This application claims priority to China Application Serial Number 201310692485.0 filed Dec. 17, 2013, which is herein incorporated by reference.
1. Technical Field
The present disclosure relates to a power converter. More particularly, the present disclosure relates to a power converter with an isolated driving circuit and an isolated driving method thereof.
2. Description of Related Art
Reference is made to
However, the cost of the floating ground driver 124 is typically high. Moreover, since the floating ground voltage supply circuit 126 requires two different supply voltages, its circuitry is complex, especially for that of the power converter with multiple driving signals.
Therefore, a heretofore-unaddressed need exists to deal with the aforementioned deficiencies and inadequacies.
One aspect of the present disclosure provides an isolated driving circuit. The isolated driving circuit is configured to drive a power converter, in which the power converter includes a driving ground, a reference ground, and at least one power switch. The power converter is configured to generate an output signal according to an input signal, the output signal is electrically coupled to the reference ground, and the at least one power switch is electrically coupled to the driving ground. The isolated driving circuit includes a control module, a transformer, a rectifying circuit, and a driving auxiliary circuit. The control module is configured to generate a first pulse width modulation signal and a second pulse width modulation signal according to the output signal. The transformer is configured to receive the first pulse width modulation signal and the second pulse width modulation signal to generate a first control signal. The rectifying circuit is configured to generate a second control signal according to the first control signal. The driving auxiliary circuit is configured to generate a driving control signal according to the second control signal, so as to drive the at least one power switch.
Another aspect of the present disclosure provides a power conversion device. The power conversion device includes a power converter and an isolated driving circuit. The power converter is configured to generate an output signal according to an input signal. The power converter includes a power ground, a reference ground and at least one power switch, in which the output signal is electrically coupled to the reference ground and the at least one power switch is electrically coupled to the driving ground. When the voltage level of the driving voltage is at a first voltage level, the at least one power switch is turned on, and when the voltage level of the driving voltage is at a second voltage level, the at least one power switch is turned off.
Yet another aspect of the present disclosure is to provide an isolated driving method for driving a power converter having a driving ground and a reference ground, in which the power converter includes at least one power switch electrically coupled to the driving ground. The isolated driving method includes the following steps: generating a first control signal at a secondary side winding of a transformer by providing a first pulse width modulation signal and a second pulse width modulation signal to a primary side winding of the transformer, in which the first pulse width modulation signal is complementary to the second pulse width modulation signal; generating a second control signal by transmitting the first control signal to a rectifying circuit; and generating a driving control signal by transmitting the second control signal to a driving auxiliary circuit, so as to control the at least one power switch, in which the at least one power switch is turned on when the voltage level of the driving control signal is at a first voltage level, and the at least one power switch is turned off when the voltage level of the driving control signal is at a second voltage level.
In summary, the power conversion device, the isolated driving circuit, and the method thereof in the present disclosure are able to drive the power converter. As a result, the cost and complexity of the circuitry of the power conversion device are reduced.
These and other features, aspects, and advantages of the present disclosure will become better understood with reference to the following description and appended claims.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Although the terms “first,” “second,” etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another.
As used herein, “around,” “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around,” “about” or “approximately” can be inferred if not expressly stated.
As used herein, the terms “comprising,” “including,” “having,” “containing,” “involving,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
In this document, the term “coupled” may also be termed as “electrically coupled”, and the term “connected” may be termed as “electrically connected”. “Coupled” and “connected” may also be used to indicate that two or more elements cooperate or interact with each other.
Reference is made to
The control module 220 is configured to generate a first pulse width modulation (PWM) signal VCK1 and a second PWM signal VCK2 according to the output signal VOUT generated from the power converter 202. The transformer 240 is configured to receive the first PWM signal VCK1 and the second PWM signal VCK2 and correspondingly generate a first control signal VCTRL1. Duty cycles of the first PWM signal VCK1 and the second PWM signal VCK2 may be both less than 0.5, and a half-period difference may be present between the first PWM signal VCK1 and the second PWM signal VCK2. That is, the phases of the first PWM signal VCK1 and the second PWM signal VCK2 are complementary to each other.
The rectifying circuit 260 is configured to generate a second control signal VCTRL2 according to the first control signal VCTRL1. The driving auxiliary circuit 280 is configured to generate a driving control signal VDRIVE according to the second control signal VCTRL2, so as to drive the at least one power switch of the power converter 202. In practical applications, the aforementioned output signal may be a DC output voltage VOUT, a corresponding output current, or any signal that is able to respond to the DC output voltage VOUT. A person having ordinary skill in the art may vary the output signal, and the present disclosure is not limited in this regard. For illustrative purposes, the following paragraphs are described with the output signal being the DC output voltage VOUT.
