Power converter employing a variable switching frequency and a magnetic device with a non-uniform gap

Information

  • Patent Grant
  • 8514593
  • Patent Number
    8,514,593
  • Date Filed
    Wednesday, June 17, 2009
    15 years ago
  • Date Issued
    Tuesday, August 20, 2013
    11 years ago
Abstract
A power converter including a power switch, a controller for controlling a switching frequency thereof, and a magnetic device with a non-uniform gap. In one embodiment, the power converter includes a power switch and a magnetic device coupled to the power switch and having a non-uniform gap. The power converter also includes a controller having a detector configured to sense a condition representing an output power of the power converter. A control circuit of the controller is configured to control a switching frequency of the power switch as a function of the condition and control a duty cycle of the power switch to regulate an output characteristic of the power converter.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, more specifically, to a power converter including a power switch, a controller for controlling a switching frequency thereof, and a magnetic device with a non-uniform gap.


BACKGROUND

A switched-mode power converter (also referred to as a “power converter” or “regulator”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. DC-DC power converters convert a direct current (“dc”) input voltage into a dc output voltage. Controllers associated with the power converters manage an operation thereof by controlling conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”).


Typically, the controller measures an output characteristic (e.g., an output voltage, an output current, or a combination of an output voltage and an output current) of the power converter, and based thereon modifies a duty cycle of a power switch of the power converter. The duty cycle “D” is a ratio represented by a conduction period of a power switch to a switching period thereof. Thus, if a power switch conducts for half of the switching period, the duty cycle for the power switch would be 0.5 (or 50 percent). Additionally, as the voltage or the current for systems, such as a microprocessor powered by the power converter, dynamically change (e.g., as a computational load on the microprocessor changes), the controller should be configured to dynamically increase or decrease the duty cycle of the power switches therein to maintain an output characteristic such as an output voltage at a desired value.


Power converters designed to operate at low power levels typically employ a flyback power train topology to achieve low manufacturing cost. A power converter with a low power rating designed to convert an ac mains voltage to a regulated dc output voltage to power an electronic load such as a printer, modem, or personal computer is generally referred to as a “power adapter” or an “ac adapter.” Some power adapters may be required to provide short-term peaks of power that are much greater than a nominal operating power level. A power adapter with a nominal 25 watt output power rating may be required to produce 60 watts of peak output power for a relatively small fraction of an operational cycle of the load, for example, for 40 milliseconds (“ms”) out of a 240 millisecond operational cycle of the load.


A component of the magnetic flux in a magnetic device, such as a power transformer (also referred to as a “transformer”), in certain power train topologies employed in a power converter is proportional to a peak operating current in a primary winding thereof. Accordingly, the magnetic device in power adapters should be sized for the peak power, rather than the nominal output power rating. However, oversizing the magnetic device increases its cost, which is an important consideration for high volume markets such as the markets for printers, modems, and personal computers. Designing a power converter for peak power also increases power losses at lower power levels because the power converter is typically designed to enter a discontinuous conduction mode (“DCM”) at a higher output power level than a power converter designed to operate only at a nominal output power level.


Power conversion efficiency of power adapters has become a significant marketing criterion, particularly since the publication of recent U.S. Energy Star specifications that require a power conversion efficiency of power adapters for personal computers to be at least 50 percent at output power levels below about one watt. The “One Watt Initiative” of the International Energy Agency is another energy saving initiative to reduce appliance standby power to one watt or less. These efficiency requirements at very low output power levels were established in view of the typical load presented by a printer in an idle or sleep mode, which is an operational state for a large fraction of the time for such devices in a home or office environment. A challenge for a power adapter designer is to provide a high level of power conversion efficiency over a wide range of output power.


Numerous strategies have been developed to reduce manufacturing costs and increase power conversion efficiency of power adapters over a wide range of output power levels including the incorporation of a burst operating mode at very low output power levels, the inclusion of an energy-recovery snubber circuit or a custom integrated controller, and a carefully tailored specification. Each of these approaches, however, provides a cost or efficiency limitation that often fails to distinguish a particular vendor in the marketplace. Accordingly, what is needed in the art is a design approach for a power adapter that enables a further reduction in manufacturing cost and improvement in power conversion efficiency that does not compromise end-product performance, and that can be advantageously adapted to high-volume manufacturing techniques. Additionally, what is needed in the art is a magnetic device employable with a power adapter or the like that enables the magnetizing inductance of the magnetic device to increase at lower current levels.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a power converter including a power switch, a controller for controlling a switching frequency thereof, and a magnetic device with a non-uniform gap. In one embodiment, the power converter includes a power switch and a magnetic device coupled to the power switch and having a non-uniform gap. The power converter also includes a controller having a detector configured to sense a condition representing an output power of the power converter. A control circuit of the controller is configured to control a switching frequency of the power switch as a function of the condition and control a duty cycle of the power switch to regulate an output characteristic of the power converter.


