The present disclosure is related to power distribution systems, and more particularly to ground field interrupt protection for power distribution systems.
Power distribution systems for distributing Alternating Current (AC) loads often require ground fault interrupt (GFI) protection. In particular loads with potential contact with people and/or loads in close proximity to combustibles (such as jet engine fuel) are frequently GFI protected. In order to provide GFI protection, some form of current sensing, such as a current transformer (CT) sensor, and GFI detection circuitry, is implemented in the protected power distribution system. The additional components required for GFI protection can either be built into every power distribution module within the power distribution system, thereby adding unnecessary weight and cost, or specialized GFI capable modules can be used on circuits requiring GFI protection, thereby reducing uniformity and increasing the complexity of the power distribution system.
Disclosed is a power distribution system having a plurality of uniform power distribution modules, wherein each of the power distribution modules includes a module connector, a plurality of uniform mating connectors operable to connect to the power distribution modules, and at least one ground fault interrupt adapter operable to connect one of the plurality of uniform power distribution modules to one of the plurality of uniform mating connectors and thereby provide ground fault interrupt protection to the one of the uniform power distribution modules.
Also disclosed is a ground fault interrupt (GFI) adapter for a power distribution system having: a plurality of power phase pass throughs operable to pass electrical power from a power module connector to a mating connector through the ground fault interrupt adapter, at least one current sensor operable to sense a current passing through the ground fault interrupt adapter, and at least one neutral connection operable to connect a neutral line within the ground fault interrupt adapter to a neutral line of a connected mating adapter.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
All of the power distribution modules 30 in the power distribution system 10 are uniform. For purposes of the present disclosure, the term uniform is used to refer to components containing functionally equivalent electronics and interchangeable connections. Similarly, all of the mating connectors 32 for providing power to the specific loads 40 are uniform.
With continued reference to
A GFI detection circuit 130 can be arranged to receive a three phase current transformer sensor signal 144 from a GFI adapter 34 at an input 35, as illustrated on the top three phase power distribution connection 102a, or arranged to receive single phase sensor signals 146 from the GFI adapter 34, as in the middle three phase power distribution connection 102b. The particular current sensing arrangement utilized varies depending on the needs of a given power system 10 and can be determined by one of ordinary skill in the art in light of the present disclosure.
The mating connector 32 includes a neutral (ground) connection 190 that provides an electric neutral that is distributed through the GFI adapter 34. The mating connector 32 also connects to each phase of the three phase power distribution connections 102 and distributes that power to attached loads 40 according to known power distribution principles.
In order to facilitate GFI protection, a GFI adapter 34 connects the power distribution module 30 to the mating connector 32. The GFI adapter 34 includes multiple current pass throughs 150, each of which is operable to pass current from the power distribution module 30 to the mating connector 32, which in turn passes the power to the electric loads 40. The GFI adapter 34 includes multiple configurations of current transformer (CT) sensors 140, 142, 146. GFI CT sensor 140 provides a function that senses the net current passing through all three phases plus the neutral 160 of a corresponding three phase power distribution connection 102a. In this example, normal operation with balanced or unbalanced three phase power passing through the CT sensor 140 will always have a net current of approximately zero. Thus, if the CT sensor 140 detects a net current that is not zero, a ground fault is present.
In another example, the CT sensor 142 is used to sense the net current passing through a single phase (phase A) of the power distribution connection 102b and an included neutral line 160. In the single phase CT sensor 142 arrangement, a ground fault is detected when the signal 145 representing the current difference of the single phase A wire versus the neutral current 160b exceeds a current threshold. As described above, the sensor readings in either configuration are passed to a GFI detection circuit 130 in the power distribution module 30, via a signal connection 144.
In another example, the CT sensor 146 is used to sense the net current passing through a single phase of the power distribution connection 102c and an included neutral line 160c. In the case of distributing and protecting the phase B load wiring, the CT sensor 146 arrangement is used and a ground fault is detected when the difference current between the phase wire 172 versus the neutral current 160c exceeds a current threshold.
Alternatively, using a GFI adapter configured as shown in
The GFI detection circuit 130 is a small, lightweight, circuit that utilizes the sensed current signals 144, 146 to detect when a ground fault is present on the corresponding phase or phases, and alerts the solid state power control logic 110 that a ground fault is detected. The solid state power control logic 110 and the solid state power controller 120 operate in conjunction to trip a fault protection device and remove power from the affected output. The fault protection device can be part of the solid state power controller 120, an independent device in or on the power distribution module 30, or another device connected to the power distribution module 30. The GFI detection circuit 130 can be configured to detect a ground fault on an overall three phase power output 102(a) or detect a ground fault on a single phase of a three phase power output 102(b). In some examples the GFI detection circuit 130 is a single integrated circuit, and is relatively lightweight.
The power distribution module 30 further includes a module communicator 180 with a connection 182 to a central power distribution controller, thereby allowing for centralized control of power distribution throughout the power distribution system 10. In practical aircraft application of this technology, to enhance system safety, a redundant means of verification that the GFI detection circuitry is connected correctly and that there are no wire faults within the GFI adapter is included. The redundant means is achieved through software via the module communicator 180 to the central distribution power controller 182, or through “pin programming” connections between GFI adapter 34 and power distribution module 30.
With continued reference to
In some example systems, constructed according to the above disclosure, the GFI adapter 34 turns on, or enables, the GFI detection circuit 130 when the GFI adapter 34 is used. In these examples, the GFI detection circuit 130 includes circuit elements to electrically remove the GFI detection circuit 130 from the power distribution module when no GFI adapter is utilized.
A power distribution system 10, utilizing uniform power distribution modules 30 and uniform mating connectors 32, including GFI protection, can be constructed in light of the present disclosure and without the negative weight and cost penalties associated with including current sensors 140, 142 in every power distribution module 30.
It is further understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3764853 | Beachley, Jr. | Oct 1973 | A |
5142646 | Nachtigall | Aug 1992 | A |
5334939 | Yarbrough | Aug 1994 | A |
5363269 | McDonald | Nov 1994 | A |
5504655 | Underwood et al. | Apr 1996 | A |
5786971 | Chan et al. | Jul 1998 | A |
5986860 | Scott | Nov 1999 | A |
6108180 | Severino et al. | Aug 2000 | A |
6329810 | Reid | Dec 2001 | B1 |
6583975 | Bax | Jun 2003 | B2 |
7609492 | Maier | Oct 2009 | B2 |
7683745 | Gouhl et al. | Mar 2010 | B2 |
8023236 | Greither et al. | Sep 2011 | B2 |
8130479 | Maier | Mar 2012 | B2 |
8169762 | Baxter et al. | May 2012 | B2 |
8542021 | Scott et al. | Sep 2013 | B2 |
20060125486 | Premerlani | Jun 2006 | A1 |
20080002315 | Maier | Jan 2008 | A1 |
20080112098 | Stone | May 2008 | A1 |
20110075304 | Hamer | Mar 2011 | A1 |
20130119933 | Flack et al. | May 2013 | A1 |
Entry |
---|
Search Report and Written Opinion for EP Application No. 13170773.9 mailed on Jul. 14, 2014. |
Number | Date | Country | |
---|---|---|---|
20130329321 A1 | Dec 2013 | US |