The present disclosure relates generally to power conversion circuits and methods of operation thereof. More specifically, the present disclosure relates to improved adaptive stability compensation in a power converter controller.
Most electronic devices such as cell phones, laptop computers, etc., use direct current (dc) power to operate. Conventional wall outlets generally deliver a high voltage alternating current (ac) power that needs to be transformed to dc power in order to be used as a power source by most electronic devices. Switched mode power converters are commonly utilized to convert the high voltage ac power to a regulated dc power, due to their high efficiency, small size, and low weight. A switched mode power converter produces an output by periodically switching a power switch for one or more switching cycles.
Switched mode power converters typically employ a controller to regulate output power delivered to an electrical device, e.g., a battery, which is commonly referred to as a load. The controller regulates power to the load by controlling a power switch to repeatedly turn on and off in response to a feedback signal representative of the output of the power converter. A controller may use an on/off control technique to regulate an output of a switched mode power converter. In a typical on/off control technique, the controller determines whether to enable or disable the conduction of the power switch for each switching cycle by comparing the feedback signal with a threshold. For example, the controller may switch the power switch on (i.e., may initiate a switching activity) for the next switching cycle if the feedback signal is less than the threshold at the end of the previous switching cycle.
Switch mode power converters usually employ an output capacitor to smooth out any ripple in the output voltage. The output capacitor may be associated with a series resistance commonly referred to as an equivalent series resistance (ESR). In cases where the controller uses on/off control technique and the output capacitor has a small ESR, the feedback signal may not react quickly enough to effectuate the transfer of energy from the input to the output. For instance, the feedback signal may not cross the threshold quickly enough after the power switch is switched off in a switching cycle such that the power switch is switched on too soon after the previous switching activity. This can lead to grouping or bunching of switching activity that produces unstable operation of the power converter.
Additionally, in some cases, noise may couple to the feedback signal such that the controller may not accurately detect the time that the feedback signal crosses the threshold. As a result, the controller may start mistiming the switching of the power switch, which can also cause instability in the power converter.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment may not be depicted in order to facilitate a less obstructed view of these various embodiments of the present disclosure.
In the following description numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific details need not be employed to practice the present invention. In other instances, well-known systems, devices, or methods have not been described in detail in order to avoid obscuring the present invention.
Reference throughout this specification to “one embodiment”, “an embodiment”, “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples. Particular features, structures or characteristics may be included in an integrated circuit, an electronic circuit, a combinational logic circuit, or other suitable components that provide the described functionality. In addition, it is appreciated that the figures provided herewith are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale.
For purposes of this disclosure, “ground” or “ground potential” refers to a reference voltage or potential against which all other voltages or potentials of a circuit or integrated circuit (IC) are defined or measured.
An adaptive compensation control block for a feedback circuit for use in a power converter is described. In one embodiment, the adaptive compensation control block achieves a target level of compensation regardless of operating frequency and time period. The target level of compensation is achieved by adaptively controlling and adjusting a ramp parameter (e.g., slope) of a compensation ramp waveform. In other embodiments, adaptive compensation is achieved by fixing the slope and adaptively shifting (e.g., offsetting) the start point of the compensation ramp, or by adaptive time shifting of the fixed ramp compensation in a switching cycle.
Power converter 100 receives an unregulated input voltage VIN 102 and produces an output voltage VO 122 and an output current IO 124 delivered to an electrical load 120. Input voltage VIN 102 may be a rectified and filtered ac voltage. As shown, input voltage VIN 102 is referenced to a primary ground 101, also referred to as an input return. Output voltage VO 122 is referenced to a secondary ground 161, also referred to as an output return. In other examples, power converter 100 may have more than one output.
As further shown in
Also included in
Further shown in
A clamp circuit 106 is coupled across primary winding 111 of energy transfer element T1110. Clamp circuit 106 operates to clamp any turn-off signal spikes that may result from leakage inductance from primary winding 111 across the power switching device M1156.
