The present invention relates to a power conversion device, and more particularly to a power conversion device for position sensorless control.
Control technology for a permanent magnet (PM) motor in which permanent magnets are disposed on a rotor is known. For PM motors, a harmonic superimposition method may be used for position sensorless control in a low speed range from a halting state to about 10% of a base speed.
PTL1 related to the harmonic superimposition method describes a method of superimposing a harmonic signal on a voltage command during operation and estimating inductance from an output value of normal dc-axis and qc-axis current control. This method realizes highly accurate and highly responsive torque control in vector control with an encoder. Further, PTL1 describes that the method can be applied to position sensorless control based on an extended induced voltage in a medium to high speed range.
PTL1: JP 2008-92657 A
PTL1 describes that the method can be applied to position sensorless control based on extended electromotive force in a medium to high speed range, but does not consider estimation of inductance during operation in a low speed range from a halting state to about 10% of a base speed.
An object of the present invention is to provide a power conversion device for position sensorless control that accurately estimates inductance during operation in a speed range including a low speed range.
A preferred example of the present invention is a power conversion device including a harmonic voltage generation unit that superimposes harmonic voltages of a dc-axis and qc-axis on voltage commands of the dc-axis and qc-axis in accordance with a switching signal; and an inductance estimation unit that estimates pieces of inductance of the dc-axis and qc-axis on a basis of dc-axis and qc-axis harmonic currents, amplitude values of the harmonic voltages, and the switching signal.
According to the present invention, it is possible to realize a power conversion device for position sensorless control that accurately estimates inductance during operation in a speed range including a low speed range.
Embodiments will be described in detail below with reference to the drawings.
A power converter 2 includes a semiconductor element as a switching element. The power converter 2 receives three-phase AC voltage command values vu*, vv*, and vw* and creates a gate signal (on, off) voltage proportional to the voltage command values vu*, vv*, and vw*. In a case where an IGBT, which is an example of a switching element, is used, the IGBT performs a switching operation based on a gate signal. Further, the power converter 2 outputs a DC voltage Edc, which is output of a DC voltage source 2a, and a voltage proportional to the three-phase AC voltage command values vu*, vv*, and vw* to make an output voltage and a rotational speed of the magnet motor 1 variable.
A current detector 3 detects three-phase alternating currents iu, iv, and iw of the magnet motor 1. The current detector 3 may detect two of the three phases of the magnet motor 1, for example, u-phase and w-phase currents, and obtain a v-phase current as iv=−(iu+iw) from an AC condition (iu+iv+iw=0). Although an example in which the current detector 3 is provided in the power conversion device is illustrated in the present embodiment, the current detector 3 may be provided outside the power conversion device.
Next, constituent elements of a control unit that controls the power converter are described below. A coordinate conversion unit 4 outputs dc-axis and qc-axis current detection values idc and iqc generated from current detection values iuc, ivc and iwc of the three-phase AC currents iu, iv and iw on the basis of a position estimation value θdc.
A current detection calculation unit 5 outputs the dc-axis and qc-axis current detection values idc and iqc, harmonic current amplitude values Δidc_ver and Δiqc_ver, and average values idc_ver and iqc_ver.
A phase error estimation unit 6 outputs a phase error estimation value Δθc generated from the dc-axis and qc-axis current detection values idc and iqc.
A position/speed estimation unit 7 outputs a speed estimation value ωrc{circumflex over ( )} and a position estimation value θdc generated from the phase error estimation value Δθc.
An inductance estimation unit 8 outputs inductance estimation values Ld{circumflex over ( )} and Lq{circumflex over ( )} generated from a dc-axis and qc-axis harmonic voltage amplitude value Δvh* and the harmonic current amplitude values Δidc_ver and Δiqc_ver.
A vector control calculation unit 9 outputs dc-axis and qc-axis voltage commands vdc* and vqc* on the basis of a deviation between a dc-axis current command id* and the average value idc_ver, a deviation between a qc-axis current command iq* and the average value iqc_ver an electric constant of the magnet motor 1, and the speed estimation value ωrc{circumflex over ( )}.
A harmonic voltage generation unit 10 sets a harmonic voltage amplitude value vh* and a harmonic frequency fcc and outputs a dc-axis harmonic voltage Δvdc* and a qc-axis harmonic voltage Δvqc*.