In another aspect, the present invention provides a magnetic device with a non-uniform gap including a magnetic core having first and second core sections, wherein the second core section of the magnetic core has a leg that forms a gap with the first core section of the magnetic core. An end of the leg of the second core section of the magnetic core may have a reduced cross-sectional area or a hole bored therein to form the non-uniform gap. Alternatively, the leg of the second core section of the magnetic cores may have a core piecepart positioned at an end thereof or a tapered region at an end thereof to form the non-uniform gap. In an alternative embodiment, the magnetic device may include another magnetic core having first and second core sections, wherein the second core section of the another magnetic core has a leg that forms a gap with the first core section thereof. The gaps of the two magnetic cores to form a non-uniform gap for the magnetic device.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a schematic diagram of an embodiment of a power adapter employing power converter constructed according to the principles of the present invention;



FIG. 2 illustrates waveforms of a voltage and a current versus time for an exemplary power converter operable in a continuous conduction mode according to the principles of the present invention;



FIG. 3 illustrates a schematic diagram of an embodiment of a controller configured to control a switching frequency of a power converter constructed according to the principles of the present invention; and



FIGS. 4 to 13 illustrate perspective views of embodiments of magnetic devices constructed according to the principles of the present invention.





Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to exemplary embodiments in a specific context, namely, a power converter including a power switch, a controller for controlling a switching frequency thereof, and a magnetic device with a non-uniform gap. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from a power conversion device including a power switch, a controller and a magnetic device such as a power amplifier or a motor controller is well within the broad scope of the present invention.


A flyback power converter is often employed in low power applications such as a power adapter for a printer because of its simplicity and low cost. Power adapters employing a flyback power converter are typically designed to operate continuously at a high output power level. However, the loads presented to power adapters such as loads provided by printers and personal computers are generally variable, and usually do not operate for an extended period of time at a maximum power level. A consideration for the design of power adapters for these applications is power conversion efficiency at light and moderate loads.


A flyback power converter is conventionally designed to operate at a substantially constant switching frequency. Other power converter topologies are designed to operate with a switching frequency that decreases as the load increases. To reduce electromagnetic interference (“EMI”), the switching frequency may be modulated, typically in a random manner, to produce small frequency deviations around a nominal switching frequency. The random variation of the switching frequency spreads the spectrum of the electromagnetic interference frequency components and reduces its peak spectral values. The reduced peak spectral values can provide a significant reduction in added components to manage the electromagnetic interference produced by the switching action of the power train of the power converter. However, the effect of these small frequency deviations on the design of principal elements of the power train such as the magnetic device (e.g., transformer) and the power switch as well as power conversion efficiency is generally insubstantial.


As introduced herein, as the output power supplied by the power converter to the load increases, the switching frequency of the switch(es) of the power converter is increased. The increased switching frequency decreases the peak current through a magnetic device employed in the power train topology, particularly in a flyback power train topology. Correspondingly, the peak flux in a magnetic device is reduced. The ripple current in a filter component of the power converter such as an output inductor may also be reduced. The size of the magnetic device such as the transformer may be advantageously reduced. As a result, the power converter not only can use a smaller transformer, but the power converter can also maintain operation in a continuous conduction mode (“CCM”) at a lower power level, enabling increased power conversion efficiency at a lower power level. The technique of controlling (e.g., varying) the switching frequency as a function of a condition representing an output power of the power converter (e.g., a sensed current or a sensed output power level) can be used to reduce the switching frequency of the switch(es) of the power converter over most or all of the load range as the output power is reduced to further increase power conversion efficiency at lower power levels. During lower power operation, reduction of the switching frequency reduces switching losses that become a smaller percentage of the total power converter losses. The reduction in switching frequency thus increases power conversion efficiency during lower power operation.


The switching frequency may be controlled to be proportional to the output power of the power converter and in accordance with a selected input voltage thereof. Advantageously, a lower switching frequency limit such as 20 kilohertz (“kHz”) may be employed to prevent operation within a range of human hearing. At a very low output power level such as one percent or less of maximum rated output power, a burst mode of operation may also be employed to control the power converter. In a burst mode of operation, the switching action of the switch(es) of the power train of the power converter is temporarily stopped while an output filter capacitor supplies power to the load. After the output filter capacitor is partially (or only slightly) discharged, the switching action of the power train is resumed. Thus, the switching frequency may be controlled to be proportional to the output power of the power converter during a non-burst mode of operation thereof.


The process of increasing and decreasing switching frequency parallel to increased and decreased load on the power converter may be applied to a power train topology wherein a peak magnetic flux in a magnetic device is dependent on the load on the power converter. For example, the process of controlling switching frequency with a condition representing an output power of the power converter may be applied to a buck or to a boost power train topology, including isolated and nonisolated topology variants such as a power-factor controlled boost power train topology.


Turning now to FIG. 1, illustrated is a schematic diagram of an embodiment of a power adapter employing power converter with a controller 150 constructed according to the principles of the present invention. A power train (e.g., a flyback power train) of the power converter (also referred to as a “flyback power converter”) includes a power switch Qmain coupled to an ac mains 110, an electromagnetic interference (“EMI”) filter 120, a bridge rectifier 130 and an input filter capacitor Cin to provide a dc input voltage Vin to a magnetic device (e.g., an isolating transformer or transformer T1). The transformer T1 has a primary winding Np and a secondary winding Ns with a turns ratio n:1 that is selected to provide an output voltage Vout with consideration of a resulting duty cycle and stress on power train components. The transformer T1 may also include a non-uniform gap as described below.


