Power converter including a charge pump employable in a power adapter

Information

  • Patent Grant
  • 8638578
  • Patent Number
    8,638,578
  • Date Filed
    Friday, August 14, 2009
    14 years ago
  • Date Issued
    Tuesday, January 28, 2014
    10 years ago
Abstract
A power converter including a charge pump employable in a power adapter. In one embodiment, the charge pump includes a voltage divider with a first diode having a terminal coupled to a terminal of a first capacitor and a second diode having a terminal coupled to a terminal of a second capacitor and another terminal coupled to another terminal of the first capacitor. The charge pump also includes a third diode coupled across the second diode and the second capacitor, and a charge pump power switch coupled across the first capacitor and the second diode.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, more specifically, to a power converter including a charge pump employable in a power adapter.


BACKGROUND

A switched-mode power converter (also referred to as a “power converter”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. DC-DC power converters convert a direct current (“dc”) input voltage into a dc output voltage. Controllers associated with the power converters manage an operation thereof by controlling conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”).


Typically, the controller measures an output characteristic (e.g., an output voltage, an output current, or a combination of an output voltage and an output current) of the power converter, and based thereon modifies a duty cycle of a power switch of the power converter. The duty cycle “D” is a ratio represented by a conduction period of a power switch to a switching period thereof. Thus, if a power switch conducts for half of the switching period, the duty cycle for the power switch would be 0.5 (or 50 percent). Additionally, as the voltage or the current for systems, such as a microprocessor powered by the power converter, dynamically change (e.g., as a computational load on the microprocessor changes), the controller should be configured to dynamically increase or decrease the duty cycle of the power switches therein to maintain an output characteristic such as an output voltage at a desired value.


In a server or other high-end power supply applications, a microcontroller is typically used in connection with the primary side of the power train of the power converter to handle higher-level power management tasks. Most present-generation microcontrollers operate from a 3.3 volt (“V”) bias voltage source, and can consume up to 100 milliamps (“mA”) or more of bias current during an operation thereof. To provide a 3.3 V bias voltage source for the microcontroller, a dissipative power supply referred to as a linear regulator is typically coupled to a higher input voltage source such as a 12 V bias voltage source to produce the 3.3 V bias voltage for the microcontroller. In many power supply designs, the input voltage to the linear regulator is produced by an auxiliary power converter that provides supply voltages for housekeeping needs including both primary- and secondary-side housekeeping needs. For primary-side housekeeping needs, a 12-14 V bias voltage source is typically provided for a pulse-width modulation (“PWM”) control integrated circuit (“IC”) and for a driver IC to drive primary-side power switches. A linear regulator can directly reduce the 12-14 V bias voltage to the 3.3 V bias voltage. A drawback of a linear regulator, however, is its power loss, which can be as large as one watt (“W”), and is significant due to the large voltage drop produced by the linear regulator. In a high-efficiency power supply design, the power loss produced by such a linear regulator is an important loss component in view of a typical efficiency target at light load, as well as a need for careful thermal management of the linear regulator power dissipation.


In a conventional solution to convert 12-14 V down to 3.3 V, the linear regulator is replaced with a power converter such as a small dc-dc power converter to provide 3.3 V, or to provide a 5 V bias voltage followed by a low-dropout linear regulator. The dc-dc power converter typically provides high efficiency, which can be greater than 90%, but the cost and component count of the dc-dc power converter as well as the printed circuit board area that it occupies can be significant drawbacks of such a design.


Cost and efficiency compromises provided by conventional approaches to providing an auxiliary bias voltage in a power converter have become obstacles in the high-volume, competitive marketplaces now being served by such designs. Thus, despite continued size and cost reductions of components associated with power conversion, no satisfactory strategy has emerged to resolve the issues associated with providing a small, efficient, and low-cost bias voltage in a power converter for an internal housekeeping function. Accordingly, what is needed in the art is a circuit and related method to produce an internal bias voltage in a power converter that avoids the aforementioned obstacles, particularly for high-volume, low-cost manufacture of power adapters and other power supplies employing the same.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a power converter including a charge pump employable in a power adapter. In one embodiment, the charge pump, and related method of forming and operating the same, includes a voltage divider with a first diode having a terminal coupled to a terminal of a first capacitor and a second diode having a terminal coupled to a terminal of a second capacitor and another terminal coupled to another terminal of the first capacitor. The charge pump also includes a third diode coupled across the second diode and the second capacitor, and a charge pump power switch coupled across the first capacitor and the second diode.


