This application is based on and claims the benefit of priority from earlier Japanese Patent Application No. 2011-128376 filed Jun. 8, 2011, the description of which is incorporated herein by reference.
1. Technical Field of the Invention
The present invention relates to a power converter which controls switching of a switching element by making the switching frequencies discrete.
2. Related Art
A patent document JP-B-3718830, for example, discloses such a power converter. In detail, the patent document discloses a signal generator, signal selecting means, voltage divider, comparator and switching element.
The signal generator generates a plurality of signals such that each signal frequency differs from other(s).
The signal selecting means sequentially selects and outputs signals of specified frequency in a predetermined order from among the plurality of signals generated by the signal generator. For example, the signal selecting means sequentially selects and outputs signals in ascending order among the plurality of signals generated by the signal generator, and after that, this manner of selection is repeatedly performed. Alternatively, the signal selecting means sequentially selects and outputs signals firstly in ascending order and after in descending order among the plurality of signals generated by the signal generator, and after that, this manner of selection is repeatedly performed. The voltage divider divides and outputs the voltage outputted from the power converter. The comparator compares the divided voltage outputted from the voltage divider with the signal outputted from the signal selecting means, and then outputs a switching signal according to the results of the comparison. The switching element conducts switching according to the switching signal outputted from the comparator.
Thus, the power converter according to the prior art controls switching of the switching element by making the switching frequencies discrete. Switching noise has its peaks at the switching frequency and at the frequency corresponding to harmonics of the switching frequency. The peaks of switching noise can be made spread within the frequency range by making the switching frequencies discrete. As the result, the energy of the switching noise is dispersed and thus the peak values of the switching noise become lowered. That is to say, the level of switching noise becomes lowered.
In the aforementioned power converter, even if the switching frequency is made discrete so as to lower the level of switching noise having frequency corresponding to low-degree harmonics, the level of switching noise having frequency corresponding to high-degree harmonics cannot be lowered. On the contrary, even if the switching frequency is made discrete so as to lower the level of switching noise having frequency corresponding to high-degree harmonics, the level of switching noise having frequency corresponding to low-degree harmonics. In this way, it has been a problem that lowering the level of switching noise in a low-frequency range cannot be inconsistent with lowering the level of switching noise in a high-frequency range.
In this way, it is difficult to achieve at the same time as lowering the level of switching noise in a low-frequency range and lowering the level of switching noise in a high-frequency range.
In light of the conditions set forth above, it is desired to provide a power converter which is able to lower the level of switching noise in a wide frequency range.
Then inventors hereby present a power converter which is able to lower the level of switching noise in a wide frequency range. In detail, the power converter converts an input power by controlling a switching element on the basis of a switching frequency discrete pattern. The switching frequency discrete pattern has such a manner that a main discrete frequency pattern and a sub discrete frequency pattern are synthesized. The main discrete frequency pattern has a plurality of transitionally discrete frequencies. Also the sub discrete frequency pattern has a plurality of discrete frequencies and a gap of the magnitude among consequent frequencies is smaller than that of the main discrete frequency pattern.
In the accompanying drawings:
a), 2(b) and 2(c) are diagrams illustrating a main discrete pattern, a sub discrete pattern and a switching frequency discrete pattern, respectively;
The exemplary invention hereinafter will be described with reference to the accompanying drawings. As the embodiment, a power converter which converts AC power outputted from an external AC power source into DC power in order to charge a high-voltage battery mounted in a vehicle is disclosed.
The power converter 1 shown in
The filter circuit 10 removes noise from high-frequency components included in the AC voltage outputted from the external AC power source AC1. The filter circuit 10 is connected to the external AC power source AC1 by its input terminal and to the rectifier circuit 11 by its output terminal.
The rectifier circuit 11 rectifies the AC voltage being removed with the high-frequency components outputted from the filter circuit 10, and converts the rectified AC voltage into DC voltage. The rectifier circuit 11 includes diodes 110, 111, 112 and 113. The diodes 110 and 111 are mutually connected in series and the diodes 112 and 113 are also mutually connected in series.
