The present invention relates to a power conversion device and the method of calculating a temperature rise caused by the power conversion device, and more particularly to a power conversion device that assesses the degradation and remaining lifetime of a semiconductor switching element used in the power conversion device and the method of calculating a temperature rise caused by the power conversion device.
With the method of estimating the lifetime of a semiconductor device and a semiconductor power converter described in patent document (PD) 1, a temperature detector is connected to the base plate of an IGBT element of an inverter and the number of ripple temperatures is counted in each temperature range.
With the elevator controller described in patent document (PD) 2, a lifetime assessment method is not addressed, but a loss per chip is calculated from, for example, an output signal from a current detector to prevent the chip from causing a thermal runaway due to a junction temperature rise in an IGBT element.
When the structure disclosed in PD 1 is used, a temperature detector needs to be connected to the base plate. In practice, however, the temperature detector needs to be connected to a place immediately below the chip. When the temperature detector is connected particularly to a cooling device such as a heat dissipating fin, therefore, the base plate or cooling device needs to be machined so that the cooling device is wired to the temperature detector. When deterioration of the chip in each phase is assessed, temperature sensors need to be provided at places immediately below all chips. This may result in a complex mounting structure.
When the structure disclosed in PD 2 is used, a loss per chip needs to be calculated from a detected current value obtained from a current detector and the pulse width of a voltage obtained by detecting an edge of a voltage pulse command.
When deterioration of the chip in each phase is assessed in this method, however, at least a means for detecting a pulse edge in each phase is required. A mechanism is also required that reads an instantaneous current by using a signal that fetches the pulse edge as a trigger, so a dedicated A/D converter or the like is required and thereby the device may become complex.
An object of the present invention is to provide a power conversion device that can calculate a temperature rise with a simple method or to provide a method of calculating a temperature rise caused in the power conversion device.
In one aspect, the present invention is characterized by being having
a means for estimating a current value in each output phase from a current command value in each control cycle in which a switching element is controlled so that the switching element is turned on or off, a means for calculating an ON loss and an OFF loss of the switching element as a function of the estimated current value, a means for determining a switching element to be brought into conduction according to a polarity of the current command value, a means for calculating, from the voltage command value in each output phase, a conduction time of the switching element in the each output phase in a control cycle, a means for calculating a conduction loss of the switching element from the current value and the conduction time, and a means for calculating an amount of heat generated by the switching element from the ON loss and the OFF loss of the switching element and the conduction loss of the switching element.
In a preferred embodiment of the present invention, a chip loss is calculated in a calculation processor by using a current command value and a voltage command value. First, a current value in each output phase is estimated from the current command value. The ON loss and OFF loss of the chip can be represented as a function of an estimated value of a current flowing in the each output phase, and can be derived by integration with a carrier frequency set in the calculation processor. With respect to a conduction loss, it is necessary to integrate a conduction time with the estimated current value and a saturation voltage, which is a function of the estimated current value. In this case, the conduction time is calculated from a relationship between a carrier amplitude and the voltage command value in each control cycle of the inverter. An IGBT loss and a diode loss can also be determined from the sign of the current command value. In addition, an ambient temperature sensor can be added to calculate an absolute temperature.
According to the preferred embodiment of the present invention, a temperature rise caused in a power conversion device can be calculated with a simple method in which a current command value and a voltage command value, that is, only the internal information in a calculation processor, are used, so the present invention can be applied to, for example, the assessment of element deterioration.
Embodiments of the present invention will be described with reference to the drawings.
As a main circuit, the power conversion device includes an inverter main circuit 1 and a motor 2 that is powered and driven by the inverter main circuit 1.
As a controller, the power conversion device includes a control circuit 3 that performs calculations to control the inverter main circuit 1 and calculates the amount of heat generated in the inverter main circuit 1, a current detector 4 that is used as a sensor to detect a current output from the inverter main circuit 1 to the motor 2, and a rotary encoder 5 that detects the magnetic pole position of the motor 2 and its rotational speed.
In this embodiment, the control circuit 3 has a heat generation amount calculation unit 12 that calculates the amount of heat generated at the chip of a switching element in the inverter main circuit 1 from a command value used in calculation in a control and calculation unit, a storage unit 13 that stores information about the amount of generated heat, which has been calculated by the heat generation amount calculation unit 12, and information about element deterioration, which is calculated from the information about the amount of generated heat, and an external storage unit 14 that displays a warning according to the information about the calculation of the amount of generated heat and the history of generated heat.