In another aspect, a power converter, and related method of forming and operating the same, includes a transformer including a primary winding, a secondary winding and a bias winding. The power converter also includes a power switch coupled to the primary winding, an auxiliary switch coupled to the secondary winding and a charge pump coupled to the bias winding as described herein. The power converter also includes a linear regulator coupled to the charge pump and a controller coupled to the linear regulator and the power switch. The power converter is employable in a power adaptor or other power supply as the application dictates.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a schematic diagram of an embodiment of a power adapter constructed according to the principles of the present invention;



FIG. 2 illustrates a schematic diagram of a switched-mode dc-dc power converter configured to divide a dc input bias voltage source by a factor of two to produce a bias voltage;



FIG. 3 illustrates a schematic diagram of a switched-mode dc-dc power converter that eliminates a need for one of the power switches illustrated in FIG. 2; and



FIGS. 4 and 5 illustrate schematic diagrams of embodiments of a charge pump employable in a power converter constructed according to the principles of the present invention.





Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The Figures are drawn to illustrate the relevant aspects of exemplary embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to exemplary embodiments in a specific context, namely, a charge pump employable in a power converter configured to produce a voltage (e.g., a bias voltage) that is a fraction of an ac input voltage. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from a charge pump including a power amplifier or a motor controller is well within the broad scope of the present invention.


A power converter is frequently employed in electronic power conversion applications such as a power supply (e.g., power adapter) for a desktop computer or server because of its high power conversion efficiency and low cost. In higher power applications such as for servers or motor controllers, full- or half-bridge switched-mode power converters are frequently employed. In lower power applications such as for laptop computers and printers, a flyback switched-mode power converter is frequently employed.


Turning now to FIG. 1, illustrated is a schematic diagram of an embodiment of a power adapter constructed according to the principles of the present invention. A power train (e.g., a flyback power train) of the power converter (also referred to as a “flyback power converter”) includes a power switch Qmain, coupled to a source of electrical power (e.g., an ac mains 110), an electromagnetic interference (“EMI”) filter 120, and an input filter capacitor Cin to provide a substantially filtered dc input voltage Vin, to a magnetic device (e.g., an isolating transformer or transformer T1). Although the EMI filter 120 illustrated in FIG. 1 is positioned between the ac mains 110 and a bridge rectifier 130, the EMI filter 120 may contain filtering components positioned between the bridge rectifier 130 and the transformer T1. The transformer T1 has a primary winding Np and a secondary winding Ns with a turns ratio that is selected to provide an output voltage Vout with consideration of a resulting duty cycle and stress on power train components.


The power switch Qmain (e.g., an n-channel field-effect transistor) is controlled by a controller (e.g., a pulse-width modulator (“PWM”) controller 140) that controls the power switch Qmain to be conducting for a duty cycle. The power switch Qmain conducts in response to gate drive signal VG produced by the PWM controller 140 with a switching frequency (often designated as “fs”). The duty cycle is controlled (e.g., adjusted) by the PWM controller 140 to regulate an output characteristic of the power converter such as an output voltage Vout, an output current Iout, or a combination thereof. A feedback path 150 enables the PWM controller 140 to control the duty cycle to regulate the output characteristic of the power converter. Of course, as is well known in the art, a circuit isolation element such as an opto-isolator may be employed in the feedback path 150 to maintain input-output isolation of the power converter. The ac voltage or alternating voltage appearing on the secondary winding Ns of the transformer T1 is rectified by an auxiliary power switch (e.g., a diode D1), and the dc component of the resulting waveform is coupled to the output through the low-pass output filter including an output filter capacitor Cout to produce the output voltage Vout. The transformer T1 is also formed with a third winding (e.g., a bias winding) Nbias that will be described later hereinbelow.


During a first portion of the duty cycle, a current Ipri (e.g., an inductor current) flowing through the primary winding Np of the transformer T1 increases as current flows from the input through the power switch Qmain. During a complementary portion of the duty cycle (generally co-existent with a complementary duty cycle 1-D of the power switch Qmain), the power switch Qmain is transitioned to a non-conducting state. Residual magnetic energy stored in the transformer T1 causes conduction of current Isec through the diode D1 when the power switch Qmain, is off. The diode D1, which is coupled to the output filter capacitor Cout, provides a path to maintain continuity of a magnetizing current of the transformer T1. During the complementary portion of the duty cycle, the magnetizing current flowing through the secondary winding Ns of the transformer T1 decreases. In general, the duty cycle of the power switch Qmain, may be controlled (e.g., adjusted) to maintain a regulation of or regulate the output voltage Vout of the power converter.


In order to regulate the output voltage Vout, a value or a scaled value of the output voltage Vout is typically compared with a reference voltage in the PWM controller 140 using an error amplifier (not shown) to control the duty cycle. This forms a negative feedback arrangement to regulate the output voltage Vout to a (scaled) value of the reference voltage. A larger duty cycle implies that the power switch Qmain is closed for a longer fraction of the switching period of the power converter. Thus, the power converter is operable with a switching cycle wherein an input voltage Vin is coupled to the transformer T1 for a fraction of a switching period by the power switch Qmain controlled by the PWM controller 140.