The power switch Qmain (e.g., an n-channel field-effect transistor) is controlled by a pulse-width modulator (“PWM”) 160 that controls the power switch Qmain to be conducting for a duty cycle. The power switch Qmain conducts in response to gate drive signal VG produced by a pulse-width modulator 160 of a control circuit 155 with a switching frequency (often designated as “fs”). The duty cycle is controlled (e.g., adjusted) by the pulse-width modulator 160 to regulate an output characteristic of the power converter such as an output voltage Vout, an output current Iout, or a combination of the two. A feedback path 161 enables the pulse-width modulator 160 to control the duty cycle to regulate the output characteristic of the power converter. Of course, as is well known in the art, a circuit isolation element such as an opto-isolator may be employed in the feedback path 161 to maintain input-output isolation of the power converter.


The ac voltage appearing on the secondary winding Ns of the transformer T1 is rectified by the diode D1, and the dc component of the resulting waveform is coupled to the output through the low-pass output filter including an output filter capacitor Cout to produce the output voltage Vout. A detector 170 senses a condition representing an output power of the power converter (e.g., a current in a current-sensing resistor RCS) and a frequency control circuit (“FCC”) 180 of the control circuit 155 is configured to control (e.g., modify, alter, vary, etc.) the switching frequency of the power switch Qmain of the power converter in response to the sensed current as described further hereinbelow. The control circuit 155 may control the switching frequency of the power switch Qmain during a non burst mode of operation of the power converter and in accordance with a selected input voltage Vin or voltage range thereof. A feed-forward signal path 162 may be present to provide a voltage signal to the frequency control circuit 180 to enable feed-forward frequency control of the power converter based on the input voltage Vin thereto. For example, at a high-line input voltage Vin (e.g., 230VAC) the peak current in the power switch Qmain will be lower than at a low-line input voltage Vin (e.g., 115VAC) for a given output power level. The feed-forward signal path 162 may be used to compensate for the changes in the output of the detector 170 as a result of changes to the input voltage Vin. At the high-line input voltage Vin, the switching frequency of the power switch Qmain may be reduced. For instance, at the high-line input voltage Vin, the switching frequency of the power switch Qmain may be linearly reduced as a function of the input voltage Vin.


During a first portion of the duty cycle, a current Ipri (e.g., an inductor current) flowing through the primary winding Np of the transformer T1 increases as current flows from the input through the power switch Qmain. During a complementary portion of the duty cycle (generally co-existent with a complementary duty cycle 1-D of the power switch Qmain), the power switch Qmain is transitioned to a non-conducting state. Residual magnetic energy stored in the transformer T1 causes conduction of current through the diode D1 when the power switch Qmain is off. The diode D1, which is coupled to the output filter capacitor Cout, provides a path to maintain continuity of a magnetizing current of the transformer T1. During the complementary portion of the duty cycle, the magnetizing current flowing through the secondary winding Ns of the transformer T1 decreases. In general, the duty cycle of the power switch Qmain may be controlled (e.g., adjusted) to maintain a regulation of or regulate the output voltage Vout of the power converter.


In order to regulate the output voltage Vout, a value or a scaled value of the output voltage Vout is typically compared with a reference voltage in the pulse-width modulator 160 using an error amplifier (not shown) to control the duty cycle. This forms a negative feedback arrangement to regulate the output voltage Vout to a (scaled) value of the reference voltage. A larger duty cycle implies that the power switch Qmain is closed for a longer fraction of the switching period of the power converter.


The energy storage inductor of the flyback power train is incorporated into the transformer T1 as the magnetizing inductance of transformer T1. In order to provide the power conversion at high efficiency, the power converter operates in a continuous conduction mode at low-line input voltage. In the continuous conduction mode, the current flowing through the power switch Qmain starts at a positive value when the power switch Qmain first turns on (i.e., closed or conducting). While the power switch Qmain is off (i.e., open or non-conducting) and while the diode D1 is on, the current through the diode D1 does not decrease to zero. An active power switch such as a field-effect transistor may be substituted for the diode D1 as a synchronous rectifier to improve power conversion efficiency.


Turning now to FIG. 2, illustrated are waveforms of a voltage and a current versus time for an exemplary power converter operable in a continuous conduction mode according to the principles of the present invention. With continuing reference to the power converter of FIG. 1, the aforementioned characteristics relate to the gate drive signal VG for the power switch Qmain, the current Ipri in the primary winding Np of the transformer T1, and the current Isec in the secondary winding Ns of the transformer T1. The parameter “D” represents the first portion of the duty cycle. The average current in the primary winding Np of the transformer T1 during the first portion of the duty cycle is represented in FIG. 2 by the parameter “I.” The change in the current in the primary winding Np of the transformer T1 during the first portion of the duty cycle, is represented by the parameter “ΔI.”