A coordinate conversion unit 11 outputs, to the power converter, the three-phase AC voltage commands vu*, vv*, and vw* generated from vdc** and vqc**, which are sums of the voltage commands vdc* and vqc* and the harmonic voltages Δvdc* and Δvqc* on the basis of the position estimation value θdc.
First, basic operation of voltage control based on vector control and phase control according to the present embodiment will be described. The vector control calculation unit 9 for voltage control calculates PI control output Δvdc_pi of d-axis current control, I control output Δvdc_i of d-axis current control, PI control output Δvqc_pi of q-axis current control, and I control output Δvqc_i of q-axis current control on the basis of a deviation between the d-axis current command id* and the average value idc_ver and a deviation between the q-axis current command iq* and the average value iqc_ver.
Further, the vector control calculation unit 9 calculates dc-axis and qc-axis voltage commands vdc* and vqc* according to Equation (1) using the PI control output Δvdc_pi of d-axis current control, the I control output Δvdc_i of d-axis current control, the PI control output Δvqc_pi of q-axis current control, the I control output Δvqc_i of q-axis current control, which are output of dc-axis and qc-axis current control, the speed estimation value ωrc{circumflex over ( )}, and the electric constants (R, Ld, Lq, Ke) of the magnet motor 1.
The parameters are as follows:
R: overall resistance of the magnet motor
Ld: d-axis inductance, Lq: q-axis inductance
Ke: induced voltage coefficient *: Set value
Δvdc_pi: PI control output of d-axis current control, Δvdc_i: I control output of d-axis current control
Δvqc_pi: PI control output of q-axis current control, Δvqc_i: I control output of q-axis current control
The harmonic voltage generation unit 10 outputs the harmonic voltages Δvdc* and Δvqc* of a square wave or a sine wave of the harmonic voltage amplitude value vh* and frequency fcc, and the harmonic voltages Δvdc* and Δvqc* are added to the voltage commands vdc* and Vqc* as shown in Equation (2), to calculate vdc** and vqc**, and the three-phase voltage commands vu*, vv*, and vw* that control the power converter 2 are controlled.
As for the phase error estimation unit 6 for phase control, for example, “Initial Rotor Position Estimation of Interior Permanent Magnet Synchronous Motor”, The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society, Vol. 123 (2003) No. 2 140-148 can be referred to. According to this method, the harmonic voltage generation unit 10 superimposes the harmonic voltage Δvdc* and Δvqc* of a square wave or a sine wave on the dc axis and the qc axis, and the phase error estimation unit 6 calculates a phase error estimation value Δθc according to Equation (3).
Definitions of the signs in Equation (3) are as follows:
Ld: d-axis inductance value, Lq: q-axis inductance value,
Vvdc*: harmonic voltage command superimposed on the dc axis, Vvqc*: harmonic voltage command superimposed on the qc axis, Vidc: harmonic current of the dc axis, Viqc: harmonic current of the qc axis.
Further, the position/speed estimation unit 7 controls the speed estimation value ωrc{circumflex over ( )} and the position estimation value θdc by the calculation shown in Equation (4) so that the phase error estimation value Δθc is set to “zero”.
The parameters are as follows:
Kp: proportional gain, Ki: integral gain, s: Laplace operator.
However, the above reference document mentions that Equation (3) is very complex and is greatly affected by fluctuations in motor constant. In view of this, in the above reference document, the phase error Δθc is calculated according to simple Equation (5) by superimposing the harmonic voltage on only one axis.
For example, when Δvqc*=0,
According to Equation (5), inductance can be estimated from a relationship between the harmonic voltage and current in the axial direction in which the harmonic voltage is superimposed, but inductance in the axial direction in which the harmonic voltage is not superimposed cannot be estimated.
This problem is improved by using the harmonic voltage generation unit 10, the current detection calculation unit 5, the phase error estimation unit 6, and the inductance estimation unit 8, which are the features of the present embodiment.
The following describes control characteristics obtained in a case where these units are used.
The reference sign “10a” represents a square wave signal related to a harmonic voltage. A magnitude thereof is ±1, and a harmonic frequency thereof is about several hundred Hz to several thousand Hz, which can be set to fcc (indicated by 10h) from an outside.
The reference sign “10b” represents a switching signal Signal that determines a direction in which the harmonic voltage is superimposed. A magnitude thereof is ±1, and a frequency thereof is about several times smaller to about several tens of times smaller than the square wave signal output from 10a.