Typically, the PWM controller 140 is powered by a bias voltage (e.g., 12 volts) from an internal bias voltage source. If the PWM controller 140 includes a lower voltage-based microcontroller requiring, for instance, 3.3 volts to operate, then a dissipative power supply such as a linear regulator is typically coupled to the internal bias voltage source to produce the 3.3 V bias voltage for the microcontroller or the like. To improve the efficiency of the linear regulator, a switched-capacitor dc-dc power converter may be employed to approximately divide the voltage produced by the internal bias voltage source by an integer such as 2, 3, 4, etc. For example, a 12 V bias voltage source can be divided by a factor of about two to produce a 6 V bias voltage source by coupling the switched-capacitor dc-dc power converter to the 12 V bias voltage source.


Turning now to FIG. 2, illustrated is a schematic diagram of a switched-capacitor dc-dc power converter configured to divide a dc input bias voltage source represented by a battery Vin, by a factor of two to produce a bias voltage Vbias. The switched-capacitor dc-dc power converter illustrated in FIG. 2 employs two power switches Q1, Q2 (with body diodes Db1, Db2, respectively), two diodes DA, DB, a flying capacitor CA and an output capacitor CB. The operation of the switched-capacitor dc-dc power converter illustrated in FIG. 2 is described by Xu, et al., in U.S. Patent Application Publication No. 2007/0296383, published Dec. 27, 2007, which is incorporated herein by reference. The switched-capacitor dc-dc power converter illustrated in FIG. 2 and variations thereof, as described by Xu, et al., can be configured to provide high power conversion density and high power conversion efficiency.


As is well known in the art, portions of the switched-capacitor dc-dc power converter illustrated in FIG. 2 may be replicated to provide a higher voltage-dividing factor, such as a voltage-dividing factor of 3, 4 or more. Replication of portions of a switched-capacitor dc-dc power converter to provide a higher voltage-dividing factor are described by P. Chhawchharia, et al., in the paper entitled “On the Reduction of Component Count in Switched Capacitor DC/DC Converters,” PESC Record, Vol. 2, June 1998, pp. 1395-1401, which is incorporated herein by reference. It is recognized that a switched-capacitor dc-dc power converter does not precisely divide an input voltage by an integer, due to inherent losses in such circuits.


Turning now to FIG. 3, illustrated is a schematic diagram of a switched-capacitor dc-dc power converter that eliminates a need for one of the power switches illustrated in FIG. 2. The switched-capacitor dc-dc power converter illustrated in FIG. 3 is configured to divide a dc input bias voltage source represented by the battery Vin by a factor of two to produce a bias voltage Vbias, employing one power switch Q2, two diodes DA, DB, a flying capacitor CA, and an output capacitor CB. The flying capacitor CA and an output capacitor CB may be one microfarad. In place of the active switch Q1 illustrated in FIG. 2, the switched-capacitor dc-dc power converter illustrated in FIG. 3 employs an inductor L. The operation of the switched-capacitor dc-dc power converter illustrated in FIG. 3 is described by Kuwabara, et al., in the paper entitled “Switched-Capacitor DC-DC Converters,” published in the Proceedings of INTELEC 1988, pp. 213-218, which is incorporated herein by reference. The substitution of an inductor L for a power switch obviously saves the cost of the power switch, adds the cost of the inductor, and renders integration of the switched-capacitor dc-dc power converter into a compact module more difficult. As is well known in the art, portions of the switched-capacitor dc-dc power converter illustrated in FIG. 3 may be replicated to provide a higher voltage-dividing factor, such as a voltage-dividing factor of 3, 4 or more. As is further known in the art, a plurality of switched-capacitor dc-dc power converters may be coupled in tandem to produce a voltage-dividing factor that is a product of each of the respective switched-capacitor dc-dc power converters. The switched-capacitor dc-dc power converters illustrated in FIGS. 2 and 3 eliminate the need for a more complex topology such as a buck power converter.


A low cost, high efficiency power converter including a charge pump is introduced herein that can be employed to divide approximately an input voltage by an integer, thereby replacing a topology such as a buck power converter in cost-sensitive applications. Using the charge pump, a 12-14 V voltage source can be efficiently divided down to 6-7 V, and then fed to a linear regulator (e.g., a low-dropout linear regulator) to obtain a desired low voltage bias voltage source such as a 3.3 V bias voltage source for the microcontroller associated with a PWM controller. The power loss can be reduced by approximately one half compared to using a linear regulator with a higher input voltage with its lower efficiency. Thermal design issues are correspondingly reduced.


In a typical application, an auxiliary winding (e.g., a bias winding) and associated pins would be added to a high-frequency transformer in a power converter to generate an ac voltage or alternating voltage such as a 12 V rectangular waveform. The charge pump can be advantageously constructed with minimal cost with only a few small components. The charge pump basically modifies (e.g., divides) the alternating voltage from the bias winding in half by charging and discharging a “flying” capacitor. It provides high efficiency and low cost with little added space.