Primary controller 150 and secondary controller 140 may each be incorporated in an integrated circuit. In one embodiment, primary controller 150 is included in a first integrated circuit die and a secondary controller 140 is included in a second integrated circuit die that are both disposed in an integrated circuit package. In another embodiment, power switching device M1156 may be included in a monolithic or hybrid structure of an integrated circuit package that also includes primary controller 150 and secondary controller 140. In one implementation, power switching device M1156 is disposed on a first integrated circuit die that also includes primary controller 150 and secondary controller 140 is included in a second integrated circuit die. In another implementation, power switching device M1156 is disposed on a first integrated circuit die, primary controller 150 is included in a second integrated circuit die, and secondary controller 140 is included in a third integrated circuit die. The die which includes primary controller 150 may be galvanically isolated from the die which includes secondary controller 140. Accordingly, primary controller 150 may be galvanically isolated from secondary controller 140.
In the case where primary controller 150 is galvanically isolated from secondary controller 140, a signal isolation link 148, which links secondary enable signal 148A output from secondary controller 140 with enable signal 148B input to primary controller 150, facilitates communication between the two controllers. In one example, secondary controller 140 may communicate with primary controller 150 by providing a signal through a magnetically coupled communication link (represented by signal isolation link 148). In another embodiment, a communication link between primary controller 150 and secondary controller 140 may be implemented using galvanically isolated conductive loops included in the lead frame of an integrated circuit package. Alternatively, signal isolation link 148 may be implemented through an optic-coupler, a capacitor, or a coupled inductor.
In the example of
As shown, secondary controller 140 is referenced to output return 161 and may also receive secondary control signals 143 (in addition to feedback signal VFB 132) to generate SR drive signal USR 144, as well as REQ/EN-pulse signal 148A for transmission to primary controller 150. In the example of
Adaptive virtual ESR (AVESR) compensation circuit block 142 is coupled to output a compensation ramp signal VAVESR 147 (as the compensated feedback reference signal) in response to the reference signal VREF 146. The AVESR compensation circuit 142 also receives REQ/EN-pulse signal 145 which is a synchronizing signal that enables primary switch turn-on. Persons of skill in the art will appreciate that other synchronizing signals (e.g., secondary current signal from IS 116) may be utilized in other embodiments.
It is appreciated that secondary current IS 116 is substantially zero when power switching device M1156 is in the ON state. When power switching device M1156 transitions to the OFF state and primary winding 111 starts transferring energy to secondary winding 112, current IS 116 becomes non-zero.
Continuing with the description of
Primary controller 150 is configured to generate output UDR signal 154, which transitions power switching device M1156 from the ON state to the OFF state when the current through primary winding 111 reaches a current limit. In one embodiment the current limit may be a specified, fixed limit. In other embodiments, the current limit may be an adjustable or adaptive variable current limit which blocks current flow through power switching device M1156. When power switching device M1156 transitions from the ON state to the OFF state, the voltage at the dotted end of secondary winding 112 becomes greater than the voltage at the opposite end, which allows energy to be transferred to output capacitor C1125, thereby providing power to electrical load 120.
In one example, secondary controller 140 may control synchronous rectification circuit (synchronous switch) 114 through control signal USR 144 to function as a closed switch (i.e., to conduct current) when the voltage at the dotted end of secondary winding 112 becomes greater than the voltage at opposite end, such that output capacitor C1125 is charged.
In one implementation, synchronous switch 114 comprises a MOSFET having a gate coupled to receive control signal USR 144. Synchronous switch 114 may operate in the ON state (i.e., the switch is turned ON) or in the OFF state (i.e., the switch is turned OFF) depending on the value of control signal USR 144. When turned ON, synchronous rectification circuit 114 conducts current. In the illustrated example, synchronous rectification circuit 114 also includes a diode, coupled between the source and drain of the MOSFET. The diode may be implemented as a discrete component, or as a body diode of the MOSFET.