In detail, as shown in
The booster circuit 12 boosts the DC voltage outputted from the rectifier circuit 11, i.e., the booster circuit 12 converts the inputted DC power into a high voltage DC power. The booster circuit 12 is provided with a coil 120, IGBT (insulated gate bipolar transistor as a switching element) 121, diode 122 and smoothing capacitor 123.
The coil 120 is an element that accumulates energy therein when AC current passes through there. One end of the coil 120 is connected to the cathodes of the diodes 110 and 112, and another end of the coil 120 is connected to the IGBT 121 and the diode 122.
The IGBT 121 is such an element as allows the coil 120 to accumulate energy therein or allows the coil 120 to discharge energy therefrom when switching is conducted. A corrector 121a of the IGBT 121 is connected to another end of coil 120, an emitter 121b of the IGBT is connected to the anodes of the diodes 111 and 113. Also, a gate 121c of the IGBT 121 is connected to the control circuit 13.
The diode 122 is supplies the energy discharged from the coil 120 to the smoothing capacitor 123 and prevents back flow. An anode of the diode 122 is connected to a connecting point between the coil 120 and the IGBT 121, and a cathode of the diode 122 is connected to the smoothing capacitor 123.
The smoothing capacitor 123 smoothes the boosted high DC voltage which appears at the cathode of the diode 122. One end of the smoothing capacitor 123 is connected to the cathode of the diode 122 and another end of the smoothing capacitor 123 is connected to the emitter of the IGBT 121. Further, one end of the smoothing capacitor 123 is connected to the positive (+) terminal of the high-voltage battery B1 and another end of the smoothing capacitor 123 is connected to the negative (−) terminal of the high-voltage battery B1.
The control circuit 13 controls the IGBT 121 so that the voltage outputted from the booster circuit 12 will become a predetermined target voltage. The control circuit 13 generates PWM (pulse width modulation) signals so as to make the value of the voltage outputted from the booster circuit 12 a target voltage, and controls switching of the IGBT 121 on the basis of the generated PWM signal. Specifically, the control circuit 13 makes the frequency of a PWM signals discrete according to a predetermined switching frequency discrete pattern, and determines a duty ratio of the PWM signal on the basis of the value of the target voltage, the value of the current inputted to the booster circuit 12 and the value of the voltage outputted from the booster circuit 12. Then, the control circuit 13 generates the PWM signal on the basis of a zero cross point of the AC voltage of the external AC power source AC1, and control switching of the IGBT 121 on the basis of the generated PWM signals.
In order to detect an input current to the booster circuit 12, the control circuit 13 is connected to a current sensor 130 disposed between the rectifier circuit 11 and the booster circuit 12. Also, in order to detect voltage outputted from the booster circuit 12, the control circuit 13 is connected to both terminals of the smoothing capacitor 123. Further, in order to detect the AC voltage of the external AC power source AC1, the control circuit 13 is connected to the input terminals of the filter circuit 10. In addition, the control circuit 13 is also connected to the gate 121c of the IGBT 121.
Next, the switching frequency discrete pattern is explained with reference to
As shown in
Specifically, it is so regulated that the frequency f1 is used for a time T1/2 and after then the frequency f2 is used for the following time T1/2. After that, this basic pattern repeats as the same manner.
As shown in
Wherein, the sub discrete pattern is designed in such a manner that the gap of the magnitude between one frequency (e.g. f3) and consequent frequency (f4) is smaller than that of the main discrete pattern. As shown in
The frequencies of the main discrete pattern are set to be higher than the harmonics to be decreased among the harmonics of the frequency of the inputted AC current, preferably higher than the 40th harmonics. The values of each frequency of the main discrete pattern and the sub discrete pattern are set in order that the interval of the adjacent harmonics of the switching frequency will be larger than a resolving power (bandwidth, and so forth) of a spectrum analyzer. Specifically, the frequency of the main discrete pattern is set in order that the interval of adjacent harmonics of the switching frequency will be larger than the resolving power of the spectrum analyzer at the frequency range where low-degree harmonics of the switching frequency are generated. The frequency of the sub discrete pattern is set in order that the interval of adjacent harmonics of the switching frequency will be larger than the resolving power of the spectrum analyzer at the frequency range where high-degree harmonics of the switching frequency are generated. For example, in a case that the maximum resolving power of the spectrum analyzer is limited to less than 9 kHz, the frequency of each of the patterns is set to higher than 9 kHz, preferably higher than 15 kHz.