The output voltage Vout of a flyback power converter in a continuous conduction mode can be represented approximately by equation (1):

Vout=Vin·[D/(1−D)]·(1/n),

where D is the duty cycle of the power switch Qmain (i.e., the fraction of time during which the power switch Qmain is on, closed or conducting), and “n” is the ratio of the number of turns in the primary winding Np of the transformer T1 to the number of turns in the secondary winding Ns. Thus, when operating in the continuous conduction mode, the duty cycle of the power converter is determined by the ratio of input voltage Vin to the output voltage Vout. Also, when operating in the continuous conduction mode, the output power of the power converter determines the output current Iout and, therefore, the output power is controlled by the transformer T1 turns ratio. For a given transformer T1 turns ratio n:1 (which is limited by the voltage rating of the power switch Qmain and the need to operate at reasonably high duty cycles to obtain high power conversion efficiency), the average value of the current in the power switch Qmain is determined by the load. The average value of the current in the power switch Qmain is independent of the switching frequency.


A conventional way of operating a flyback power converter, particularly in power adapters, is to use a substantially constant switching frequency. At very light load, as indicated previously above, a power converter may operate in a burst mode of operation wherein the power converter is intermittently disabled to reduce light- or no-load power consumption. As introduced herein, a controller 150 monitors a condition representing an output power of the power converter (e.g., a sensed current such as a sensed peak current through a current-sensing resistor Rcs or other current-sensing element such as a current-sensing transformer) to control the switching frequency of the power converter. Alternatively, the controller 150 may monitor other conditions representing an output power of the power converter such as a current in another power train component (e.g., a secondary-side component) to control the switching frequency of the power converter. As the peak current in the current-sensing resistor RCS (or other current-sensing element) illustrated in FIGS. 1 and 3 increases, the power converter switching frequency is increased. For example, the power converter switching frequency may be increased from 20 kHz at a low output power level to 130 kHz at a maximum output power level. A lower limit on the power converter switching frequency may be required, as indicated previously, to prevent operation within the frequency range of human hearing.


Turning now to FIG. 3, illustrated is a schematic diagram of an embodiment of a controller 300 configured to control a switching frequency of a power converter constructed according to the principles of the present invention. The controller 300 may be employed in the flyback power converter illustrated in FIG. 1 to control (e.g., increase) the switching frequency of the power converter as the peak current through the power switch Qmain changes (e.g., increases). A timing capacitor CT and a timing resistor RT coupled to an RT/CT input (that controls an oscillator frequency) of a pulse-width modulator 330 is set to a nominal switching frequency of the power converter. The power converter includes a current-sensing resistor RCS coupled in series with the source terminal of the power switch Qmain.


A detector 310 formed with a diode D2 and a capacitor C2 coupled to the current-sensing resistor RCS detects a condition representing an output power of the power converter (e.g., a peak current flowing through the power switch Qmain) producing a voltage across the capacitor C2 that is substantially proportional to the peak current in the current-sensing resistor RCS. An amplifier A1 may optionally be included in accordance with the detector 310 of the controller 300 to increase a voltage sensed across the current-sensing resistor RCS to a higher level. The voltage produced across the capacitor C2 in conjunction with the resistor R2 of the detector 310 produces a base current for an amplifier (e.g., a bipolar transistor) Q1, which in turn produces a collector current for the bipolar transistor Q1. Of course, in an alternative embodiment, a field-effect transistor may be substituted for the bipolar transistor Q1 with appropriate circuit modifications. The collector current in the bipolar transistor Q1 flows through a current mirror formed with transistors Q2, Q3. The current-mirror current is coupled to the timing capacitor CT to control (e.g., increase) the switching frequency of the power converter as the peak current changes (e.g., increases) in the current-sensing resistor RCS. A frequency control circuit 320 of the controller 300 includes the timing capacitor CT, the timing resistor RT, the bipolar transistor Q1 and the current mirror. Thus, a control circuit including the frequency control circuit 320 and pulse-width modulator 330 is responsive to the detector 310 to control a switching frequency of the power switch(es) as well as control a duty cycle of the power switch Qmain to regulate an output characteristic of the power converter. The control circuit of the controller 300 illustrated in FIG. 3 is configured to provide a continuous change in switching frequency as a function of a change of the peak switch current. A lower limit on the switching frequency is provided by the timing resistor RT corresponding to the case when no current is produced by the current mirror.


Power transferred from the input to the output of the power converter is dependent on a change in energy storage in the transformer T1 during each switching cycle multiplied by the switching frequency. The power transferred to the output of the power converter can be represented by equation (2):

P=fs·[0.5·L·|(I+ΔI)2−(I−ΔI)2|]=fs·L·I·ΔI,

where P is the output power of the power converter, fs is the power converter switching frequency, L is the magnetizing inductance of the transformer T1 referenced to its primary winding Np, ΔI, as indicated previously above, is the change in the current in the primary winding Np of the transformer T1 during the first portion of the duty cycle as illustrated in FIG. 2, and I is the average value of the current Ipri flowing each cycle through the primary winding Np of the transformer T1 during the first portion of the duty cycle.


The average value I of the current Ipri flowing through the primary winding Np of the transformer T1 is also determined by the output power as a function of the turns ratio n:1 of the transformer T1. Increasing the switching frequency while maintaining a constant output power level causes a decrease in the value of the change in current ΔI. A peak flux density Bpeak in the transformer T1 is proportional to the peak value of current as set forth in equation (3):

Bpeak∝I+ΔI/2.

