The present application claims benefit of the filing date of Japanese Patent Application No. 2008-234499 filed on Sep. 12, 2008 which is incorporated herein by reference.
The present invention relates to a power converter which includes multiple connected single-phase cell inverters and detects an open-phase, and a motor driving system using the same.
Multiple connected variable frequency power supply (power converter) is connected to a three-phase induction motor so as to control a rotational speed of the three-phase induction motor at a target frequency.
Three-phase connected variable frequency power supply generally detects an abnormality such as an overvoltage or an overcurrent, and does not detect an open-phase. However, when the open-phase occurs, a load is damaged seriously and a large torque ripple, etc. may occur. Therefore, it is necessary to detect the open-phase.
In a technique described in JP 8-331750 A, the microcomputer 58 detects the open-phase by calculating an average value of the digital values converted by the A/D converter 57 and detecting that the average value continues out of a predetermined level for more than a predetermined period. Also, the microcomputer 58 detects the open-phase by performing Fast Fourier Transform (FFT) and power spectrum processing of the converted digital value, calculating an effective value of harmonics and a distortion factor, and detecting that the distortion factor more than a predetermined level continues for more than a predetermined period.
Also, B. K. Bose, “Power Electronics and Ac Drives” discloses a motor controlling technique in which a magnetic flux in an air gap of an induction motor is kept constant and a torque sensitivity for a stator current is maximized by inputting a voltage instruction via a V/f (applied voltage V/applied frequency f) gain.
Here, the control of the three-phase induction motor connected to the inverter 52 disclosed in JP 8-331750 A using the motor controlling technique disclosed in Bose is considered.
In this case, because an output voltage of the inverter (power converter) depends on a rotational speed (frequency) of the three-phase induction motor, a judging level for judging the open-phase of the power converter is a level determined before operation. For this reason, when the judging level is adjusted to the maximum rotational speed, a minimum rotational speed may not exceed the judging level even if the open-phase occurs in the power converter. On the contrary, when the judging level is adjusted to the minimum rotational speed, the maximum rotational speed may exceed the judging level even if the open-phase does not occur in the power converter. Therefore, there arises a problem that there are some rotational speed (frequency) regions in which the open-phase can not be detected.
The present invention aims to solve the above problem. Therefore, an object of the present invention is to provide a power converter in which the open-phase can be detected in a broader frequency region even if a predetermined relation is kept between the output voltage and the frequency. Another object of the present invention is to provide a motor driving system using the power converter.
In order to achieve the above objects, a power converter according to the present invention includes: an inverter unit (1) having phase unit inverters (10, 20, . . . ) provided with a plurality of multiple connected single-phase cell inverters (10a, 10b, . . . ) for every phase; an inverter controller (3) for controlling the inverter unit so that a predetermined relation is kept between an output voltage and a frequency; and a plurality of transformers (4a, 4b, 4c) for detecting output voltages of the plurality of phase unit inverters, in which the inverter controller is provided with a fault detection unit for detecting whether a phase-to-phase voltage deviation calculated by the output voltage is within a range of an allowable voltage deviation calculated as a function of the frequency. In addition, numbers in parentheses are merely examples.
The objects and features of the present invention will become more readily apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
In
Also, the inverter controller 3 is composed of a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and programs, achieves each function of a PWM pulse generator 7, a frequency instruction value setting circuit 8, a fault detection circuit 9, a voltage deviation monitoring circuit 6, and a deviation voltage calculation circuit 5a, and controls the inverter unit 1 based on a frequency instruction value (speed instruction value ωr* (
The inverter unit 1 generates a three-phase alternating current power from a plurality of isolated single-phase power supplies (secondary windings a, b, c, . . . of the multiple transformer 11) based on a PWM control signal output from the inverter controller 3, and this three-phase alternating current power drives the three-phase induction motor 2. Also, the inverter unit 1 is provided with a U-phase unit 10, a V-phase unit 20, and a W-phase unit 30, and each of the U, V, W-phase units is composed of multiple connected single-phase cell inverters 10a, 10b, . . . , 20a, 20b, . . . , and 30a, 30b, . . . respectively. In addition, a frequency of the PWM control signal is based on the frequency instruction value ωr* (
The multiple transformer 11 is a transformer provided with the primary winding connected to the three-phase alternating current power supply and a plurality of isolated secondary windings a, b, c, . . . , i, and each of the secondary windings a, b, c, . . . , i generates a three-phase alternating voltage respectively. That is, the secondary windings a, b, c are connected to an input side of the U-phase unit 10 as a three phase power supply, the secondary windings d, e, f are connected to an input side of the V-phase unit 20, and the secondary windings g, h, i are connected to an input side of the W-phase unit 30. Also, it is possible to reduce a power supply harmonics in the multiple transformer 11 by shifting a second order phase with a zigzag connection or a Δ-Y connection.
