This national stage application claims the benefit under 35 U.S.C. §371 of International Application No. PCT/CN2011/071566 filed on Mar. 7, 2011, entitled POWER CONVERTER WITH THE FUNCTION OF DIGITAL ERROR CORRECTION, which takes its priority from Chinese Patent Application No. 201110046516.6 filed on Feb. 25, 2011, and all of whose entire disclosures are incorporated by reference herein.
1. Field of the Invention
This invention relates to integrated circuit, especially to the output voltage regulator of step-down switching power converters.
2. Background
Integrated power converter plays an important role in power ICs, and has been widely used in electronic products. Step-down switching power converters can be divided into two types, voltage-mode control and current-mode control. Voltage mode step-down switching power converter can greatly decrease the design efforts for its simple control loop. The present voltage-mode step-down switching power converter typically consists of logic control circuit, EA (Error Amplifier), PWM (Pulse Width Modulation) comparator, driver circuit and the output stage, as shown in
This invention solves the problem how to meet the regulation specification, given reductive gain of EA. And the invention benefits the regulation in a digital way.
The invention solves the technology problems mentioned above, and benefits power converter by digital calibrator. The digital calibrator is consist of logic control circuit 43, EA 53, PWM comparator 50, driver circuit 44 and the output stage 69, where EA 53 generates the error signal according to the output voltage Vout and the reference voltage Vref, the PWM comparator 50 generates the duty cycle according to the error signal, and logic control circuit 43 realizes the power conversion by driving power devices with driver circuit 44, according to the pulses generated by the PWM comparator 50. It features digital control circuit 70 whose input terminal is connected to the output voltage and output terminal is connected to the error signal. When the output voltage exceeds the tolerance range, digital control circuit 70 will increase or decrease the error signal step by step, limiting the output voltage in tolerance range.
Specifically, the output stage 69 is made up of a PMOS 45 and a NMOS 46 of which the gates are connected to driver circuit 44 and the drains are connected together as the output terminal. Besides, the source of PMOS 45 is connected with the input voltage Vin, and the source of NMOS 46 is connected to ground.
Specifically, EA 53 uses an OTA (Operational Transconductance Amplifier).
Furthermore, digital control circuit includes two comparators 56 and 57, calibration circuit 68 and the current mirrors 64, 65, 66 and 67. The input terminals of these two comparators 56 and 57 are connected to the output voltage Vout, and the output terminals are connected to calibration circuit 68. And also Calibration Circuit 68 is connected with the current mirrors 64, 65, 66 and 67. According to the outputs of two comparators 56 and 57, the calibration circuit 68 decides which of the current mirrors will be turned on, as a result, the current of the pull-up resistor 52 is increased or decreased, and so is the error signal tuned in step.
Specifically, the first comparator 57 is used to detect the positive deviation of Vout, and the second comparator 56 is used to detect the negative deviation of Vout. If Vout deviates positively for a specified time interval, the number of the current mirrors turned on will be decreased. Similarly, if Vout deviates negatively for the specified time interval, the number will be increased.
The beneficial effect of this invention is that it appends digital control circuit on the basis of conventional analog control circuit. It combines the compact analog circuit with the complicated digital calibration circuit, so that the performance of the power converter can be guaranteed even in the nanometer scale process. Besides, the good robustness of digital circuit can guarantee high yield and stability. The digital calibration circuit 68 of this invention can be applied not only nanometer scale process, but also in traditional process. For those power converters in traditional process, it is also quite promising in widely application.
With the help of the drawings and the case of this invention, the technique of this invention is described next in details.
This invention calibrates the traditional analog power converter digitally, with less dependence on process, flexible process transplant ability and a simple calibration scheme. It makes good well use of the advantages of the digital circuit and the analog circuit, and is quite suitable to be applied in nanometer process where it is hard to get excellent performance for the analog circuit, and can be used to improve the performance of traditional switching power converter as well.
The power converter with the function of digital calibration is shown in
By the comparison between
According to the error signal V2, the PWM comparator 50 generates Pulse-Width-Modulated wave signal PWM, and then send it to logic control circuit 43. Logic control circuit 43 realizes power conversion from Vin and generates the output voltage Vout through driver circuit 44 driving two power MOSFETs 45 and 46, according to the PWM signal.
In this case, EA 53 has two input signals, the output voltage Vout and the reference voltage Vref and the typical topology is OTA. The outputs of EA 53 are sent to the PWM comparator 50 as input signals. Two resistors 51 and 52 are connected between Vin and the outputs of EA 53. In
| Number | Date | Country | Kind |
|---|---|---|---|
| 2011 1 0046516 | Feb 2011 | CN | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/CN2011/071566 | 3/7/2011 | WO | 00 | 9/25/2012 |
| Publishing Document | Publishing Date | Country | Kind |
|---|---|---|---|
| WO2012/113162 | 8/30/2012 | WO | A |
| Number | Name | Date | Kind |
|---|---|---|---|
| 5914633 | Comino et al. | Jun 1999 | A |
| 6603356 | Kim et al. | Aug 2003 | B1 |
| 7315152 | Epperson et al. | Jan 2008 | B1 |
| 7622820 | Prodic et al. | Nov 2009 | B1 |
| 8207711 | Crawford et al. | Jun 2012 | B2 |
| 8270190 | Adragna | Sep 2012 | B2 |
| 8604962 | Lewyn | Dec 2013 | B1 |
| 20060087339 | Chung et al. | Apr 2006 | A1 |
| 20070030067 | Brueske | Feb 2007 | A1 |
| 20070085523 | Scoones et al. | Apr 2007 | A1 |
| 20070139103 | Roeckner et al. | Jun 2007 | A1 |
| 20070257650 | Southwell et al. | Nov 2007 | A1 |
| 20080310046 | Menegoli et al. | Dec 2008 | A1 |
| 20090167271 | Tang et al. | Jul 2009 | A1 |
| 20090322303 | Hirata et al. | Dec 2009 | A1 |
| 20100134083 | Trescases | Jun 2010 | A1 |
| 20110186359 | Chen et al. | Aug 2011 | A1 |
| 20110260537 | Tang et al. | Oct 2011 | A1 |
| 20130249518 | Giannopoulos | Sep 2013 | A1 |
| 20130320946 | Luo et al. | Dec 2013 | A1 |
| Number | Date | Country |
|---|---|---|
| 1922779 | Feb 2007 | CN |
| 1980024 | Jun 2007 | CN |
| 101656473 | Feb 2010 | CN |
| 101951151 | Jan 2011 | CN |
| 2010142060 | Jun 2010 | JP |
| WO2010125983 | Nov 2010 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20130335045 A1 | Dec 2013 | US |