In one example of secondary controller 140, AVESR compensation circuit 142 synchronizes the compensation ramp with signal REQEN-pulse 148A that is enabling drive signal UDR for primary power switching device M1156. However; it is appreciated that other circuit signals could be also be used for that purpose. For example, control signal USR 144 may be utilized to activate and synchronize the compensation circuit signals received by AVESR compensation circuit 142. In another example, the compensation signals may be synchronized with the secondary current signal IS 116. As shown in the example of
In operation, enable signal REQ/EN-pulse 148A is set by comparison of feedback signal VFB 132 with a threshold, i.e., feedback reference signal VREF 146, to set REQ/EN-pulse 148A (logic high or logic low) in order to control the switching of power switching device M1156 through primary controller 150. For instance, if feedback signal VFB 132 is less than feedback reference signal VREF 146, indicating an output signal (e.g., Vo 122 or Io 124) having a value below a desired level, REQ/EN-pulse signal 148A is set to logic high, which indicates to primary controller 150 that power switching device M1156 should be transitioned to the ON state so that more energy can be stored in the primary winding 111 and then transferred to the output of power converter 100 the next time power switching device M1156 is transitioned to the OFF state. In one embodiment power switching device M1 may transition to the OFF state by a current limit control such that no more energy is stored in the primary winding 111 to be delivered to the output of power converter 100. The drive signal UDR 154 controls the operation of power switch M1156.
In one embodiment, after power switching device M1156 transitions to the OFF state, for a threshold period (also referred to as a hold-off period) feedback circuit is not responsive to the feedback signal VFB 132. That is, the logic level of REQ/EN-pulse signal 148A is not changed during the hold-off period.
Power converter 100 may be configured to operate in a continuous conduction mode, which may be desirable for driving larger loads. In continuous conduction mode, the switch of synchronous rectification circuit 114 is turned ON during the entire time that power switching device M1156 is in the OFF state. At lighter loads, power converter 100 typically operates in a discontinuous conduction mode, wherein the switch of synchronous rectification circuit 114 is turned ON for a fractional portion of the time that power switching device M1156 is OFF.
Person of skill will understand that in the absence of adaptive virtual ESR compensation circuit 142 when output capacitor C1125 has an associated ESR 126 that is relatively small, output sense signal 128 (hence, feedback signal VFB 130) may not react quickly enough to the changes caused by synchronous rectification circuit 114 while operating in continuous conduction mode. For example, when the MOSFET of synchronous rectification circuit 114 is turned ON, after power switching device M1156 transitions to the OFF state, feedback signal VFB 132 may not rise quickly enough to cross the determined threshold by the end of the hold-off period. This can cause secondary controller 140 to command primary controller 150 (by setting enable signal EN-pulse 148A) to transition power switching device M1156 to the ON state as soon as the hold-off period is over. As a result, power switching device M1156 may switch to the ON state too soon after the previous switching activity. This may lead to a pattern of grouped pulses in drive signal UDR 154 where several periods of switching activity will be followed by periods of no switching activity and therefore, unstable operation of power converter 100.
Persons of skill in the art will further appreciate that a similar problem may occur when noise coupled to feedback signal VFB 132 during the time when power converter 100 is operating in the discontinuous conduction mode. In either case, utilizing adaptive virtual ESR compensation circuit 142, either feedback signal VFB 130 or feedback reference signal VREF 146 can be altered or compensated to mitigate the problem of grouped pulses. In other words, adaptive virtual ESR compensation circuit 142 provides the advantage of stable operation and improved functionality of power converter 100.
In the example of
In
The negative input terminal of comparator 180 is coupled to receive feedback signal VFB 181. Thus, comparator 180 is configured to compare compensated reference signal 187 with the feedback signal VFB 181 and output a comparison result signal 189. Comparison result signal 189 may be used to set REQ/EN-pulse signal 148A to one of two logic levels based on the comparison of feedback signal VFB 181 with compensated reference signal 187. In one embodiment, the difference between the feedback signal VFB 181 and compensated reference signal 187 decreases continuously in time. In one embodiment, this difference decreases substantially linearly in time. In another example, this difference may decrease substantially exponentially in time.