In the three-phase induction motor 2, by a revolving magnetic field generated by applying the three-phase alternating voltage having a PWM controlled primary frequency ω1 to a stator coil, an induced current (secondary current) having a slip frequency ω5 passes through a secondary winding, and a rotational torque is generated by an interaction between this induced current and a gap magnetic flux. And, the three-phase induction motor 2 rotates at a rotational speed ωT=ω1−ω5.
Also, when a magnetic flux φ=Φ sin(Ω1t), if a load is light and slip s is small, an applied voltage V of the winding is:
V=dφ/dt=Ω
1Φ cos(ω1t) (1).
For this reason, a motor (for example, the three-phase induction motor 2) has a general characteristics that the gap magnetic flux Φ is made to be constant by the fact that the primary frequency ω1 of the stator current is proportional to the applied voltage V, and that a torque sensitivity to the stator current can be maximized.
The transformer unit 4 is provided with transformers 4a, 4b, 4c, and detects instantaneous values vu, vv, vw of phase voltages output from the U-phase unit 10, the V-phase unit 20, and the W-phase unit 30 of the inverter unit 1. The multiple transformer 11 generates a plurality of isolated three-phase alternating voltages in the secondary windings a, b, c, . . . using the three-phase alternating current power supply AC connected to the primary winding. The number of these three-phase alternating voltages is three times of the number of stages of the U-phase unit 10, the V-phase unit 20, and the W-phase unit 30. For example, when the number of stages of the U-phase unit 10, the V-phase unit 20, and the W-phase unit 30 is three, nine of the three-phase output voltage isolated each other are generated.
With reference to
A frequency instruction value setting circuit 8 shown in
The vector control unit 13 is input the speed instruction value ωr* as a q-axis signal, estimates the rotational angle θ of the three-phase induction motor 2 from the phase voltages Vn, Vv, Vw (or phase currents Iu, Iv, Iw (not shown)), and generates the d-axis voltage instruction value Vd* and the q-axis voltage instruction value Vq*. For this reason, the three-phase induction motor 2 rotates at the rotational speed ωr with the speed instruction value ωr* as a target value, and the q-axis voltage instruction value Vq* varies depending on a load torque. Here, assume that a slip frequency instruction value ω5* is zero because the load is light.
Also, the vector control unit 13 is input a value corresponding to the speed instruction value ωr* as a d-axis signal via the V/f gain 12. This V/f gain 12 outputs a signal which is inversely proportional to the speed instruction value ωr*. The V/f gain 12 varies a d-axis component (exciting axis component) so that a voltage applied to the three-phase induction motor 2 does not depend on the speed instruction value ωr*.
The PWM (Pulse Width Modulation) pulse generator 7 shown in
The voltage deviation monitoring circuit 6 shown in
rms=√{square root over ( )}(E12+E22+E32+ . . . +En2) (2)
The deviation voltage calculation circuit 5a shown in
The gain 21 outputs a value which is calculated by an inverse calculation of the V/f gain 12 (
The gain 22 multiplies the value output from the gain 21 by a predetermined factor K1 (for example, 0.8) and outputs a result as an allowable voltage deviation (specified output voltage Z).
The fault detection circuit 9 shown in
The single-phase cell inverter 10a includes rectifying diodes Da, Db, Dc, Dd, De, Df which constitute a three-phase bridge rectifier circuit; smoothing capacitor C; transistors M1, M2, M3, M4 which are IGBTs (Insulated Gate Bipolar Transistor); and freewheeling diodes connected between collectors and emitters of the transistors M1, M2, M3, M4. In addition, the transistors M1, M2, M3, M4 are not limited to the IGBTs. They may be TETs or bipolar transistors. Also, the transistors M1, M2, M3, M4 are controlled by inputting the three-phase PWM control signals into their gates.
A junction point a1 between an anode of the rectifying diode Da and a cathode of the rectifying diode Db, a junction point a2 between an anode of the rectifying diode Dc and a cathode of the rectifying diode Dd, and a junction point a3 between an anode of the rectifying diode De and a cathode of the rectifying diode D1 are connected to a secondary winding a of the multiple transformer 11.