The reference sign “10c” represents a harmonic voltage generation unit in the dc-axis direction. When Signal=1, an output signal of 10c is 10a. Then, a multiplication unit 10d calculates a dc-axis harmonic voltage Δvdc* by multiplying a constant 10g, which is a harmonic voltage amplitude value vh*. The amplitude value vh* can be set in 10g from the outside.
The reference sign “10e” represents a harmonic voltage generation unit in the qc-axis direction. When Signal=−1, an output signal of 10e is 10a. Then, a multiplication unit 10f calculate a qc-axis harmonic voltage Δvdc* by multiplying the constant 10g, which is the harmonic voltage amplitude value vh*.
The L.P.F 5a and the L.P.F 5b may be, for example, moving average filters. Further, harmonic currents Δidc and Δiqc are calculated according to Equation (6) using the current detection values idc and iqc and the average values idc_ver and iqc_ver of the current detection values.
A fast Fourier transform (FFT) calculation unit 5c outputs Δidc_ver and Δqc_ver which are amplitude values of the harmonic currents Δidc and Δiqc.
It is assumed that an axis based on a magnetic pole axis of the motor is a d-q axis, and an estimation coordinate axis used in the calculation unit and the estimation unit in the embodiment is a dc-qc axis. The phase error estimation value Δθc estimated by the phase error estimation unit is a phase error estimation value Δθc_d between the d-axis and the dc-axis or a phase error estimation value Δθc_d between the q-axis and the qc-axis.
An output signal of a switching unit 6g is a calculation value Δθc_d when Signal=1 and is a calculation value Δθc_d when Signal=−1. This output signal is input to an L.P.F 6h, which outputs Δθc.
The d-axis and q-axis inductance estimation values Ld{circumflex over ( )} and Lq{circumflex over ( )} thus calculated can also be reflected in the phase error estimation calculation equation shown in Equations (7) and (8).
When Signal=1, a d-axis inductance estimation value Ld{circumflex over ( )} can be calculated according to Equation (9), and a phase error Δθc_d can be calculated according to Equation (7), and when Signal=−1, a q-axis inductance estimation value Lq{circumflex over ( )} can be calculated according to Equation (10), and a phase error Δθc_q can be calculated according to Equation (8).
As described above, according to the first embodiment, the phase error estimation value Δθc and the d-axis inductance and q-axis inductance Ld and Lq can be estimated even during operation of the harmonic superimposition type position sensorless control.
It is also possible to perform position sensorless control by using the phase error estimation value Δθc and automatically adjust magnitude of a speed command or a torque command so that the magnet motor 1 does not step out by feeding the inductance estimation values Ld{circumflex over ( )} and Lq{circumflex over ( )} back to an upper-level Programmable Logic Controller (PLC).
In the first embodiment, any one of the period of Signal=1 and the period of Signal=−1 may be longer than the other although these periods look identical to each other in
Although the harmonic voltage is switched at a point A in
Although inductance is estimated during operation in the present embodiment, a table creation unit may create a table concerning a current value and inductance by using a result measured during operation, and inductance may be calculated by using the created table from a next operation timing. This can reduce a calculation cost for calculation of inductance.
Although
The following describes a verification method in a case where the present embodiment is adopted with reference to
A harmonic current calculation unit 23 receives three-phase AC current detection values (iuc, ivc, and iwc), which are output of the current detector 3, and a position θ, which is output of the encoder, and outputs harmonic currents Δidc and Δiqc by performing calculation similar to the current detection calculation unit 5. If Δidc and Δiqc are generated alternately in a current waveform observation unit 24, it is clear that the present embodiment is adopted. In a case where the encoder cannot be attached, it is clear that the present embodiment is adopted if waveforms like the ones illustrated in
According to the first embodiment, a phase error, which is a phase difference between a control axis and a magnetic flux axis, and d-axis inductance and q-axis inductance of the magnet motor can be estimated in harmonic superposition type position sensorless control.
Further, according to the first embodiment, it is possible to provide a power conversion device for position sensorless control that accurately estimates inductance during operation in a speed range including a low speed range. The low speed range is a speed range from a halting state to about 10% of a base speed of a motor.
Since d-axis inductance and q-axis inductance during operation can be estimated accurately, an accurate salient pole ratio can be obtained, and stable position sensorless control can be performed even in a case where torque is high by performing the position sensorless control based on the salient pole ratio. The position sensorless is control that does not require an encoder to be attached to a motor.