Therefore, decreasing the value of the change in current ΔI decreases the peak value of peak flux density B, which enables the use of a smaller transformer core. Switching losses including core losses in the transformer T1 may be significantly increased during peak power operation due to the higher switching frequency. However, printer power adapters as well as power adapters coupled to other loads typically require only short bursts of high power. The overall effect of a brief increase in switching frequency on the power converter internal heating will generally be minimal.


A peak current may be employed as a determining factor in changing the switching frequency of a power converter. Since the peak current through the power switch Qmain is proportional to a flux density in the transformer T1, saturation of the transformer core may be advantageously prevented, regardless of input voltage Vin, output voltage Vout, or other operating condition of the power converter.


Reducing the switching frequency of a power converter as the load or output power decreases enables an improvement in power converter efficiency at light load. Thus, switching frequency may be altered over substantially the entire power range of the power converter, excepting a limitation imposed by a lower frequency limit. In an embodiment, the switching frequency may be substantially proportional to the output power level over an operating range of the power converter, with an optional lower limit on the switching frequency and in accordance with a selected input voltage Vin of the power converter.


When designing a power adapter, a designer is typically interested either in increasing power conversion efficiency while holding cost substantially constant, or decreasing cost while holding a performance characteristic constant such as power conversion efficiency. The process introduced herein of increasing switching frequency at peak power to reduce core flux density in a magnetic device enables a decrease in cost by allowing a reduction in core size, while holding normal power performance characteristic substantially constant.


The process of increasing switching frequency at higher load levels can be employed to increase efficiency at lighter load levels while holding cost approximately constant. To accomplish this objective, a region of reduced core cross-sectional area can be employed in the magnetic device (e.g., transformer) core to produce effectively a variable in the magnetic path of the flux. During a burst of peak power, the region of the core with reduced cross-sectional area saturates, effectively lengthening the gap (e.g., forming a non-uniform gap as described below) and reducing the magnetizing inductance of the transformer. The slope (with respect to time) of the current will increase due to reduced transformer magnetizing inductance at high current/flux levels. However, the increase in switching frequency at high load levels reduces the period of time during which current rises, enabling a circuit designer to hold the value of the change in current ΔI more nearly constant by relating the increase in power converter switching frequency to the decreased magnetizing inductance of the transformer.


A gap in a transformer core may cause a significant power loss by causing a fringing flux to flow through nearby conductive windings. Conductive materials such as transformer windings formed around a transformer center leg should not be placed in the immediate vicinity of the gap. This reduces a fringing flux flowing in adjacent windings by focusing the flux at the center of the transformer leg, which is the area farthest from the surrounding windings.


Turning now to FIG. 4, illustrated is a perspective view of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device (e.g., a transformer) includes an “E-I” magnetic core or core having a first core section (e.g., an “I” core section 401) and a second core section (e.g., an “E” core section 402). In FIG. 4 and following FIGUREs, the first core section (e.g., the “I” core section 401) is shown displaced upward from the second core section (e.g., the “E” core section 402) to provide separated illustrations of the two core components. Also, analogous features of the embodiments of the magnetic devices illustrated and described with respect to the following FIGUREs will be designated with like reference numbers.


When the construction of the transformer is complete, the “I” core section 401 is positioned on the top of the outer legs (one of which is designated 404) of the “E” core section 402. A center leg 403 is formed shorter than the outer legs 404, thereby forming a gap 406 for the magnetic flux. The gap 406, which may be formed as an air gap or a gap including another nonmagnetic material, reduces the flux in the core, thereby reducing the tendency of the core to saturate at high current levels. Nonetheless, inclusion of the gap 406 reduces the magnetizing inductance of the transformer compared to a transformer without such a gap. The gap 406 may also be formed with a nonmagnetic material such as a plastic spacer or may include a magnetic material such a powdered magnetic material combined with a nonmagnetic binder to form a distributed gap.


Turning now to FIG. 5, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. In addition to the “E-I” magnetic core or core and air (or other nonmagnetic material) gap 406, an end (e.g., an upper end 407) of the center leg 403 has a reduced diameter to form a non-uniform cross-sectional area of the core. The reduction of the cross-sectional area on the upper end 407 of the center leg 403 enables the upper end 407 thereof to saturate at higher current levels while not saturating at lower current levels. The reduced diameter of the upper end 407 of the center leg 403 effectively forms a longer gap at higher magnetic flux levels, which reduces the magnetizing inductance of the transformer at higher current levels. In other words, the gap 406 and the reduced cross-sectional area of the upper end 407 of the center leg 403 form a non-uniform gap that provides a variable level of magnetizing inductance dependent on a current level in the magnetic device. Thus, the magnetic device advantageously provides a variable level of core saturation for part of the core for a variable current level.