The structure of a control system in the control circuit 3 is such that a difference between a speed command and the rotational speed of the motor 2, which is obtained from the rotary encoder 5, is input to a speed control system 6 and a torque current command value iq* is output to have the rotational speed of the motor 2 follow the speed command. Furthermore, current signals, obtained from the current detector 4, in all phases (u, v and w phases) in a fixed coordinate system are converted to signals id and iq in a rotational coordinate system (d and q phases) by a 3-phase/2-phase converter 7. The d axis and q axis in the rotational coordinate system are mutually orthogonal; usually, the d axis handles the field component of the motor and the q axis handles the torque component of the motor. That is, in control of the motor 2, when the fixed coordinate system is converted to the rotational coordinate system, the field and torque can be controlled independently. Differences in the current signals Id and Iq in the rotational coordinate system are respectively input to a d-axis current control system 8d and a q-axis current control system 8q so that the current signals Id and Iq respectively follow the current command values Id* and Iq*. Furthermore, voltage commands, which are output results, in the rotational coordinate system are input to a 2-phase/3-phase converter 9 to convert them to three-phase voltage commands in the fixed coordinate system. Then, a PWM controller 10 generates an ON/OFF control signal according to the result of comparison between a triangular wave carrier and a voltage command value. The ON/OFF control signal controls the relevant switching element in the inverter main circuit 1 through a gate driver 27 so that the switching element is turned on or off.
In the first embodiment, the heat generation amount calculation unit 12 in the control circuit 3 uses only a control command value as an input factor to calculate the amount of heat generated at the chip from an instantaneous value, and performs a deterioration calculation.
Thus, since the measurement of the chip temperature and the like does not require a temperature sensor to be embedded in the element and a means for measuring a pulse width, a temperature rise in the switching element in the inverter 1 and deterioration based on the temperature rise can be assessed in an extremely simple manner.
Next, the method of calculating the amount of generated heat from the command value in the heat generation amount calculation unit 12 to will be described.
In the calculation of the amount of generated heat, voltage command values vu*, vv* and vw* in the fixed coordinate system and current command values iu*, iv*, and iw* in the fixed coordinate system are used. The current command values iu*, iv* and iw* in the fixed coordinate system can be obtained by entering the current command values id* and Iq* in the rotational coordinate system into a current command 2-phase/3-phase converting unit 11 and by solving the equation below.
In the above equation, θm is the magnetic pole position of the motor 2, the magnetic pole position being obtained by the rotary encoder 5, and K is a coefficient used in conversion from the rotational coordinate system to the fixed coordinate system. The current command values iu*, iv* and iw*, obtained from the above equation, in the fixed coordinate system and the voltage command values vu*, vv* and vw* in the fixed coordinate system are used to calculate the switching element loss as an instantaneous value by a method described below. The calculated switching element loss is used to calculate the temperature of the element.
Loss in element=switching loss+conduction loss (2)
The switching loss is the ON loss that is generated when the switching element changes from the OFF state to the ON state or the OFF loss that is generated when the switching element changes from the ON state to the OFF state. The ON loss and OFF loss are each generated once in one switching cycle (carrier cycle). Therefore, the switching loss is represented by the equation below.
{Math 2}
Switching loss=fsw×(ON loss(Esw_on)+OFF loss(Esw_off)) (3)
In the equation above, fsw is a switching frequency. The ON loss (Esw_on) and OFF loss (Esw_off) are each a function that indicates the magnitude of a collector current Ic that flows in the collector of the element, as described below.
{Math 3}
Esw_on=a·Ic3+b·Ic2+c·Ic+d (4)
In the above equation, coefficients a, b, c and d are constant values. While the switching element is being brought into conduction, the instantaneous value of the collector current Ic is a value equal to the current command value iu*, iv* or iw* in the fixed coordinate system in the corresponding phase. While the switching element is not being brought into conduction, the instantaneous value of the collector current Ic can be regarded as zero. In the first embodiment, these coefficients can be stored in the heat generation amount calculation unit 12 or storage unit 13 in advance, and the ON loss can be calculated by assigning an instantaneous current command value in the fixed coordinate system to equation (4) in each switching cycle. Alternatively, the ON loss may be calculated by an approximation to a linear expression in each current segment, as indicated by the dashed lines in
As with the ON loss (Esw_on), the OFF loss (Esw_off) can be derived by using equation (4).
