 216. Optionally, the power takeoff tab 206 may have a width approximately equal to the width of the upper plate 216. The power takeoff tab 206 has a large surface area for interfacing with the power takeoff terminal 122 (shown in
In an exemplary embodiment, the upper power contact 142 includes spring beams provided at the mating end 202 configured to be electrically connected to the mating connector 106. For example, the upper power contact 142 includes first spring beams 220 associated with the first contact member 210 and second spring beams 222 associated with the second contact member 212. The first spring beams 220 extend forward from the lower plate 214 and the second spring beams 222 extend forward from the upper plate 216. The spring beams 220, 222 are deflectable and configured to interface with the mating contacts 110 of the mating connector 106. In an exemplary embodiment, the spring beams 220, 222 have separable mating interfaces. In the illustrated embodiment, the ends of the spring beams 220, 222 are curved or cupped to form the separable mating interfaces. In an exemplary embodiment, the separable mating interfaces of the first spring beams 220 form first power in contact interfaces 224 configured to receive power from the mating connector 106 when mated thereto and the separable mating interfaces of the second spring beams 222 form second power in contact interfaces 226 configured to receive power from the mating connector 106 when mated thereto. The spring beams 220, 222 are configured to be mated with the mating connector 106 by a sliding or wiping mating action. The spring beams 220, 222 may be deflected when mated with the mating connector 106 to create an internal spring biasing force within the spring beams 220, 222 to maintain mechanical and electrical connection between the spring beams 220, 222 and the mating contacts 112. In an exemplary embodiment, the spring beams 220, 222 are independently movable and independently deflected when mated with the mating connector 106. In alternative embodiments, the power contacts 142 may include only the first spring beams 220 or only the second spring beams 222 rather than having both sets of spring beams 220, 222.
The upper power contact 142 includes contact tails 230 at the terminating end 204. In the illustrated embodiment, the first contact member 210 includes the contact tails 230. For example, the contact tails 230 extend from the mounting plate 218. In the illustrated embodiment, the power contacts 142 includes two contact tails 230. However, greater or fewer contact tails 230 may be provided in alternative embodiments. In an exemplary embodiment, the contact tails 230 form power out circuit board interfaces 232 configured to supply power to the circuit board 104. In an exemplary embodiment, the contact tails 230 are solder tails configured to be received in plated vias of the circuit board 104 (shown in
A first power path is defined between the power in contact interface 224 of the spring beam 220 and the power out circuit board interface 232 of the contact tail 230. A second power path is defined between the power in contact interface 226 of the spring beam 222 and the power out cable plug interface 208 of the power takeoff tab 206. The first power path supplies power from the mating connector 106 to the circuit board 104. The second power path supplies power from the mating connector 106 to the power takeoff cable plug 108, which is directly coupled to the electrical connector 102. The direct connection of the power takeoff cable plug 108 to the electrical to eliminates the need to route the power supply to the power take off cable plug 108 through the circuit board 104.
The lower power contact 144 is arranged in the cavity 174 of the connector housing 140. A mating end 302 of the lower power contact 144 extends into the receptacle 172. Spring beams 320 of the lower power contact 144 at the mating end 302 are deflectable in the receptacle 172 for mating with the mating connector 106 (shown in
As shown in
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.