Turning now to FIG. 4, illustrated is a schematic diagram of an embodiment of a charge pump 410 employable in a power converter constructed according to the principles of the present invention. The charge pump 410 is coupled to an ac voltage source at a circuit node N provided by the bias winding Nbias of the transformer T1 that was illustrated and described with reference to FIG. 1. FIG. 4 illustrates a primary-side bias voltage source Vcc1 produced by a diode D2 and a filter capacitor C2 (e.g., 47 microfarads) coupled to the ac voltage source at the circuit node N. In the embodiment of the charge pump presently being described, the ac voltage source at the circuit node N provides an alternating positive and negative 12 V rectangular waveform at 100 kilohertz (“kHz”). The charge pump 410 includes a voltage divider 420 formed with a first diode D1CP), a first capacitor C1CP (e.g., a one microfarad), a second diode D2CP and a second capacitor C2CP(e.g., one microfarad). The first diode D1CP is series-coupled to the first capacitor C1CP at a first node N1, and the second diode D2CP is series-coupled to the second capacitor C2CP at a second node N2 and coupled to the first capacitor C1CP at a third node N3.


When the voltage at the circuit node N is a positive 12 V, the first diode D1CP conducts, charging the first capacitor C1CP and the second capacitor C2CP through the second diode D2CP. Note that the first and second diodes D1CP, D2CP are poled in the same direction. In other words, the first and second diodes D1CP, D2CP are poled so that a current can be conducted therethrough when a positive voltage is present at the circuit node N. The first and second capacitors C1CP, C2CP have substantially equal capacitance. Accordingly, each of the first and second capacitors C1CP, C2CP is charged to roughly half the 12 V input less the forward voltage drops of the first and second diodes D1CP, D2CP. Recognizing the small forward voltage drop in the first and second diodes D1CP, D2CP, the voltage applied at the circuit node N is thus divided approximately in half across each of the first and second capacitors C1CP, C2CP.


When the voltage at the circuit node N is a positive 12 V, a charge pump power switch or power switch Qdiv (coupled between the first and second nodes N1, N2) is turned off by a gate drive signal VG that was illustrated and described hereinabove with reference to FIG. 1. The diode DB illustrated FIG. 4 is the body diode of the power switch Qdiv. When the voltage at the circuit node N is a negative 12 V, the power switch Qdiv is turned on by the gate drive signal VG, coupling the first and second capacitors C1CP, C2CP in parallel. This switching action substantially balances the charges in the first and second capacitors C1CP, C2CP, recognizing the small disparity in charge produced by the forward voltage drop presented by a third diode D3CP. The power switch is Qdiv is enabled to conduct in synchronization with an alternating voltage applied to the voltage divider 420 via the bias winding Nbias of the transformer T1 of the power converter. The third diode D3CP is coupled between the third node N3 and a fourth node N4 coupled to the second capacitor C2CP Accordingly, a bias voltage source Vcc2 is produced that is slightly less than half the 12 V amplitude of the rectangular ac waveform at the circuit node N. A parallel-coupled resistor RG (e.g., a 22 ohm) and diode DG are included in series with a control terminal of the power switch Qdiv to retard turn-on timing of the power switch Qdiv in response to the gate drive signal VG, but not its turn-off timing.


Additionally, the bias voltage source Vcc2 produced by the charge pump 410 is fed to a linear regulator 430 to obtain a desired low voltage bias voltage source such as a 3.3 V bias voltage source for a microcontroller or the like associated with a controller such as a PWM controller (designated “To CNTL”). The linear regulator 430, therefore, modifies the bias voltage Vcc2 for use by the controller of a power converter. The power loss can be reduced by approximately one half compared to using a linear regulator with a higher input voltage with its lower efficiency. Thermal design issues are correspondingly reduced.


The charge pump illustrated in FIG. 4 can be readily modified to operate with a forward or other power train topology by changing the power switch Qdiv to a P-channel metal-oxide semiconductor field-effect transistor (“MOSFET”) or to a positive-negative-positive (“PNP”) doped bipolar junction transistor, or by reversing the polarity sense of the bias winding Nbias as necessary with respect to timing of the gate drive signal VG. The charge pump 410 illustrated in FIG. 4 can also be readily modified by replicating portions thereof to provide a higher voltage-dividing ratio (see, e.g., the charge pump illustrated and described with respect to FIG. 5).


Turning now to FIG. 5, illustrated is a schematic diagram of another embodiment of a charge pump 510 employable in a power converter constructed according to the principles of the present invention. The charge pump 510 is coupled to an ac voltage source at a circuit node N provided by the bias winding Nbias of the transformer T1 that was illustrated and described with reference to FIG. 1. As described previously hereinabove with reference to FIG. 4, FIG. 5 illustrates a primary-side bias voltage source Vcc1 produced by a diode D2 and a filter capacitor C2 (e.g., 47 microfarads) coupled to the ac voltage source at the circuit node N. In the embodiment of the charge pump 510 presently being described, the ac voltage source at the circuit node N again provides an alternating positive and negative 12 V rectangular waveform at 100 kilohertz (“kHz”).