In the single-phase cell inverter 10a, the junction point among the cathodes of the rectifying diodes Da, Dc, De, an anode of a smoothing capacitor C, and a junction point between collectors of the transistors M1 and M3 are connected each other, and the junction point among anodes of the rectifying diodes Db, Dd, Df, a cathode of the smoothing capacitor C, and a junction point between emitters of the transistors M2 and M4 are connected each other. Also, a junction point between an emitter of the transistor M1 and a collector of the transistor M2 in the single-phase cell inverter 10a is connected to a U-phase terminal of the motor 2 (
Likewise, the V-phase unit 20 is connected to a V-phase terminal of the three-phase induction motor 2 (
According to the motor driving system 100 shown in
At this time, although the inverter controller 3 controls the inverter unit 1, the inverter controller 3 has a frequency dependency in which output voltages (phase voltages Vu, Vv, Vw) of the inverter unit 1 are proportional to the speed instruction value ωr* so that the gap magnetic flux Φ of the three-phase induction motor 2 is made to be constant in order to maximize the torque sensitivity for the stator current.
For this reason, based on the speed instruction value ωr*, the deviation voltage calculation circuit 5a varies a specified judging value (allowable voltage deviation) for the output voltage of the inverter unit 1. As a result, the fault detection circuit 9 can detect the open-phase in all region of the frequency instruction value (speed instruction value ωr*).
In addition, in this embodiment, the inverter controller 3 varies a q-axis current in accord with the load torque, the V/f gain 12 (
In the first embodiment, the inverter controller 3 calculates the allowable voltage deviation corresponding to the frequency instruction value (speed instruction value ωr*). However, the allowable voltage deviation corresponding to a real rotational speed (real frequency) ωr of the three-phase induction motor 2 may be calculated.
In a motor driving system 110 shown in
According to the motor driving system 110 shown in
The deviation voltage calculation circuit 5a incorporates the speed instruction value ωr* in the first embodiment, and the deviation voltage calculation circuit 5b incorporates the rotational speed ωr of the three-phase induction motor 2 in the second embodiment. However, when the load is light and the slip s is small, a frequency ω of a driving voltage applied to the three-phase induction motor 2 can be incorporated. In this case, instantaneous values vu, vv, vw of the phase voltages detected by the voltage deviation monitoring circuit 6 are zero-cross detected so as to detect the frequency ω. Using this detected frequency ω, the gain 21 of the deviation voltage calculation circuit 5a is determined.
According to this embodiment, when a plurality of open-phase occur in the plurality of phase unit inverters 10, 20, 30 each of which is composed of the plurality of single-phase cell inverters 10a, 10b, 10c, . . . due to faults in the plurality of single-phase cell inverters, the open-phase can be detected in all operating regions of the inverter unit 1 by calculating the phase-to-phase voltage deviation as a value which depends on a frequency.
(Modification)
The present invention is not limited to the above described embodiments. For example, the following modifications can be made.
(1) Although the inverter unit 1 is PWM controlled in each of the embodiments, each of the single-phase cell inverters 10a, 10b, . . . , 20a, 20b, . . . may be PWM controlled as a two-level inverter, or may be PWM controlled as a three-level inverter.
(2) In the first embodiment, the open-phase is judged by analyzing the phase voltage using FFT so as to obtain the harmonics component and by comparing the effective value RMS of the phase-to-phase voltage deviation with a reference value of the deviation voltage. However, the open-phase is also judged by dividing the harmonics effective value rms of the phase voltage by a fundamental wave component E1 so as to obtain a distortion factor K of each phase voltages and by using the distortion factor K.
(3) In each of the above described embodiments, the multiple transformer 11 outputs the plurality of isolated three-phase alternating voltages by connecting the three-phase alternating current power supply AC to the primary winding. However, a single-phase alternating current power supply may be connected to the primary winding. In this case, the single-phase bridge rectifier circuit in which four diodes are used is used for the U-phase unit, the V-phase unit, and the W-phase unit.
(4) In each of the above described embodiments, the inverter controller 3 controls the inverter unit 1 so that the output voltage is proportional to the frequency (frequency instruction value ωr*, real rotational speed ωr). However, the present invention is not limited to the above. The output voltage of the inverter unit 1 needs only to have a frequency dependency.
(5) In each of the above described embodiment, the inverter unit 1 is PWM controlled to apply the rectangular three-phase alternating voltage to the three-phase induction motor 2. However, a sinusoidal alternating voltage may be applied to the three-phase induction motor 2 via a alternating current filter.
In this case, because the transformer unit 4 detects the sinusoidal alternating voltage, the FFT calculation unit 16 and the harmonics effective value calculation unit 17 in the voltage deviation monitoring circuit 6 (
(6) In each of the above described embodiments, the three-phase induction motor 2 is used. However, equation (1) generally holds in motors. Therefore, even a synchronous motor can detect the open-phase. In this case, there is no need to consider the slip s. And even if a q-axis current instruction value Iq* which is proportional to the load torque is nearly equal to zero, the voltage applied to the synchronous motor can be kept constant by increasing the d-axis current instruction value Id*.
Number | Date | Country | Kind |
---|---|---|---|
2008-234499 | Sep 2008 | JP | national |