1. Field of the Invention
The present invention relates to a power conversion controller, and more particularly to a power conversion controller capable of providing power factor correction for power conversion applications requiring load current regulation.
2. Description of the Related Art
The combiner 101 is used to generate an error signal by subtracting VO with a reference voltage VREF. The amplifier 102, having a high DC gain and a cutoff frequency below 120 HZ, is used to amplify the error signal with a negative gain to generate an amplitude adjusting signal A.
The multiplier 103 is used to multiply the line voltage VLINE with the amplitude adjusting signal A to generate a reference current signal SREFC.
The gate drive signal generation unit 104 is used to generate a gate drive signal VG to control the switching of the power conversion circuit 110, wherein the duty of the gate drive signal VG is determined according to a voltage comparison of the reference current signal SREFC and a current sensing signal SCS, which represents the input current IIN.
When in operation, the current sensing signal SCS will follow the reference current signal SREFC, and the negative feedback mechanism will force VO to approach VREF. As such, if the line voltage VLINE is changed to a higher/lower level, the amplitude of the reference current signal SREFC will be adjusted by the amplitude adjusting signal A to a smaller/larger value to result in a lower/higher level of the current sensing signal SCS so as to regulate VO at VREF. That is, the reference current signal SREFC, of which the waveform is analog to that of the line voltage VLINE, and of which the amplitude is equal to the product of the amplitude adjusting signal A and the amplitude of the line voltage VLINE, is the key signal for achieving power factor correction and output voltage regulation at the same time.
However, there is a major disadvantage in this architecture—the amplifier 102 occupies a large area due to the required high gain and low cut-off frequency.
In view of this problem, the present invention proposes a power conversion controller having a novel power factor correction mechanism for power conversion applications.
The major objective of the present invention is to propose a power conversion controller having a novel power factor correction mechanism for a power conversion circuit, which can be of buck type, buck-boost type, or boost type etc.
To achieve the foregoing objective of the present invention, a power conversion controller having a novel power factor correction mechanism is proposed, the power conversion controller including:
a normalization unit, used to generate a normalized signal according to a line voltage by multiplying the line voltage with a normalizing gain, wherein the normalizing gain is proportional to the reciprocal of the amplitude of the line voltage;
a reference current generation unit, coupled to the normalization unit to generate a reference current signal by performing an arithmetic operation, wherein the arithmetic operation involves the normalized signal; and
a gate drive signal generation unit, used to generate a gate drive signal, wherein the duty of the gate drive signal is determined by a voltage comparison of the reference current signal and a current sensing signal.
To make it easier for our examiner to understand the objective of the invention, its structure, innovative features, and performance, we use preferred embodiments together with the accompanying drawings for the detailed description of the invention.
The present invention will be described in more detail hereinafter with reference to the accompanying drawings that show the preferred embodiment of the invention.
Please refer to
The normalization unit 211 is used to generate a normalized signal VNORM according to the line voltage VLINE by multiplying the line voltage VLINE with a normalizing gain SG, wherein the normalizing gain SG is proportional to the reciprocal of the amplitude of the line voltage VLINE. The normalization unit 211 can utilize, for example but not limited to, an auto gain control mechanism to implement the equation: VNORM=VLINE×SG, wherein SG is derived through an adjusting process such that the amplitude of VNORM is constant irrespective of different amplitudes of VLINE.
The reference current generation unit 212 is coupled to the normalization unit 211 to generate a reference current signal SREFC by performing an arithmetic operation, wherein the arithmetic operation, which involves the normalized signal VNORM, can be one selected from the group consisting of SREFC=VNORM×SG, SREFC=VNORM, SREFC=VNORM×VNORM, SREFC=VNORM×(VNORM+VO×SG), and SREFC=VNORM×(VO×SG).
The gate drive signal generation unit 220 is used to generate a gate drive signal VG, wherein the duty of the gate drive signal VG is determined by a voltage comparison of the reference current signal SREFC and a current sensing signal SCS.
For different types of power converter in different operation modes, different forms of the arithmetic operation involving the normalized signal VNORM can be used, and, during the voltage comparison process, the reference current signal SREFC can be used as a peak reference current to determine the peak value of the current sensing signal SCS, or used as an average reference current to determine the average value of the current sensing signal SCS.
For example, if the power conversion application is a boundary current mode boost convertor, then the reference current signal generation module 210 can be implemented with the circuit block illustrated in
With VLINE expressed as VA sin θ, 0°<θ<180° for a cycle of the full-wave rectified line voltage VLINE, and the switching frequency of VG is much higher than that of VLINE, by employing SREFC=VNORM×SG as a peak reference current, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×SREFC/2=VLINE×VNORM×SG/2=VNORM×VNORM/2=(K sin θ)2/2, wherein IIN,avg represents the average of the input current IIN, SG=K/VA, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=(SREFC/2)×tOFF/(tON+tOFF)=(SREFC/2)×VLINE/VO=(VNORM×SG/2)×VLINE/VO=(VNORM)2/2VG=(K sin θ)2/2VO, wherein tON is the active period of VG and tOFF is the inactive period of VG. As such, the input current IIN is in phase with the line voltage VLINE, and the average output current over the cycle of the full-wave rectified line voltage VLINE is independent of the amplitude of VLINE.