The charge pump 510 illustrated in FIG. 5 includes a voltage divider 520 formed with a first diode D1CP, a first capacitor C1CP (e.g., a one microfarad), a second diode D2CP, a second capacitor C2CP(e.g., one microfarad), and a third capacitor C3CP(e.g., a one microfarad). The first diode D1CP is series-coupled to the first capacitor C1CP at a first node N1, and the second diode D2CP is series-coupled to the second capacitor C2CP at a second node N2 and coupled to the first capacitor C1CP at a third node N3. The second capacitor C2CP is coupled between the second node N2 and a fourth node N4. The third capacitor C3CP is coupled to the first diode D1CP at a fifth node N5 and to the circuit node N.


When the voltage at the circuit node N is a positive 12 V, the first diode D1CP conducts, charging the first capacitor C1CP, the second capacitor C2CP, and the third capacitor C3CP through the second diode D2CP. Note that the first and second diodes D1CP, D2CP are poled in the same direction. In other words, the first and second diodes D1CP, D2CP are poled so that a current can be conducted therethrough when a positive voltage is present at the circuit node N. The first, second, and third capacitors C1CP, C2CP, C3CP have substantially equal capacitance. Accordingly, each of the first, second, and third capacitors C1CP, C2CP, C3CP is charged to roughly one third the 12 V input less the forward voltage drops of the first and second diodes D1CP, D2CP. Recognizing the small forward voltage drop in the first and second diodes D1CP, D2CP, the voltage applied at the circuit node N is thus divided approximately in one third across each of the first, second, and third capacitors C1CP, C2CP, C3CP.


When the voltage at the circuit node N is a positive 12 V, a first charge pump power switch or first power switch Qdiv1 (coupled between the first and second nodes N1, N2) and a second charge pump power switch or second power switch Qdiv2 (coupled between the node N and the second node N2) are turned off by the gate drive signal VG that was illustrated and described hereinabove with reference to FIG. 1. The diode DB1 illustrated FIG. 5 is the body diode of the first power switch Qdiv1, and the diode DB2 illustrated FIG. 5 is the body diode of the second power switch Qdiv2. When the voltage at the circuit node N is a negative 12 V, the first and second power switches Qdiv1, Qdiv2 are turned on by the gate drive signal VG, coupling the first, second, and third capacitors C1CP, C2CP, C3CP in parallel. This switching action substantially balances the charges in the first, second, and third capacitors C1CP, C2CP, C3CP, recognizing the small disparity in charge produced by the forward voltage drop presented by third and fourth diodes D3CP, D4CP. The first and second power switches Qdiv1, Qdiv2 are enabled to conduct in synchronization with an alternating voltage applied to the voltage divider 520 via the bias winding Nbias of the transformer T1 of the power converter. The third diode D3CP is coupled between the third and fourth nodes N3, N4 and the fourth diode D4CP is coupled between the fourth and fifth nodes N4, N5. Accordingly, a bias voltage Vcc2 is produced that is slightly less than one third the 12 V amplitude of the rectangular ac waveform at the circuit node N. A parallel-coupled resistor RG (e.g., a 22 ohm resistor) and diode DG are included in series with a control terminals of the first and second power switches Qdiv1, Qdiv2 to retard turn-on timing of the first and second power switches Qdiv1, Qdiv2 in response to the gate drive signal VG, but not their turn-off timing.


Additionally, the bias voltage Vcc2 produced by the charge pump 510 may be fed to the linear regulator 530 to obtain a desired low voltage bias voltage source for a microcontroller or the like associated with a controller such as a PWM controller (again designated “To CNTL”). The linear regulator 530, therefore, modifies the bias voltage Vcc2 for use by the controller of a power converter. The power loss can be substantially reduced compared to using a linear regulator with a higher input voltage with its lower efficiency. Thermal design issues are correspondingly reduced.


The charge pump 510 illustrated in FIG. 5 can be correspondingly readily modified to operate with a forward or other power train topology by changing the first and second power switches Qdiv1, Qdiv2 to P-channel MOSFETs or to positive-negative-positive (“PNP”) doped bipolar junction transistors, and by reversing the polarity sense of the bias winding Nbias as necessary with respect to timing of the gate drive signal VG. While the charge pump 510 illustrated in FIG. 5 divides the voltage applied at the circuit node N approximately in one third, the charge pump 510 can also be readily modified by replicating portions thereof to provide a still higher voltage-dividing ratio.