The structure shown in FIG. 5 provides a further efficiency benefit for the power converter because it concentrates flux lines in the non-uniform gap closer to the center thereof, even when the central section of the core is partly saturated. Fringing flux and losses associated with fringing flux are therefore reduced. Of course, within the broad scope of the present invention, instead of a stepped diameter of the upper end 407 of the center leg 403 to form a non-uniform gap as illustrated in FIG. 5, the upper end 407 of the center leg 403 can be tapered to enable more uniform core saturation as the magnetic flux in the core increases. In lieu of or in addition to a non-uniform gap in the center leg of the core, a non-uniform gap with reduced cross-sectional area can be formed on the outer legs 404 to achieve a similar effect. Thus, the term non-uniform gap as used herein may refer to a change in a cross-sectional area of a core (or core leg) and includes a stepped gap as well as a tapered gap.


The absence or reduction of core saturation at low flux and current levels produces a high magnetizing inductance in the transformer and enables efficient operation at low output power levels. A transformer constructed with a core leg with reduced cross-sectional area may also be constructed with essentially no gap, enabling a high magnetizing inductance to be produced for the transformer that saturates at a high current level in a controlled manner.


Turning now to FIG. 6, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. In addition to the “E-I” magnetic core or core and air (or other nonmagnetic material) gap 406, the center leg 403 includes a hole 408 bored therein, which enables the core to saturate at higher current levels. In other words, the gap 406 and the hole 408 in the center leg 403 form a non-uniform gap within the magnetic device. In lieu of or in addition to, the gap 406 and hole 408 in the center leg 403 may be formed with respect to one of the outer legs 404.


Turning now to FIG. 7, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. In addition to the “E-I” magnetic core or core and air (or other nonmagnetic material) gap 406, the transformer may include a core piecepart (e.g., a toroidal core piecepart) 409 positioned at an end of the center leg 403, which enables the core to saturate at higher current levels. FIG. 7 illustrates the core piecepart 409 above the center leg 403 for visual clarity. In practice, the core piecepart 409 may be positioned, without restriction, on the center leg 403. The core piecepart 409 may also be centered between “I” core section 401 and center leg 403 using non-magnetic spacers to further reduce fringing flux and associated losses. The core piecepart 409 provides a practical structure to form a hole in the center leg 403 of the core. The core piecepart 409 can vary on height and length providing two degrees of freedom to adjust the inductance versus current curve. The gap 406 and the core piecepart 409 form a non-uniform gap within the magnetic device. In lieu of or in addition to, the core piecepart 409 on the center leg 403 may be formed with respect to one of the outer legs 404.


Turning now to FIG. 8, illustrated is a perspective view of an embodiment of a magnetic device (e.g., a transformer) constructed according to the principles of the present invention. In addition to the “E-I” magnetic core or core and air (or other nonmagnetic material) gap 406, an upper end of the center leg 403 has a reduced diameter formed by placing a core piecepart (e.g., a cylindrical core piecepart) 410 with reduced diameter thereon. FIG. 8 illustrates the core piecepart 410 above the center leg 403 for visual clarity. In practice, the core piecepart 410 would be positioned, without restriction, on the center leg 403. Alternatively, the core piecepart 410 can be formed with a distributed gap to eliminate the need for the gap 406. The core piecepart 410 may be formed with a nonmagnetic material such as a plastic spacer or may include a magnetic material such as a powdered magnetic material combined with a nonmagnetic binder to form the distributed gap, advantageously eliminating the need for the gap 406. The aforementioned features are also applicable to the core piecepart 409 illustrated and described with respect to FIG. 7. The gap 406 and the core piecepart 409 form a non-uniform gap within the magnetic device, and the core piecepart 409 may augment the accuracy of the gap 406. In lieu of or in addition to, the core piecepart 410 on the center leg 403 may be formed with respect to one of the outer legs 404.


Turning now to FIG. 9, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. In addition to the “E-I” magnetic core or core, the center leg 403 may include a tapered region 411 at an end thereof to reduce a cross-sectional area of the center leg 403, which enables the core to saturate at higher current levels. In other words, the tapered region 411 forms a non-uniform gap within the magnetic device. In lieu of or in addition to, the tapered region 411 at the end of the center leg 403 may be formed with respect to one of the outer legs 404.


Non-uniform gaps in magnetic devices are traditionally formed by grinding down a portion of a core leg. This process increases the cost of the core by requiring a separate grinding operation and also reduces the accuracy of the gap length due to inaccuracies of grinding methods. In order to reduce the manufactured cost and increase dimensional accuracy of the gap lengths in a non-uniform-gap magnetic device, a method is introduced herein for creating the non-uniform gap.


Turning now to FIG. 10, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. The transformer includes first and second magnetic cores (e.g., two “E-I” magnetic cores or cores) coupled together (e.g., positioned side-by-side, directly coupled together or adjacent). The first magnetic core includes a first core section (e.g., an “I” core section 1001) and a second core section (e.g., an “E” core section 1002). The center leg 1003 of the “E” core section 1002 is slightly shortened to form a first gap 1006. The second magnetic core includes a first core section (e.g., an “I” core section 1011) and a second core section (e.g., an “E” core section 1012). A center leg 1013 of the “E” core section 1012 is also shortened to form a second gap 1016. In this manner, an economical construction arrangement may be employed to form a non-uniform gap for the magnetic core of the transformer. In other words, the first and second gaps 1006, 1016 may have different dimensions (e.g., one gap is smaller than the other gap or the gaps are of unequal length) to form the non-uniform gap. Of course, the first and second gaps 1006, 1016 may be formed by a plurality of structures including the structures illustrated above.