The following paragraphs provide certain embodiments related to the isolated driving circuit 200 to illustrate functions and applications thereof. However, the present disclosure is not limited to the following embodiments.
Reference is made to
In this embodiment, the driving auxiliary circuit 280 is configured to generate a driving control signal VDRIVE according to the second control signal VCTRL2 (e.g., a high voltage level), and to turn on the power switch (e.g., power switches Q1 and Q2) of the power converter 202 when the driving control signal VDRIVE is at a first voltage level (i.e., also at a high voltage level). When the second control signal VCTRL2 is at a second voltage level (e.g., a low voltage level), the driving control signal VDRIVE is also at the second voltage level, i.e. at the low voltage level, and the driving auxiliary circuit 280 is configured to electrically couple both control terminals of the power switches Q1 and Q2 to the driving ground GND_P, so as to turn off the power switches Q1 and Q2. In this document, the term “voltage level” may not only be termed as “a certain value of voltage”, but may also be termed as “a range of voltage”. The present disclosure is not limited to this regard, and person skilled in the art may adjust the voltage level in various embodiments according to requirements of the practical application.
Compared to
In this embodiment, the driving auxiliary circuit 280 includes resistors R1 and R2, a diode D1, a bias resistor R3, and a switching unit 284. A first terminal of the resistor R1 is configured to receive the second control signal VCTRL2, and a second terminal of the resistor R1 is electrically coupled to a control voltage node N1. A first terminal of the resistor R2 is electrically coupled to the control voltage node N1, and a second terminal of the resistor R2 is electrically coupled to the driving ground GND_P. A first terminal of the diode D1 is electrically coupled to the control voltage node N1, and a second terminal of the diode D1 is electrically coupled to the control terminals of the power switches Q1 and Q2 and is configured to output the driving control signal VDRIVE. In some embodiments, the second terminal of the diode D1 may be electrically coupled to at least one of the control terminals of the power switches. A first terminal of the bias resistor R3 is electrically coupled to the second terminal of the diode D1. A first terminal of the switching unit 284 is electrically coupled to a second terminal of the bias resistor R3, a second terminal of the switching unit 284 is electrically coupled to the driving ground GND_P, and a control terminal of the switching unit 284 is electrically coupled to the control voltage node N1.
For example, when a voltage level of the second control signal VCTRL2 is at the high voltage level, the second control signal VCTRL2 is transmitted to the control voltage node N1 through the resistor R1, and the voltage level of the control voltage node N1 is increased. The diode D1 is thus turned on. In the meantime, the driving control signal VDRIVE generated from the driving auxiliary circuit 280 is also at the high voltage level, and the power switches Q1 and Q2 are thus turned on.
And, when the voltage level of the second control signal VCTRL2 is at the low voltage level, the voltage level of the control voltage node N1 is decreased, and the switching unit 284 is thus turned on. In the meantime, the driving control signal VDRIVE generated from the driving auxiliary circuit 280 is also at the low voltage level, and the control terminals of the power switches Q1 and Q2 are thus electrically coupled to the driving ground GND_P, so as to turn off the power switches Q1 and Q2. In the embodiments above, the switching unit 284 may include a transistor or any analogous switching element. A person having ordinary skill in the art may choose any type circuit depending on the particular application, and the present disclosure is not limited in this regard.
Further, as shown in
Reference is made to
Reference is made to
The error amplifier 222 is configured to generate an error signal e(t) according to the feedback voltage VFB and a reference voltage VREF. The compensator 223 is configured to generate a pulse control signal u(t) according to the error signal e(t). For illustration, the compensator 223 is may be a proportional-integral-derivative (PID) controller, which is able to generate the pulse control signal u(t) according to the error signal e(t) and predetermined parameters of the compensator 223. The pulse width modulator 224 is configured to generate a pulse signal d(t) according to the pulse control signal u(t). The PWM signal generator 225 is configured to generate the first PWM signal VCK1 and the second PWM signal VCK2 according to the pulse signal d(t). For illustration, the PWM signal generator 225 may be a phase splitter, which is able to divide the pulse signal d(t) into two signals having complementary phases (i.e., the first PWM signal VCK1 and the second PWM signal VCK2). With such a configuration, the power conversion device 200a is able to generate a steady output signal (e.g., the DC output voltage VOUT) with the feedback control of the control module 220.
