The present invention relates to power distribution systems, and more particularly to high density power systems and methods of high density power distribution.
Applications requiring power distribution often have severe space constraints for power distribution system components. An example of such an application is a vehicle, such as an aircraft. The limited space available for system components drives the requirement for high density power distribution. The power distribution system must be sufficiently compact, while still being adequately configured to distribute power to typically several loads. The loads include various types of protection against over-current, over and under-frequency, arc fault, and ground fault, to name a few potential sources of disruptions to load functionality. Circuit breaker panels are sized to attempt to fit into the space constrained areas, which are often unavailable during flight and are difficult to access on the ground, in the case of an aircraft.
According to one embodiment, a power distribution unit includes a first solid state power module comprising a first plurality of solid state power controllers, where the first solid state power module comprises a first set of power characteristics. Also included is a second solid state power module comprising a second plurality of solid state power controllers. The second solid state power module comprises a second set of power characteristics. Also, the first solid state power module and the second solid state power module are interchangeably coupled to a first location of a common chassis.
According to another embodiment, a method of distributing high density power is provided. The method includes packaging a first plurality of solid state power controllers to form a first solid state power module, where the first solid state power module comprises a first set of power characteristics. Also included is packaging a second plurality of solid state power controllers to form a second solid state power module, where the second solid state power module comprises a second set of power characteristics. Further included is selectively placing one of the first solid state power module and the second solid state power module within a first position of a chassis, where the first solid state power module and the second solid state power module are interchangeable. Yet further included is controlling one of the first solid state power module and the second solid state power module with a control interface.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring to
The power distribution unit 10 comprises a logic section 20 and a power section 22, with the power section 22 being made up, at least in part, by one or more solid state power modules (SSPMs) 24, each having a plurality of solid state power controllers (SSPCs) 26. The SSPCs 26 employs transistors to provide a switching function and use electronics to provide a circuit breaker function to protect wiring associated with the power vehicle systems 12, 14, 16. The SSPMs 24, based on the composition of SSPCs 26, provide a variety of system protections including, but not limited to, integrated current sensing, over-current, and over-temperature protection, to name simply a few illustrative examples. Individually, the SSPCs 26 function as arc fault protection, ground fault protection, and when used as part of a larger protection network, provide differential current protection. Each of the SSPCs 26 includes a power supply (not shown) that facilitates operation of the SSPCs 26. The SSPMs 24 include a first side and a second side and the SSPCs 26 are configured to mount to either the first side or the second side of the SSPMs 24, thereby providing a more compact packaging of the SSPCs 26 and making more efficient use of limited space provided for the power distribution unit 10. The plurality of SSPCs 26 that are mounted to, or packaged as, each SSPM 24 comprise a specific set of power characteristics for each SSPM 24. The power characteristics vary between distinct SSPMs 24 and provide various functionalities, depending on the assembly of SSPCs 26. In operation, the logic section 20 senses current at various locations proximate the SSPCs 26 to determine if appropriate functionality is occurring. In the event of a disruptive condition, the SSPCs 26 may be switched to an “off” condition. Specifically, the logic section 20 and the SSPCs 26 may include various components that are configured to receive and transmit data related to operation of the SSPCs 26, among other things. Such components may include microcontrollers and communications interfaces.
Referring to
Referring to
The SSPM families 40, 42 may be part of a power block that provides functionality within the power distribution unit 10. The term “power block” conceptually refers to hardware structure that functionally monitors and protects at least one load, but typically a plurality of load circuits. Nominally, this may include solid state power controllers (SSPCs), control logic, processing logic, internal communications busses, and power supplies to power various control elements. The protected load is any device that consumes power. This can be as simple as a resistive heating element in an air data probe, a light bulb disposed in the application, such as an aircraft, or as complex as a motor controller used to drive a hydraulic pump. By monitoring and controlling operating conditions that loads and power distribution units are encountering, the SSPCs 26 have the ability to quickly and flexibly switch power sources and limit or disrupt power to selected loads in the event of harmful operating conditions.
The power distribution unit 10 also includes a combination of remote data concentration modules and remote power control modules that are not in direct contact with the power distribution unit 10, but are in operable communication with the power distribution unit. The remote data concentration modules and the remote power control modules are configured to facilitate remote control of the various circuit protections that the power distribution unit 10 provides. This is particularly useful in applications such as the instant case, where the spaces in which the power distribution unit 10 is disposed may be difficult to access, or even completely inaccessible during operation.
Referring to
Accordingly, the previously described packaging scheme for the power distribution unit 10 adequately addresses tight spatial constraints imposed in certain applications, while also providing a consistent communication control with the control interface that communicates with the power block.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/453,249, filed Mar. 16, 2011.
Number | Date | Country | |
---|---|---|---|
61453249 | Mar 2011 | US |