Turning now to FIG. 11, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. The transformer includes a further arrangement of first and second magnetic cores coupled together including elements similar to those illustrated and described with respect to FIG. 10. In the present embodiment, however, the “I” core sections 1001, 1011 illustrated in FIG. 10 are formed as a single “I” core section 1101. In this manner, a further economical construction arrangement may be employed to form a non-uniform gap for the transformer.


Turning now to FIG. 12, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. The transformer includes first and second magnetic cores (e.g., two “E-E” magnetic cores) coupled together (e.g., positioned side-by-side, directly coupled together or adjacent). The first magnetic core includes a first core section (e.g., an “E” core section 1201) and a second core section (e.g., an “E” core section 1202). The center leg 1203 of the “E” core section 1202 is slightly shortened to form a first gap 1206. The second magnetic core includes a first core section (e.g., an “E” core section 1211) and a second core section (e.g., an “E” core section 1212). A center leg 1213 of the “E” core section 1212 is also shortened to form a second gap 1216. In this manner, an economical construction arrangement may be employed to form a non-uniform gap for the magnetic core of the transformer. In other words, the first and second gaps 1206, 1216 may have different dimensions (e.g., one gap is smaller than the other gap or the gaps are of unequal length) to form the non-uniform gap. Of course, the first and second gaps 1206, 1216 may be formed by a plurality of structures including the structures illustrated above.


Turning now to FIG. 13, illustrated is a perspective view of an embodiment of a magnetic device (e.g., transformer) constructed according to the principles of the present invention. The transformer includes a further arrangement of first and second magnetic cores coupled together including elements similar to those illustrated and described with respect to FIG. 12. In the present embodiment, however, the “E” core sections 1201, 1211 illustrated in FIG. 12 are formed as a single “E” core section 1301. In this manner, a further economical construction arrangement may be employed to form a non-uniform gap for the transformer.


Thus, a magnetic device with a non-uniform gap has been introduced herein. In one embodiment, the magnetic device includes a first magnetic core having first and second core sections (e.g., “I” or “E” core sections), wherein the second core section of the first magnetic core has a leg (e.g., a center or outer leg) that forms a first gap (e.g., an air gap or distributed gap) with the first core section of the first magnetic core. The magnetic device also includes a second magnetic core adjacent to the first magnetic core and having first and second core sections (e.g., “I” or “E” core sections), wherein the second core section of the second magnetic core has a leg (e.g., a center or outer leg) that forms a second gap (e.g., an air gap or distributed gap) with the first core section of the second magnetic core. The first and second gaps form a non-uniform gap for the magnetic device. For instance, the first gap may be smaller than the second gap to form the non-uniform gap. Additionally, the first core section of the first and second magnetic cores may be formed as a single core section.


Those skilled in the art should understand that the previously described embodiments of a power converter including a controller and related methods of operating the same are submitted for illustrative purposes only. In addition, various other power converter topologies such as a boost power converter and a single ended primary inductor power converter topologies are well within the broad scope of the present invention. While a power converter including a controller to control a switching frequency of a power switch has been described in the environment of a power converter, the controller may also be applied to other systems such as, without limitation, a power amplifier or a motor controller.


For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). The aforementioned references are incorporated herein by reference in their entirety.