Referring to
In
At the same time, the control circuit 13 determines a duty ratio of the PWM signal based on the target voltage, the current inputted to the booster circuit 12 and the voltage outputted from the booster circuit 12. Then, the control circuit 13 generates the PWM signal on the basis of a zero cross point of the AC voltage of the external AC power supply AC1. The IGBT 121 conducts switching based on the PWM signal generated by the control circuit 13, and allows the coil 120 to accumulate energy therein or to discharge energy therefrom. The energy discharged from the coil 120 is outputted via the diode 122 and smoothed by the smoothing capacitor 123. Thus, the booster circuit 12 boosts the DC voltage outputted from the rectifier circuit 11 up to the target voltage, for supply to the high-voltage battery B1 to thereby charge the high-voltage battery B1.
Next, advantages of the power converter 1 of the exemplary embodiment are hereinafter explained with reference to
In the case where switching frequencies are not discrete, high level switching noise appears, as shown in
In this regard, as shown in
According to the present invention, using the main discrete pattern switching frequency, the level of switching noise is made to be even lower, as shown in
Further, using the sub discrete pattern, peaks of switching noise can be evidently discrete at the frequency corresponding to harmonics of the switching frequency. That is, the level of switching noise is made lower within the range of high frequency as well. Accordingly, the power converter 1 which converts AC power outputted from the external AC power source AC1 into DC power for charging the high-voltage battery B1 mounted in a vehicle can make the level of switching noise lower in a wide frequency range. As a result, the power converter 1 can reduces the influences of the switching noise against other devices within the vehicle when the power converter 1 is charging the high-voltage battery B1.
According to the exemplary embodiment, as shown in
Further, according to the exemplary embodiment, each one of the frequencies included in the main discrete pattern is set in order that the interval of adjacent harmonics of the switching frequency will be larger than the resolving power of the spectrum analyzer at the region where lower-degree harmonics of the switching frequency are generated. Also, the frequency of the sub discrete pattern is set in order that the interval of adjacent harmonics of the switching frequency will be larger than the resolving power of the spectrum analyzer at the region where high-degree harmonics of the switching frequency are generated. Thus, when the switching noise is analyzed by the spectrum analyzer, the effect by using the main discrete pattern and the sub discrete patterns are correctly analyzed.
When one makes the switching frequencies discrete on the basis of the switching frequency discrete pattern of the prior art as shown in
Above-mentioned embodiment exemplifies that the inputted AC power is converted into DC power. However, the present invention is not limited to this manner. The present invention may be applied to such a converter that converts the inputted DC power into AC power. In this case, the level of harmonic components included in the outputted AC current may also be lowered. That is, the present invention may be widely applied to such a power converter that converts the inputted power by switching a switching element. According to the present invention, the level of switching noise may be lowered over a wide frequency range.
Further, afore-mentioned embodiment exemplifies that the main discrete pattern includes two transitional frequencies such as fl and f2 and the sub discrete pattern includes three transitional frequencies such as f3, f4 and f5. However, the present invention shall not be limited to this. The main discrete pattern and the sub discrete pattern respectively may be composed in such a manner that a plurality of transitional frequencies is included. Further, the manner of changing frequency is not limited to ascending or descending order. Random change is permitted.
The above-mentioned embodiment exemplifies that the switching frequency discrete pattern is composed by synthesizing the main discrete pattern and only one sub discrete pattern. However, present invention shall not be limited to this. The switching frequency discrete pattern may be composed by synthesizing the main discrete pattern and two or more sub discrete patterns. The switching frequency discrete pattern may have at least one sub discrete pattern.
In addition, above-mentioned embodiment exemplifies that the frequency of the main discrete pattern is set to higher than the harmonics to be reduced among the harmonics of the inputted AC current. However, the present invention shall not be limited to this. That is, in the case the power converter 1 outputs AC power by converting inputted DC power, the frequency of the main discrete pattern may be set to higher than the harmonics to be reduced among the harmonics of the outputted AC current. According to this, the harmonic components to be reduced included in the outputted AC current can be efficiently reduced.
Number | Date | Country | Kind |
---|---|---|---|
2011-128376 | Jun 2011 | JP | national |