When load or line condition changes in operating condition 2 (e.g., load increases) the switching period reduces to T2sw 241 (switching frequency F2sw=1/T2sw). As a result of adaptive compensation of virtual ESR, the compensation ramp waveform changes slope (after hold-off delay 228) and starts ramping from start voltage level 234 with slope 2246, which is steeper than slope 1256. As shown, in operating condition 2, slope 2246 of the compensation ramp waveform has a crossing point R 240 with feedback signal line 243 at a desired cross target level 225 (with margin 261 below reference level VREF 210).
In operating condition 3 the load increases further, such that the switching period reduces to T3sw 231 (switching frequency F3sw=1/T3sw). As a result of adaptive compensation of virtual ESR, the compensation ramp waveform changes slope (after hold-off delay 228) and starts ramping from start voltage level 234 with a further increased slope 3266. As shown, slope 3266 of the compensation ramp waveform has a crossing point S 260 with feedback signal line VFB 243 at desired cross target level 225 (with margin 261 below reference level VREF 210).
As shown in
As shown, operational amplifier 315 is configured as a voltage follower, with the voltage at node A1321 following voltage at node A 316, i.e., Vramp 317. The output of operational amplifier 315 is coupled to the gate of PMOS switch MP2320. The positive input 314 of operational amplifier 315 is coupled to node A 316, with the negative input 313 being coupled to node A1321 (source of MP2320), which is coupled to VCC bus 305 through resistor R2322. During the reset time when MP1311 is turned ON, capacitor Cslope 312 is shorted, thereby discharging it. Node A 316 is thus pulled to VCC bus 305. In other words, during discharge of capacitor Cslope312 (reset interval) no current flows through NMOS switch MN1326, which is connected as a diode through link 325 across its gate to drain. Other than the reset interval (interval 432 in waveform 430 of
The example circuit diagram of
As discussed above, the slope control accomplished through increasing the charging current of Cslope 312 by adding variable current source Islope-var 332 at node A 316. The increase in charging current is defined by the transfer function of voltage controlled current source V-to-I 330. Voltage Vhold 331 at the input of V-to-I 330 appears across capacitor CLP 335, and is provided from node B 346 through switch S1336 and low-pass filter consisting of RLP 334 and CLP 335. The control signal that closes switch S1336 is provided through REQ/EN-pulse signal 337, which may be generated in the secondary controller to turn-on the primary power switch (secondary controller 140 and power switching device M1156, respectively, in
Persons of skill in the art will understand that as long as the mirrored current Iramp 324 in switch MN2348 is below a pre-threshold k·I1 (I1 is the high threshold current source 352 and factor k is less than or equal to one, k≤1), the additional current from current source k·I1342 may charge capacitor CLP 335 during short closing intervals of switch S1336. This results in increase of current Islope-var332, which results in an increase of the charging current slope of capacitor Cslope312. However, during major period of switching cycle when REQ/EN-pulse signal 337 is low (switch S1336 open), holding voltage Vhold 331 across capacitor CLP 335 remains substantially constant or unchanged. Thus, in successive switching cycles capacitor CLP 335 integrates the error voltage Verror 347 change during the charging intervals (e.g., interval t4404 to t5405 of
Note that NMOS switch MN3358 conducts the mirrored current Iramp 324. The subtraction of ramp current Iramp 324 from the threshold current source I1352 (I1−Iramp) flows through diode-connected NMOS switch MN4366, which current is mirrored through MN5368. Output voltage signal VAVESR 370, which provides the slope change of the adaptive virtual ESR, is defined as: VAVESR=VREF−R1×(I1−Iramp).
Waveform 430 shows the reset signal, which is the activation signal (310 for PMOS switch MP1311 across Cslope 312 in
Three switching cycles Tsw1 416, Tsw2 417 and Tsw3 418 are provided in
Waveform 440 shows the error voltage signal Verror 347 at node B 346 of
Waveform Vhold 450 shows the holding voltage across capacitor C−LP that generates the variable slope current Islope·var (332 in
Waveform Vramp 460 shows the signal for ramp voltage (Vramp 317 at node 316 of
In third switching cycle T−sw3 418, after the reset interval 467 (t10 to t11) the slope 468 of Vramp is adjusted back to a milder slope 468, reaching to a minimum voltage level 469. The reason why is because Iramp has exceeded the pre-threshold k·I1 and capacitor CLP (Vhold) was discharged (during REQ/EN-pulse signal, t9 to t10) to a lower voltage level 456. Thus, by an integrating function of Vhold the ramp slope is adjusted to adaptively reach a desired pre-threshold level.