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A power converter, comprising: a power switch;a magnetic device coupled to said power switch and having a non-uniform gap, said magnetic device formed according to one of: said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and an end of said leg having a reduced cross-sectional area to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and an end of said leg having a hole bored therein to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and a core piecepart positioned at an end of said leg to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg with a tapered region at an end thereof to form said non-uniform gap with said first core section, andsaid magnetic device comprising a first magnetic core having first and second core sections, said second core section of said first magnetic core having a leg that forms a first gap with said first core section of said first magnetic core, and a second magnetic core adjacent said first magnetic core and having first and second core sections, said second core section of said second magnetic core having a leg that forms a second gap with said first core section of said second magnetic core, said first and second gaps forming said non-uniform gap; anda controller, including: a detector configured to sense a condition representing an output power of said power converter; anda control circuit configured to control a switching frequency of said power switch as a function of said condition and control a duty cycle of said power switch to regulate an output characteristic of said power converter.
  • 2. The power converter as recited in claim 1 wherein said control circuit is configured to reduce said switching frequency in accordance with a reduction of said output power.
  • 3. The power converter as recited in claim 1 further comprising a diode coupled to said magnetic device.
  • 4. The power converter as recited in claim 1 further comprising an output filter capacitor coupled to an output of said power converter.
  • 5. The power converter as recited in claim 1 further comprising a feedback path from an output of said power converter to said controller.
  • 6. The power converter as recited in claim 1 wherein said power switch is a metal-oxide semiconductor field-effect transistor.
  • 7. The power converter as recited in claim 1 wherein said power converter employs a flyback power train.
  • 8. The power converter as recited in claim 1 wherein said detector comprises a resistor, a capacitor and a diode.
  • 9. The power converter as recited in claim 1 wherein said control circuit comprises a frequency control circuit configured to control said switching frequency of said power switch and a pulse-width modulator configured to control said duty cycle of said power switch.
  • 10. The power converter as recited in claim 1 wherein said control circuit comprises a timing capacitor, a timing resistor, an amplifier, a current minor, and a pulse-width modulator.
  • 11. The power converter as recited in claim 1 wherein said condition representing said output power of said power converter comprises at least one of a current associated with said power switch and an output current of said power converter.
  • 12. The power converter as recited in claim 1 wherein said control circuit is configured to provide a continuous change of said switching frequency as a function of a change of said condition.
  • 13. The power converter as recited in claim 1 wherein said control circuit is configured to provide a lower limit of said switching frequency for said power switch.
  • 14. The power converter as recited in claim 1 wherein said control circuit is configured to control said switching frequency of said power switch during a non burst mode of operation of said power converter.
  • 15. The power converter as recited in claim 1 wherein said condition representing said output power of said power converter is provided in accordance with a selected input voltage of said power converter.
  • 16. A method of operating a power converter, comprising: providing a power switch;coupling a magnetic device having a non-uniform gap to said power switch, said magnetic device formed according to one of: said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and an end of said leg having a reduced cross-sectional area to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and an end of said leg having a hole bored therein to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg that forms a gap with said first core section and a core piecepart positioned at an end of said leg to form said non-uniform gap,said magnetic device comprising a first core section and a second core section having a leg with a tapered region at an end thereof to form said non-uniform gap with said first core section, andsaid magnetic device comprising a first magnetic core having first and second core sections, said second core section of said first magnetic core having a leg that forms a first gap with said first core section of said first magnetic core, and a second magnetic core adjacent said first magnetic core and having first and second core sections, said second core section of said second magnetic core having a leg that forms a second gap with said first core section of said second magnetic core, said first and second gaps forming said non-uniform gap;sensing a condition representing an output power of said power converter;controlling a switching frequency of said power switch as a function of said condition; andcontrolling a duty cycle of said power switch to regulate an output characteristic of said power converter.
  • 17. The method as recited in claim 16 wherein said controlling said switching frequency of said power switch comprises reducing said switching frequency in accordance with a reduction of said output power.
  • 18. The method as recited in claim 16 wherein said controlling said switching frequency of said power switch comprises providing a continuous change of said switching frequency as a function of a change of said condition.
  • 19. The method as recited in claim 16 wherein said controlling said switching frequency of said power switch comprises providing a lower limit of said switching frequency for said power switch.
  • 20. The method as recited in claim 16 wherein said condition representing said output power of said power converter is provided in accordance with a selected input voltage of said power converter.
US Referenced Citations (366)
Number Name Date Kind
1376978 Stoekle May 1921 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3553620 Cielo et al. Jan 1971 A
3602795 Gunn Aug 1971 A
3622868 Todt Nov 1971 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4853668 Bloom Aug 1989 A
4866367 Ridley et al. Sep 1989 A
4876638 Silva et al. Oct 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5014178 Balakrishnan May 1991 A
5027264 DeDoncker et al. Jun 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5282126 Husgen Jan 1994 A
5285396 Aoyama Feb 1994 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5459652 Faulk Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5663876 Newton et al. Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815383 Lei Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870299 Rozman Feb 1999 A
5880942 Leu Mar 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907481 Svärdsjö May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5925088 Nasu Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6055166 Jacobs et al. Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6345364 Lee Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6438009 Assow Aug 2002 B2
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Toshio Jun 2003 B2
6597592 Carsten Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimmerman et al. Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7098640 Brown Aug 2006 B2
7099163 Ying Aug 2006 B1
7136293 Petkov et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7269038 Shekhawat et al. Sep 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7312686 Bruno Dec 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7360004 Dougherty et al. Apr 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7375607 Lee et al. May 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 Indika de Silva et al. Mar 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558037 Gong et al. Jul 2009 B1
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7630219 Lee Dec 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Meynard et al. Dec 2010 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
7983063 Lu et al. Jul 2011 B2
8004112 Koga et al. Aug 2011 B2
8179699 Tumminaro et al. May 2012 B2
20020057080 Telefus et al. May 2002 A1
20020114172 Webb et al. Aug 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040017689 Zhang et al. Jan 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040200631 Chen Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20070007945 King et al. Jan 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080224812 Chandrasekaran Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tataeishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090097290 Chandrasekaran Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090315530 Baranwal Dec 2009 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110038179 Zhang Feb 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110182089 Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120243271 Berghegger Sep 2012 A1
20120294048 Brinlee Nov 2012 A1
Foreign Referenced Citations (11)
Number Date Country
101141099 Mar 2008 CN
201252294 Jun 2009 CN
0 665 634 Jan 1994 EP
57097361 Jun 1982 JP
3-215911 Sep 1991 JP
2000-68132 Mar 2000 JP
WO8700991 Feb 1987 WO
WO 2010083511 Jul 2010 WO
WO 2010083514 Jul 2010 WO
WO 2010114914 Oct 2010 WO
WO 2011116225 Sep 2011 WO
Non-Patent Literature Citations (60)
Entry
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401.
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET,” AN101.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002,'pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA.
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Kuwabara, K., et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988 Kawasaki, Japan, pp. 213-218.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
Related Publications (1)
Number Date Country
20100321958 A1 Dec 2010 US