Thus, a charge pump employable in a power converter has been introduced that can be advantageously constructed with a plurality of diodes, a power switch and a plurality of capacitors (e.g., a flying capacitor and another capacitor). The charge pump can be constructed without the need to add an inductor to replace a power switch required in a conventional switched-capacitor dc-dc power converter design. In one embodiment, the charge pump, and related method of forming and operating the same, includes a voltage divider (couplable to a bias winding of a transformer of a power converter) with a first diode having a terminal (e.g., a cathode terminal) coupled to a terminal of a first capacitor. The first diode is series-coupled to the first capacitor. The voltage divider also includes a second diode having a terminal (e.g., a cathode terminal) coupled to a terminal of a second capacitor and another terminal (e.g., an anode terminal) coupled to another terminal of the first capacitor. The second diode is series-coupled to the second capacitor. Also, the first diode and the second diode are poled in a same direction.


The charge pump also includes a third diode coupled across the second diode and the second capacitor. The third diode has a terminal (e.g., a cathode terminal) coupled to the another terminal (e.g., the anode terminal) of the second diode and another terminal (e.g., an anode terminal) coupled to another terminal of the second capacitor. The charge pump also includes a charge pump power switch coupled across the first capacitor and the second diode. The charge pump power switch is coupled to the terminal of the first capacitor and the terminal of the second capacitor. The charge pump power switch is enabled to conduct in synchronization with an alternating voltage applied to the voltage divider. The charge pump may include a fourth diode and another charge pump power switch and the voltage divider may include a third capacitor. Additionally, a control terminal of the charge pump power switch is coupled to a parallel-coupled resistor and diode.


In another embodiment, a power converter, and related method of forming the same, includes a transformer including a primary winding, a secondary winding and a bias winding. The power converter also includes a power switch coupled to the primary winding, an auxiliary switch (e.g., a diode) coupled to the secondary winding and a charge pump coupled to the bias winding as described herein. The power converter also includes a linear regulator coupled to the charge pump and a controller (e.g., a PWM controller) coupled to the linear regulator and the power switch. The power converter is employable in a power adaptor or other power supply as the application dictates.


In a related embodiment, a method of operating a power converter includes providing a transformer including a primary winding, a secondary winding and a bias winding. The method also includes impressing a voltage across the primary winding from a source of electrical power, rectifying an alternating voltage appearing on the secondary winding, and producing a bias voltage from an alternating voltage appearing on the bias winding with a charge pump as described herein. The method also includes modifying the bias voltage (e.g., with a linear regulator) for use by a controller (e.g., a PWM controller) of the power converter.


Those skilled in the art should understand that the previously described embodiments of a switched-capacitor power converter and related methods of operating the same are submitted for illustrative purposes only. For example, in a further embodiment, a switched-capacitor power converter that is coupled to a half-wave bridge instead of a flyback power train can use techniques described herein. While a switched-capacitor power converter has been described in the environment of a power converter for a microcontroller, these processes may also be applied to other systems such as, without limitation, a power amplifier or a motor controller.


For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991).