Waveform Iramp470 shows the signal of the ramping current Iramp (324 in
In first switching cycle Tsw1 316 the ramp up slope 473 is relatively slow, and peak current 474 at t5405 remains below current pre-threshold k·I1491. In second switching cycle Tsw2 417 the ramp up slope 476 is very fast and Iramp hits both the pre-threshold k·I1491 (at t7407) and threshold I1493 (at t8408) and continues to a peak value 477 (at t10410). In third switching cycle T−sw3 318 the ramp up slope 479 has been adjusted by AVESR circuit block to the desired value and Iramp slope 479 mildly hits the pre-threshold k·I1491 (at t13413) with a peak value 471 slightly above pre-threshold k·I1491. The slope for next switching periods would be locked on this desired slope. As discussed above, Iramp 470 waveform shows a reverse slope of Vramp as defined by: Iramp=(VCC−Vramp)/R2.
Waveform 480 shows the adaptive virtual ESR signal VAVESR generated by the circuit blocks of
In the embodiment shown, VESR generator 520 includes a comparator 510 that compares signal VSTART 511 at its negative input to signal VREF 512 at its positive input to generate logic signal 513 at the output of comparator 510. Logic signal 513 controls a two-pole switch 514 in the current path of a current source ISLOPE 518. As long as the voltage level of VSTART 511 has not reached VREF 512 output signal 513 is at a logic high level and switch 514 conducts current ISLOPE 518 to charge capacitor CVESR 525. Charging of capacitor 525 produces voltage signal VESR 530 with a linear slope, d(VESR)/dt=ISLOPE/CVESR, from a start voltage level VSTART 511, as shown in the VESR waveform block 530. If VSTART 511 reaches or exceeds VREF 512, then output signal 513 of the comparator 510 transitions to a logic low level and switch 514 conducts current ISLOPE 518 to ground 501. In every switching cycle when switch 516 is closed through a narrow pulse REQ/EN 515 the initial voltage on capacitor CVESR 525 is defined by the start voltage level VSTART. Signal VSTART 511 adaptively changes in a closed loop with the load or line variation as depicted in the signal diagrams of
Signal VVESR 530 is shown connected to the positive input of feedback comparator 540, where it is compared to feedback signal VFB 542 applied to the negative input. When signal VFB 542 goes below signal VVESR 530 the output signal 545 of comparator 540 transitions from a logic low to a logic high level, which causes pulse generator 550 to generate a pulse 552 having a narrow width “tP”, which is the request/enable signal REQ/EN 515 applied to control the conducting state of switches 516, 562 and 570.
Continuing with the example of
When applied to the input of buffer 580, output signal 568 charges a control capacitor CCNRL 575 in reference to its lower plate potential of VREF−VMAX at node M 576, wherein VMAX presents the maximum amplitude of signal VVESR 530. A zener diode 572 clamps the voltage applied across control capacitor CCNRL 575. The output signal 585 of buffer 580 closes the adaptive loop for VSTART signal 511.
As discussed in connection with
Note that the enabling/request pulse signals REQ/EN 680 shown at the bottom of
It is appreciated that even though the present disclosure provides examples of the adaptive compensation of start voltage level and the slope for the virtual ESR signal (VVESR) individually, in other embodiments both the start voltage level and the slope of the virtual ESR signal (VVESR) may be changed simultaneously and adaptively (controlled) based on load and line variation to achieve improved stability in a control loop.
