The present invention relates to a power conversion structure and particularly to a circuit to provide driving power for operation of lighting equipment.
It usually happens that after an electronic device is connected to a power source if a great difference occurs between the phases of voltage and current of input power, a great portion of power will be stored in capacitor or inductor elements and result in the actual power (output power) lower than the input power. In order to increase output power efficiency and reduce ineffective power, most power supplies at present have a power factor correction circuit to regulate the voltage phase and current phase of the input power to make them coincided as much as possible to get a greater actual power. The power factor correction circuit can be divided into an active type and a passive type. The active type power factor correction circuit mainly includes a control unit, a switch and an energy storage coil. The control unit determines ON time series of the switch to alter the current ON period of the energy storage coil. Thus the input power passing through the power factor correction circuit can be regulated to attain approximate one for the power factor (the power factor is one when the voltage phase is the same as the current phase). The conventional lighting equipment generally are not equipped with the power factor correction circuit, thus have lower power efficiency. The so called “power saving lighting features” nowadays mostly get power of a higher power factor through an electronic ballast circuit. The electronic ballast circuit generally includes a power factor correction circuit to regulate the phase difference of current and voltage and a transformer or inverter to transform current amount or voltage level to energize lighting bulbs. For instance, R.O.C. patent publication No. 200701295 entitled “Electronic ballast for power factor correction devices with continuous current” provides a circuit structure including a power factor correction device and an inverter. Another R.O.C. patent No. M312155 entitled “Electronic ballast for high pressure gas discharging lamps” discloses an electronic ballast with a power factor correction circuit. Input power of the electronic ballast passes through the power factor correction circuit and a full bridge driving circuit to be rectified, then is output through a voltage boosting circuit. However, on the conventional circuits mentioned above a transformer (inverter) or a voltage boosting circuit has to be provided to transform the voltage or current after it has passed through the power factor correction circuit. As a result, a greater loss incurs, and the number of elements needed also increases (could be a two-stage or three-stage circuit). And the product size also is bigger, and the cost is higher.
In order to overcome the shortcomings of the conventional circuits of electronic ballasts that need a transformer or voltage boosting circuit to provide output, and result in a larger physical size and greater energy loss, the primary object of the present invention is to provide a circuit to reduce power conversion loss and the size thereof to improve efficiency and lower the cost.
The invention provides a power conversion structure which has a power factor correction circuit. The power factor correction circuit includes an energy storage coil, a switch and a voltage boosting control unit. The voltage boosting control unit drives OFF and ON of the switch to change the period of current passing through the energy storage coil to regulate the phase of current. At least one induction coil is provided to be coupled with the energy storage coil to generate the driving power by induction. The coil ratio of the induction coil and the energy storage coil determines the amount of the driving power. Namely, through the induction coil the energy storage coil is induced to generate the driving power. By changing the ratio of the induction coil and the energy storage coil, the amount of the driving power can be determined. Therefore, the induction coil can induce power of a higher power factor and directly deliver a rated voltage to the lighting equipment. Moreover, the aforesaid circuit also is simpler than the conventional circuits, and at least one transformer (inverter) and a switch circuit corresponding to the transformer can be saved. All this can reduce loss and the physical size of power conversion, and result in a higher efficiency and a lower cost.
The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Please refer to
Refer to
As a conclusion, the invention provides driving power to energize the lighting equipment 5 at a smaller circuit size. The number of electronic elements is fewer. The loss of the circuit can be reduced, and power utilization efficiency of total circuitry is higher.
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6274987 | Burke | Aug 2001 | B1 |
6362575 | Chang et al. | Mar 2002 | B1 |
6724156 | Fregoso | Apr 2004 | B2 |
7187136 | Fiorello | Mar 2007 | B2 |
Number | Date | Country |
---|---|---|
200701295 | Jan 2007 | TW |
M312155 | May 2007 | TW |
Number | Date | Country | |
---|---|---|---|
20100013397 A1 | Jan 2010 | US |