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A charge pump, comprising: a voltage divider, including: a first diode having a terminal coupled to a terminal of a first capacitor, anda second diode having a terminal coupled to a terminal of a second capacitor and another terminal coupled to another terminal of said first capacitor;a third diode coupled across said second diode and said second capacitor;a power switch coupled across said first capacitor and said second diode; anda parallel-coupled resistor and diode coupled to a control terminal of said power switch and configured to retard a turn-on timing of said power switch in response to a drive signal for another power switch.
  • 2. The charge pump as recited in claim 1 wherein said terminal of said first diode is a cathode terminal.
  • 3. The charge pump as recited in claim 1 wherein said terminal of said second diode is a cathode terminal and said another terminal of said second diode is an anode terminal.
  • 4. The charge pump as recited in claim 1 wherein said third diode has a terminal coupled to said another terminal of said second diode and another terminal coupled to another terminal of said second capacitor.
  • 5. The charge pump as recited in claim 4 wherein said terminal of said third diode is a cathode terminal and said another terminal of said third diode is an anode terminal.
  • 6. The charge pump as recited in claim 1 wherein said power switch is coupled to said terminal of said first capacitor and said terminal of said second capacitor.
  • 7. The charge pump as recited in claim 1 wherein said first diode is series-coupled to said first capacitor and said second diode is series-coupled to said second capacitor.
  • 8. The charge pump as recited in claim 1 wherein said first diode and said second diode are poled in a same direction.
  • 9. The charge pump as recited in claim 1 wherein said power switch is enabled to conduct in synchronization with an alternating voltage applied to said voltage divider.
  • 10. The charge pump as recited in claim 1 wherein said voltage divider includes a third capacitor and said charge pump comprises a fourth diode and another power switch.
  • 11. A method of forming a charge pump, comprising: providing a voltage divider, including: coupling a terminal of a first diode to a terminal of a first capacitor,coupling a terminal of a second diode to a terminal of a second capacitor, andcoupling another terminal of said second diode to another terminal of said first capacitor;coupling a third diode across said second diode and said second capacitor;coupling a power switch across said first capacitor and said second diode; andcoupling a parallel-coupled resistor and diode to a control terminal of said power switch configured to retard a turn-on timing of said power switch in response to a drive signal for another power switch.
  • 12. The method as recited in claim 11 wherein said terminal of said first diode is a cathode terminal, said terminal of said second diode is a cathode terminal and said another terminal of said second diode is an anode terminal.
  • 13. The method as recited in claim 11 wherein said coupling said third diode comprises coupling a terminal of said third diode to said another terminal of said second diode and coupling another terminal of said third diode to another terminal of said second capacitor.
  • 14. The method as recited in claim 11 wherein said first diode is series-coupled to said first capacitor and said second diode is series-coupled to said second capacitor, said first diode and said second diode being poled in a same direction.
  • 15. The method as recited in claim 11 wherein said providing further includes coupling a third capacitor to said terminal of said first capacitor and said method further comprises coupling another power switch to said power switch and coupling a fourth diode to said terminal of said first capacitor.
  • 16. A power converter, comprising: a transformer including a primary winding, a secondary winding and a bias winding;a power switch coupled to said primary winding;an auxiliary switch coupled to said secondary winding; anda charge pump coupled to said bias winding, comprising: a voltage divider, including: a first diode having a terminal coupled to a terminal of a first capacitor, anda second diode having a terminal coupled to a terminal of a second capacitor and another terminal coupled to another terminal of said first capacitor;a third diode coupled across said second diode and said second capacitor;a charge pump power switch coupled across said first capacitor and said second diode; anda parallel-coupled resistor and diode coupled to a control terminal of said charge pump power switch and configured to retard a turn-on timing of said charge pump power switch in response to a drive signal for said power switch.
  • 17. The power converter as recited in claim 16, further comprising: a linear regulator coupled to said second capacitor; anda controller coupled to said linear regulator and said power switch.
  • 18. The power converter as recited in claim 16 wherein said auxiliary switch is a diode.
  • 19. The power converter as recited in claim 16 wherein another terminal of said first diode is coupled to said bias winding.
  • 20. The power converter as recited in claim 16 wherein said terminal of said first diode is a cathode terminal, said terminal of said second diode is a cathode terminal and said another terminal of said second diode is an anode terminal.
  • 21. The power converter as recited in claim 16 wherein said third diode has a terminal coupled to said another terminal of said second diode and another terminal coupled to another terminal of said second capacitor.
  • 22. The power converter as recited in claim 16 wherein said charge pump power switch is coupled to said terminal of said first capacitor and said terminal of said second capacitor.
  • 23. The power converter as recited in claim 16 wherein said first diode is series-coupled to said first capacitor and said second diode is series-coupled to said second capacitor.
  • 24. The power converter as recited in claim 16 wherein said first diode and said second diode are poled in a same direction.
  • 25. The power converter as recited in claim 16 wherein said voltage divider includes a third capacitor and said charge pump includes a fourth diode and another charge pump power switch.
  • 26. A method of operating a power converter, comprising: providing a transformer including a primary winding, a secondary winding and a bias winding;impressing a voltage across said primary winding from a source of electrical power;rectifying an alternating voltage appearing on said secondary winding; andproducing a bias voltage from an alternating voltage appearing on said bias winding with a charge pump, comprising: a voltage divider, including: a first diode having a terminal coupled to a terminal of a first capacitor, anda second diode having a terminal coupled to a terminal of a second capacitor and another terminal coupled to another terminal of said first capacitor;a third diode coupled across said second diode and said second capacitor;a charge pump power switch coupled across said first capacitor and said second diode; anda parallel-coupled resistor and diode coupled to a control terminal of said charge pump power switch and configured to retard a turn-on timing of said charge pump power switch in response to a drive signal for another power switch.
  • 27. The method as recited in claim 26 further comprising modifying said bias voltage for use by a controller of said power converter.
  • 28. The method as recited in claim 26 wherein another terminal of said first diode is coupled to said bias winding.