On the dc axis, the PI control unit 10′j calculates a dc-axis harmonic voltage amplitude value Δvdc*_ver so that a dc-axis harmonic current amplitude value Δidc_ver follows the harmonic current command ih* and supplies the dc-axis harmonic voltage amplitude value Δvdc*_ver to the multiplication unit 10′d.
On the qc axis, the PI control unit 10′1 calculates a qc-axis harmonic voltage amplitude value Δvqc*_ver so that a qc-axis harmonic current amplitude value Δiqc_ver follows the harmonic current command ih* and supplies the qc-axis harmonic voltage amplitude value Δvqc*_ver to the multiplication unit 10′f. As a result, the dc-axis and qc-axis harmonic voltages Δvdc* and Δvqc* that have been automatically adjusted are output from the multiplication unit 10′d and the multiplication unit 10′f.
The d-axis and q-axis inductance estimation values Ld{circumflex over ( )} and Lq{circumflex over ( )} thus calculated can also be reflected in the phase error estimation calculation equations shown in Equations (7) and (8).
With such a configuration, a harmonic current amplitude value can be controlled to be constant. It is therefore possible to provide a highly efficient power conversion device in which no extra current is generated.
A magnet motor 1, which is a component of
Processing of the software 16a is executed by a microcomputer or a processor. External devices or external higher-order devices are prepared, examples of which include a digital operator 16b of the power conversion device 16, a personal computer 17, a tablet 18, and a smartphone 19 that can display functions and stored information for a user and enables the user to give an instruction. On the devices such as the personal computer 17, the tablet 18, and the smartphone 19, a harmonic voltage amplitude value and a harmonic voltage frequency in the software 16a can be set.
If the configuration of the second embodiment is adopted, a harmonic current amplitude value may be used instead of the harmonic voltage amplitude value.
When the present embodiment is applied to a magnet motor drive system, it is possible to estimate a phase error and inductance.
The harmonic voltage amplitude value and the harmonic voltage frequency may be set on a programmable logic controller (PLC), which is a higher-order device, or on a local area network (LAN) connected to a computer.
In the first to third embodiments, the calculation shown in Equation (1) is performed by using current command values id* and iq*, current detection values idc and iqc, and electric constants of the magnet motor 1.
Voltage correction values Δvdc and Δvqc may be created by calculation shown in Equation (13) from the current command values id* and iq* and the current detection values idc and iqc, and calculation for adding the voltage correction values and vector control voltage reference values shown in Equation (14) may be performed according to Equation (15).
Definitions of the signs in Equation (13) are as follows:
Δvdc: d-axis voltage correction value, Δvqc: q-axis voltage correction value, Kpd: d-axis current control proportional gain, Kid: d-axis current control integrated gain, Kpq: q-axis current control proportional gain, Kiq: q-axis current control Integrated gain, s: Laplace operator.
Definitions of the signs in Equation (14) are as follows:
vdc0*: d-axis voltage reference value, vqc0*: q-axis voltage reference value, Tacr: time constant equivalent to current control response frequency, s: Laplace operator, Ke: induced voltage coefficient.
Intermediate current command values id** and iq** shown in Equation (16) used for the vector control calculation may be created from the current commands id* and iq* and the current detection values idc and iqc, and calculation shown in Equation (17) using the speed estimation value ωrc{circumflex over ( )} and the electric constants of the magnet motor 1 may be performed.
A vector control method may be employed in which calculation is performed according to Equation (18) using the dc-axis current command id*, the qc-axis current detection value iqc, the speed command ωr*, and the electric constants of the magnet motor 1.
Definitions of the signs in Equation (16) are as follows:
Kpd: d-axis current control proportional gain, Kid: d-axis current control integrated gain, Kpq: q-axis current control proportional gain, Kiq: q-axis current control integrated gain, s: Laplace operator.
Definitions of the signs in Equation (18) are as follows:
R1: primary resistance of magnet motor, Td: delay time constant of q-axis current command iq*.
In the first to third embodiments, the switching element that constitutes the power converter 2 may be a Si (silicon) semiconductor element or may be a wide bandgap semiconductor element such as SiC (silicon carbide) and GaN (gallium nitride).
Number | Date | Country | Kind |
---|---|---|---|
2018-217445 | Nov 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/021187 | 5/29/2019 | WO | 00 |