The above description of examples of the present disclosure is not intended to be exhaustive or limited to the embodiments disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible without departing from the broader spirit and scope of the present invention. Indeed, it is appreciated that the specific example circuit diagrams, methods of operation, etc., are provided for explanation purposes and that other circuits and devices may be employed in other embodiments and examples in accordance with the teachings of the present disclosure. These modifications can be made to the examples provided in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.
This application is a continuation of U.S. patent application Ser. No. 15/962,131 filed Apr. 25, 2018, which is a continuation of International Application No. PCT/US17/34828, filed May 26, 2017, which claims the benefit of U.S. Provisional Application No. 62/394,975, filed on Sep. 15, 2016, and the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5282107 | Balakrishnan | Jan 1994 | A |
5498995 | Szepesi | Mar 1996 | A |
5952949 | Coy et al. | Sep 1999 | A |
6150871 | Yee | Nov 2000 | A |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6577512 | Tripathi et al. | Jun 2003 | B2 |
6724244 | Wu | Apr 2004 | B2 |
6933769 | Koelling | Aug 2005 | B2 |
7092268 | George | Aug 2006 | B2 |
7193402 | Lee et al. | Mar 2007 | B2 |
7295451 | Charles | Nov 2007 | B2 |
7301389 | Coady | Nov 2007 | B2 |
7348830 | Debroux | Mar 2008 | B2 |
7408796 | Soldano | Aug 2008 | B2 |
7616050 | Eckstein | Nov 2009 | B2 |
8300440 | Ho et al. | Oct 2012 | B2 |
8373356 | Shao et al. | Feb 2013 | B2 |
9071152 | Morong et al. | Jun 2015 | B2 |
9148929 | Jiang et al. | Sep 2015 | B2 |
20040109335 | Gan et al. | Jun 2004 | A1 |
20050035371 | Fujihira | Feb 2005 | A1 |
20050167749 | Disney | Aug 2005 | A1 |
20090016090 | Knight | Jan 2009 | A1 |
20090261790 | Arduini | Oct 2009 | A1 |
20100109561 | Chen et al. | May 2010 | A1 |
20100194445 | Balakrishnan et al. | Aug 2010 | A1 |
20110025278 | Balakrishnan et al. | Feb 2011 | A1 |
20110149615 | Matthews | Jun 2011 | A1 |
20120028093 | Satou et al. | Feb 2012 | A1 |
20120043949 | Nakamura | Feb 2012 | A1 |
20130020964 | Nuhfer et al. | Jan 2013 | A1 |
20130063101 | Nene | Mar 2013 | A1 |
20150103567 | Wang et al. | Apr 2015 | A1 |
20160141961 | Odell et al. | May 2016 | A1 |
20160204704 | Cao | Jul 2016 | A1 |
20170373595 | Huang et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
102386767 | Mar 2012 | CN |
102412707 | Apr 2012 | CN |
102882375 | Jan 2013 | CN |
103384116 | Nov 2013 | CN |
103825433 | May 2014 | CN |
105515390 | Apr 2016 | CN |
4410211 | Oct 1995 | DE |
2757675 | Jul 2014 | EP |
2005269807 | Sep 2005 | JP |
2016077226 | May 2016 | WO |
WO 2016077226 | May 2016 | WO |
Entry |
---|
Kudo, Switching Regulator, JP (2005269807) (Year: 2005). |
India Examination Report in Application 201917010679, dated Apr. 22, 2021, 6 Pages in All. |
CN Search Report drafted Jul. 27, 2020 in Chinese Patent Application No. 2017800707372, 3 pages in all. |
CN Office Action sent Aug. 4, 2020 in Chinese Patent Application No. 2017800707372, 8 pages in all. |
Japanese Application No. 2019-514235; Notice of Reasons for Refusal with English Translation; dated Feb. 26, 2021; 10 pages. |
PCT International Preliminary Report On Patentability dated Mar. 19, 2019, for International Application No. PCT/US2017/034828 filed May 26, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190348900 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62394975 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15962131 | Apr 2018 | US |
Child | 16379351 | US | |
Parent | PCT/US2017/034828 | May 2017 | US |
Child | 15962131 | US |