  • 29. The method as recited in claim 26 wherein said charge pump power switch is enabled to conduct in synchronization with said alternating voltage.
  • 30. The method as recited in claim 26 wherein said voltage divider includes a third capacitor and said charge pump includes a fourth diode and another charge pump power switch.
US Referenced Citations (429)
Number Name Date Kind
1376978 Stoekle May 1921 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3553620 Cielo et al. Jan 1971 A
3602795 Gunn Aug 1971 A
3622868 Todt Nov 1971 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4011498 Hamstra Mar 1977 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4780653 Bezos et al. Oct 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4866367 Ridley et al. Sep 1989 A
4876638 Silva et al. Oct 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5014178 Balakrishnan May 1991 A
5027264 DeDoncker et al. Jun 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5282126 Husgen Jan 1994 A
5285396 Aoyama Feb 1994 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5453923 Scalais et al. Sep 1995 A
5459652 Faulk Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5581224 Yamaguchi Dec 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5663876 Newton et al. Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815383 Lei Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870299 Rozman Feb 1999 A
5880942 Leu Mar 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907481 Svärdsjö May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5925088 Nasu Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6055166 Jacobs et al. Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6345364 Lee Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6396718 Ng et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6418039 Lentini et al. Jul 2002 B2
6438009 Assow Aug 2002 B2
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Toshio Jun 2003 B2
6597592 Carsten Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6751106 Zhang et al. Jun 2004 B2
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimmermann et al. Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7072189 Kim Jul 2006 B2
7075799 Qu Jul 2006 B2
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7098640 Brown Aug 2006 B2
7099163 Ying Aug 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7269038 Shekhawat et al. Sep 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7312686 Bruno Dec 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7360004 Dougherty et al. Apr 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7375607 Lee et al. May 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7431862 Mehrotra et al. Oct 2008 B2
7439556 Brar et al. Oct 2008 B2
7439557 Brar et al. Oct 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7462891 Brar et al. Dec 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 Indika de Silva et al. Mar 2009 B2
7541640 Brar et al. Jun 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558037 Gong et al. Jul 2009 B1
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7626370 Mei et al. Dec 2009 B1
7630219 Lee Dec 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Maynard et al. Dec 2010 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
7983063 Lu et al. Jul 2011 B2
8004112 Koga et al. Aug 2011 B2
8134443 Chandrasekaran et al. Mar 2012 B2
8179699 Tumminaro et al. May 2012 B2
20010020886 Matsumoto et al. Sep 2001 A1
20010024373 Cuk Sep 2001 A1
20020057080 Telefus et al. May 2002 A1
20020101741 Brkovic Aug 2002 A1
20020110005 Mao et al. Aug 2002 A1
20020114172 Webb et al. Aug 2002 A1
20020167385 Ackermann Nov 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030030422 Sula Feb 2003 A1
20030063483 Carsten Apr 2003 A1
20030063484 Carsten Apr 2003 A1
20030076079 Alcantar et al. Apr 2003 A1
20030086279 Bourdillon May 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040017689 Zhang et al. Jan 2004 A1
20040032754 Yang Feb 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040064621 Dougherty et al. Apr 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040200631 Chen Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20040257095 Yang Dec 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050046404 Uusitalo Mar 2005 A1
20050052224 Yang et al. Mar 2005 A1
20050052886 Yang et al. Mar 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050254266 Jitaru Nov 2005 A1
20050254268 Reinhard et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20050286270 Petkov et al. Dec 2005 A1
20060006975 Jitaru et al. Jan 2006 A1
20060006976 Bruno Jan 2006 A1
20060007713 Brown Jan 2006 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060091430 Sriram et al. May 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060227576 Yasumura Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20060271315 Cargonja et al. Nov 2006 A1
20070007945 King et al. Jan 2007 A1
20070010298 Chang Jan 2007 A1
20070019356 Morikawa Jan 2007 A1
20070030717 Luger et al. Feb 2007 A1
20070041224 Moyse et al. Feb 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070058402 Shekhawat et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070120953 Koga et al. May 2007 A1
20070121351 Zhang et al. May 2007 A1
20070159857 Lee Jul 2007 A1
20070206523 Huynh et al. Sep 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070274106 Coulson et al. Nov 2007 A1
20070274107 Garner et al. Nov 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070296383 Xu et al. Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080024094 Nishihara et al. Jan 2008 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080031021 Ros et al. Feb 2008 A1
20080037294 Indika de Silva et al. Feb 2008 A1
20080043503 Yang Feb 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080080219 Sohma Apr 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080224812 Chandrasekaran Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tateishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090002054 Tsunoda et al. Jan 2009 A1
20090046486 Lu et al. Feb 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090310388 Yang Dec 2009 A1
20090315530 Baranwal Dec 2009 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100164443 Tumminaro et al. Jul 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321958 Brinlee et al. Dec 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110038179 Zhang Feb 2011 A1
20110089917 Chen et al. Apr 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110182089 Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110241738 Tamaoka Oct 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120243271 Berghegger Sep 2012 A1
20120294048 Brinlee Nov 2012 A1
Foreign Referenced Citations (13)
Number Date Country
101141099 Mar 2008 CN
101202509 Jun 2008 CN
201252294 Jun 2009 CN
10310361 Sep 2004 DE
0 665 634 Jan 1994 EP
57097361 Jun 1982 JP
3-215911 Sep 1991 JP
2000-68132 Mar 2000 JP
WO 8700991 Feb 1987 WO
WO 2010083511 Jul 2010 WO
WO 2010083514 Jul 2010 WO
WO 2010114914 Oct 2010 WO
WO 2011116225 Sep 2011 WO
Non-Patent Literature Citations (61)
Entry
Kuwabara, Kohji, et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218.
Xu, Ming, et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Vallamkonda, Sathish, “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Chhawchharia, Pradeep, et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al, “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,”'HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA.
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16.
Bill Andreycak, Active Clamp and Reset Technique Enhances Forward Converter Performance, Oct. 1994, Texas Instruments, 19 pages.
Related Publications (1)
Number Date Country
20110038179 A1 Feb 2011 US