Further, if the power conversion application is a discontinuous current mode fixed frequency flyback convertor, then the reference current signal generation module 210 can be implemented with the circuit block illustrated in
With VLINE expressed as VA sin θ, 0°<θ<180° for a cycle of the full-wave rectified line voltage VLINE, and the switching frequency of VG is much higher than that of VLINE, by employing SREFC=VNORM as a peak reference current, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=L(SREFC)2/2T=L(VNORM)2/2T=L(K sin θ)2/2T, wherein IIN,avg represents the average of the input current IIN, L is the inductance of an inductor, K is a constant and T is the switching cycle period; and the average output current IO,avg can be expressed as IO,avg=PIN/VO=L(K sin θ)2/2TVO, wherein PIN is the input power. As such, the input current is in phase with the line voltage VLINE, and the average output current over the cycle of the full-wave rectified line voltage VLINE is independent of the amplitude of VLINE. It is to be noted that the buffer 412 can be replaced with another equivalent circuit—a feedthrough connection for example.
Still further, if the power conversion application is a buck convertor or a forward convertor considered as a primary side equivalent circuit, then the reference current signal generation module 210 can be implemented with the circuit block illustrated in
With VLINE expressed as VA sin θ, 0°<θ<180° for a cycle of the full-wave rectified line voltage VLINE, and the switching frequency of VG is much higher than that of VLINE, by employing SREFC=VNORM×VNORM as a peak reference current for boundary current mode operation, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×((SREFC/2)×tOFF/(ION+tOFF))=VLINE×((SREFC/2)×VO/VLINE)=(VNORM)2×VO/2=VO(K sin θ)2/2, wherein IIN,avg represents the average of the input current IIN, tON is the active period of VG, tOFF is the inactive period of VG, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=SREFC/2=(VNORM)2/2=(K sin θ)2/2.
As for continuous current mode, by employing SREFC=VNORM×VNORM as an average reference current, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×(SREFC×VO/VLINE)=(VNORM)2×VO=VO(K sin θ)2, wherein IIN,avg represents the average of the input current IIN, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=SREFC=(VNORM)2=(K sin θ)2. As such, the input current is in phase with the line voltage VLINE, and the average output current over the cycle of the full-wave rectified line voltage VLINE is independent of the amplitude of VLINE and VO.
Still further, if the power conversion application is a buck-boost convertor or a flyback convertor considered as a primary side equivalent circuit, then the reference current signal generation module 210 can be implemented with the circuit block illustrated in
With VLINE expressed as VA sin θ, 0°<θ<180° for a cycle of the full-wave rectified line voltage VLINE, and the switching frequency of VG is much higher than that of VLINE, by employing SREFC=VNORM×(VNORM+VO×SG) as a peak reference current for boundary current mode operation, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×((SREFC/2)×VO/(VLINE+VO))=(VNORM)2/2×VO=VO(K sin θ)2/2, wherein IIN,avg represents the average of the input current IIN, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=(SREFC/2)×tOFF/(tON+tOFF))=(SREFC/2)×VLINE/(VO+VLINE)=VNORM×(VNORM+VO×SG)×VLINE/(VO+VLINE)/2=(VNORM)22=(K sin θ)2/2, wherein tON is the active period of VG and tOFF is the inactive period of VG.
As for continuous current mode, by employing SREFC=VNORM×(VNORM+VG×SG) as an average reference current, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×(SREFC×VO/(VLINE+VO))=(VNORM)2×VO=VO(K sin θ)2, wherein IIN,avg represents the average of the input current IIN, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=SREFC×tOFF/(tON+tOFF))=SREFC×VLINE/(VO+VLINE)=VNORM×(VNORM+VO×SG)×VLINE/(VO+VLINE)=(VNORM)2=(K sin θ)2, wherein tON is the active period of VG and tOFF is the inactive period of VG. As such, the input current is in phase with the line voltage VLINE, and the average output current over the cycle of the full-wave rectified line voltage VLINE is independent of the amplitude of VLINE and VO.
Still further, if the power conversion application is a boost convertor, then the reference current signal generation module 210 can be implemented with the circuit block illustrated in
With VLINE expressed as VA sin θ, 0°<θ<180° for a cycle of the full-wave rectified line voltage VLINE, and the switching frequency of VG is much higher than that of VLINE, by employing SREFC=VNORM×(VO×SG) as a peak reference current for boundary current mode operation, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×SREFC=VLINE×VNORM×(VO×SG)=(VNORM)2×VO=VO(K sin θ)2, wherein IIN,avg represents the average of the input current IIN, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=(SREFC/2)×tOFF/(tON+tOFF)=(SREFC/2)×VLINE/VO=VNORM×(VO×SG)×VLINE/VO/2=(VNORM)2/2=(K sin θ)2/2, wherein tON is the active period of VG and tOFF is the inactive period of VG.
As for continuous current mode, by employing SREFC=VNORM×(VO×SG) as an average reference current, during one switching cycle, the input power can be expressed as VLINE×IIN,avg=VLINE×SREFC=VLINE×VNORM×(VO×SG)=(VNORM)2×VO=VO(K sin θ)2, wherein IIN,avg represents the average of the input current IIN, and K is a constant; and the average output current IO,avg can be expressed as IO,avg=SREFC×tOFF/(tON+tOFF)=SREFC×VLINE/VO=VNORM×(VO×SG)×VLINE/VO=(VNORM)2=(K sin θ)2, wherein tON is the active period of VG and tOFF is the inactive period of VG. As such, the input current is in phase with the line voltage VLINE, and the average output current over the cycle of the full-wave rectified line voltage VLINE is independent of the amplitude of VLINE and VO.
As can be seen from the specification above, by using the power conversion controller of the present invention having a normalization unit for processing a line voltage, a novel power factor correction mechanism for power converters of buck type, buck-boost type, boost type, fly-back type, etc. is proposed, and the large error amplifier needed in prior art is eliminated. Therefore, the present invention does improve the prior art controllers and is worthy of being granted a patent.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
In summation of the above description, the present invention herein enhances the performance than the conventional structure and further complies with the patent application requirements and is submitted to the Patent and Trademark Office for review and granting of the commensurate patent rights.