Similarly, the recovery loss of a diode, which is included in the ON loss (Esw_on), is represented as in the equation below.
{Math 4}
Recovery loss=fsw×recovery loss(Err)per switching (5)
The recovery loss (Err) per switching is also a function value of the collector current Ic. Accordingly, the recovery loss can be derived in a similar way to the ON loss.
Next, the method of calculating the conduction loss will be described. The conduction loss of the switching element is a loss generated when a current flows in the switching element while it is being brought into conduction. In general, the conduction loss Rcs of the switching element is represented as in the equation below.
{Math 5}
Rcs=emitter-collector saturation voltage(Vce(sat))×root-mean-square value of collector current (6)
Similarly, the conduction loss Rcd of the diode is represented as in the equation below.
{Math 6}
Rcd=emitter-collector saturation voltage(Vce(sat))×root-mean-square value of collector reverse current (7)
If the motor 2 is a synchronous motor, particularly when it is being operated at extremely low speed or is being accelerated, current concentrates on a particular element or a current amplitude rapidly changes. This makes it difficult to calculate an accurate root-mean-square value of the current. Accordingly, error in the values calculated by using equations (6) and (7) becomes large.
In the first embodiment, therefore, a new method of calculating an instantaneous loss is used in which sequential calculation is performed for the conduction loss as well by using a command value in each cycle. In particular, the conduction loss is calculated from the direction of a phase current and the conduction width (duty ratio) of the period of one cycle.
The drawing illustrates a model of an element for one output phase. A switching element IGBTp on the positive pole side and a switching element IGBTn on the negative pole side are connected in series. A load is connected at an intermediate point between these switching elements. A diode Dp is connected to the switching element IGBTp in parallel, and a diode Dn is connected in parallel with the switching element IGBTn.
In
the command pulse for the output voltage from the switching element IGBTp on the positive pole side and the command pulse for the output voltage from the switching element IGBTn on the negative pole side are mutually inverted commands. A relationship between the pulse of the output voltage and the output current command value is such that when the output current command illustrated in
As seen from
That is, the ratios can be calculated from the voltage command value vu*, vv* or vw*.
The loss of each element in one cycle Tsw is calculated by, for example, generating a control and calculation interrupt at the vertex of each triangular wave carrier and then using a command value (instantaneous value) at that time, as illustrated in
When the output current command is positive, equations (10) and (11) hold.
When the output current command is negative, equations (12) and (13) hold.
Accordingly, when the output current command is positive, the instantaneous loss of each element is represented as in equation (14) or (15).
When the output current command is negative, the instantaneous loss of each element is derived from equation (16) or (17).
As with the ON loss, the collector-emitter saturation voltage Vce(sat) and emitter-collector saturation voltage Vec(sat) can be calculated as functions depending on the collector current Ic, that is, functions depending on current command value iu*, iv* or iw*. That is, as with the ON loss, the collector-emitter saturation voltage Vce(sat) and emitter-collector saturation voltage Vec(sat) can be derived through a numerical calculation or a reference to a table.
Accordingly, the conduction loss can also be calculated from the voltage command value and current command value.
In the above equation, Δtc represents a control cycle. In the case of
In the first embodiment, calculation with equation (19) based on the CR circuit model corresponding to the element is also performed in the heat generation amount calculation unit 12. Temperature information, which is a calculation result, is stored in the storage unit 13.
When calculation is performed in a form in which the CR circuit is connected in series as necessary as illustrated in
It is found from
In the first embodiment, since temperature is calculated in the heat generation amount calculation unit 12 in succession in each control cycle Δtc, the temperature rise of the element can be easily calculated, and since that temperature rise is stored in the storage unit 13, the remaining lifetime can be estimated. That the remaining lifetime is displayed on the external display unit 14 is very useful for a maintenance person who carries out periodic inspection.
Alternatively, the remaining lifetime may be estimated by having the heat generation amount calculation unit 12 calculate an effectually consumed life from the waveform in continuous operation and storing the calculation result in the storage unit 13. In this case, it suffices to store only the effectually consumed lifetime, so the storage capacity can be reduced.