Reference is made to
In various embodiments of the present disclosure, the isolated driving circuit 200 is applied to the power converter 202 having the driving ground GND_P and the reference ground GND. For illustration, the power converter 202 in
For example, as shown in
As shown in
In operation, during the positive period of the input signal VIN, the inductor L1, the power switches Q1 and Q2, the diodes DC1 and DC4, and the output capacitor CO may form a boost converter and generate the corresponding output signal (e.g., the DC output voltage VOUT). When the power switches Q1 and Q2 are turned on, the AC current (not shown) generated by the input signal VIN flows through the inductor L1 and the power switches Q1 and Q2 to generate the output signal. When the power switches Q1 and Q2 are turned off, the AC current flows through the inductor L1, the diode DC1, the output capacitor CO, and the diode DC4 to generate the output signal. In practical applications and for example, the diode DC4 may be a diode having a slow recovery time, and thus, when the power switches Q1 and Q2 are turned on, the driving ground GND_P is able to be electrically coupled to the reference ground GND.
During the negative period of the input signal VIN, the inductor L1, the power switches Q1 and Q2, the diodes DC2 and DC3, and the output capacitor CO may form a boost converter and generate the corresponding output signal (e.g., the DC output voltage VOUT). When the power switches Q1 and Q2 are turned on, the AC current (not shown) generated by the input signal VIN flows through the inductor L1 and the power switches Q1 and Q2 to generate the output signal. When the power switches Q1 and Q2 are turned off, the AC current flows through the inductor L1, the diode DC2, the output capacitor CO, and the diode DC3 to generate the output signal. In practical applications and for example, the diode DC2 may be a diode having a slow recovery time, and thus, when the power switches Q1 and Q2 are turned on, the driving ground GND_P is able to be electrically coupled to the output terminal (i.e., the positive terminal of the DC output voltage VOUT).
However, the diodes DC4 and DC2 may also be a common diode, etc. During the positive period of the input signal VIN, the driving ground GND_P is coupled to the reference ground GND through the turned-off diode DC4 when the power switches Q1 and Q2 are turned on. During the negative period of the input signal VIN, the driving ground GND_P is electrically coupled to the output terminal through the turned-off diode DC2 when the power switches Q1 and Q2 are turned on. As a result, the voltage level of the driving ground GND_P of the HPFC 202 during the positive period may be different from the voltage level of the driving ground GND_P of the HPFC 202, and thus the driving ground GND_P is floating.
Reference is made to
For example, when the power switch Q1 is turned on, the driving ground GND_P is electrically coupled to the output terminal (i.e., the positive terminal of the DC output voltage VOUT). When the power switch Q1 is turned off, the driving ground GND_P is electrically coupled to the reference ground GND. In other words, the voltage level of the driving ground GND_P is varied when the power switch Q1 is turned on and off. As a result, the driving ground GND_P is floating.
In summary, in various embodiments above, the voltage level of the driving ground GND_P is varied during the positive period and the negative period of the input signal VIN, and the voltage level of the driving ground GND_P is varied when the power switches Q1 and Q2 are turned on and off. Therefore, the voltage level of the driving ground GND_P is floating.
The arrangements shown in each power converter are given for illustrative purposes. Other arrangements are within the contemplated scope of the present disclosure. A person having ordinary skill in the art may utilize any type of power converter, and the present disclosure is not limited in this regard.
Another aspect of the present disclosure provides an isolated driving circuit for driving a power converter having a driving ground and a reference ground. The power converter includes at least one power switch which is electrically coupled to the driving ground, such as the power switches Q1 and Q2 of the power converter 202 in
Reference is made to
In step S420, a first control signal VCTRL1 is generated at the secondary side winding NS of a transformer by providing a first PWM signal VCK1 and a second PWM signal VCK2 to the primary side winding NP of the transformer, in which the first PWM signal VCK1 and the second PWM signal VCK2 are complementary to each other. For illustration, as shown in
In step S440, a second control signal VCTRL2 is generated by transmitting the first control signal VCTRL1 to the rectifying circuit 260.
In step S460, a driving control signal VDRIVE is generated to control the at least one power switch by transmitting the second control signal VCTRL2 to the driving auxiliary circuit 280. Specifically, in some embodiments, when the voltage level of the second control signal VCTRL2 is at a first voltage level, the driving control signal VDRIVE is also at the first voltage level, and the at least one power switch of the power converter is turned on. When the voltage level of the second control signal VCTRL2 is at a second voltage level, the driving control signal VDRIVE is also at the second voltage level, a control terminal of the at least one power switch is electrically coupled to the driving ground GND_P, and the at least one power switch is thus turned off. For illustration, as shown in
In summary, the power conversion device, the isolated driving circuit, and the method thereof in the present disclosure may be able to drive the power converter having floating driving ground without an additional floating ground voltage supply circuit. As a result, the cost and complexity of the circuitry of the power conversion device are reduced.
Although the present disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
201310692485.0 | Dec 2013 | CN | national |