In the first embodiment in
As described above, since information is given to the user before a destruction occurs, it becomes possible to prevent the driving of the inverter from being suspended due to an unintended destruction of an element. Another effect is to prevent secondary damage, such as a burnt wire, that would otherwise be caused when, for example, a shortcircuit mode is entered at the occurrence of the destruction.
If the remaining lifetime falls below the prescribed value, the operation speed or acceleration or deceleration can be limited. In this case, a first-aid life-sustaining action can be taken to prevent the element from being destructed due to an expired lifetime. This results in, for example, an advantageous effect of assuring a time margin even in a case in which urgent replacement is not possible.
Although, in the descriptions with reference to
Furthermore, temperature may be calculated for a particular element, for example, only the V phase out of the output phases. This results in an advantageous effect of reducing the calculation load and also reduces the storage capacity required to store information.
Next, an example in which a temperature sensor 22 has been attached to grasp the ambient temperature Ta in
If, however, the temperature environment is severe, such as when temperature during the day and temperature at night largely differ in an outdoor environment in a cold area, Ta changes like ΔT2 and thereby the number of cycles to the lifetime is affected, even if continuous operation as in
This will make it possible to calculate the absolute temperature of the chip in the element module with a mere addition of a very simple temperature sensor.
In this case, if the cooling unit 21 has a large thermal capacity as with a water cooling system and causes less heat changes, an advantageous effect of alleviating an adverse effect of thermal interference with other modules is obtained.
The positions at which the temperature sensor 22 is placed have been described with reference to
In this embodiment, the current flowing in the DC part is measured from a voltage generated across, for example, a shunt resistor 25, and field current id component and torque current iq component are derived by a current calculation unit 26 in the control and calculation unit 3. In the second embodiment as well, the command values id* and iq* for these currents are calculated. Accordingly, as in the first embodiment, the current command values iu*, iv* and iw* for currents flowing in the elements in all phases can be calculated by the current command 2-phase/3-phase converting unit 11. The voltage command value vu*, vv* or vw* can also be similarly calculated.
Accordingly, in the second embodiment as well, the amount of heat generated by the semiconductor switching element, which is part of the inverter, can be calculated in the heat generation amount calculation unit 12 by performing processing similar to the processing in the first embodiment, and the lifetime of the semiconductor switching element can be calculated.
The embodiments of the present invention have been described so far, though the present invention is not limited to the above embodiments. It will be appreciated that the present invention may be practiced in various other forms without departing from the spirit and scope of the invention.
1: inverter main circuit, 2: motor, 3: control and calculation unit, 4: current sensor, 5: rotary encoder, 6: speed control system, 7: 3-phase/2-phase converter, 8d: d-axis current control system, 8q: q-axis current control system, 9: 2-phase/3-phase converter, 10: PWM controller, 11: current command 2-phase/3-phase converting unit, 12: heat generation amount calculation unit, 13: storage unit, 14: external display unit, 15: chip, 16: wire, 17: solder layer, 18: insulator, 19: conductor, 20: base plate, 21: cooling unit, 22: temperature sensor, 23: control substrate, 24: case, 25: shunt resistor, 26: current calculation unit, 27: gate driver.
Number | Date | Country | Kind |
---|---|---|---|
2010-144418 | Jun 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/064347 | 6/23/2011 | WO | 00 | 12/24/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/162318 | 12/29/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4924168 | Horie et al. | May 1990 | A |
5875414 | Tsutsumi | Feb 1999 | A |
6121736 | Narazaki et al. | Sep 2000 | A |
20050071090 | Katou | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
7-135731 | May 1995 | JP |
9-140155 | May 1997 | JP |
9-233832 | Sep 1997 | JP |
11-255442 | Sep 1999 | JP |
2002-5989 | Jan 2002 | JP |
2002-101668 | Apr 2002 | JP |
2003-189668 | Jul 2003 | JP |
2005-168262 | Jun 2005 | JP |
2006-49411 | Feb 2006 | JP |
2006-81350 | Mar 2006 | JP |
2008-131722 | Jun 2008 | JP |
WO 2004082114 | Sep 2004 | WO |
Entry |
---|
Corresponding International Search Report with English Translation dated Sep. 27, 2011 (four (4) pages). |
Number | Date | Country | |
---|---|---|---|
20130119912 A1 | May 2013 | US |