The present disclosure relates to wake-up signaling for a User Equipment (UE) in a deep sleep state.
Relay-connections using sidelink or Device-to-Device (D2D) communication has been presented in order to increase the wireless communication coverage in situations where the Radio Frequency (RF) link between a Base Station (BS) and a User Equipment (UE) may be very poor or totally lost. For example, see Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) D2D Proximity Services (ProSe) and an associated study in 3GPP Technical Report (TR) 36.843 entitled “Study on LTE Device to Device Proximity Services—Radio Aspects.”
On the other hand, wake-up signaling has been proposed to enable UEs to go into deep sleep and the BS to wake up the UEs with certain signaling. For example, the 3GPP LTE cellular network uses a Wake-Up Signal (WUS) to wake up Internet-of-Things (IoT) UEs. This WUS is transmitted from a BS to IoT UEs that are in idle mode (e.g., deep sleep) and required to decode the Physical Downlink Control Channel (PDCCH) in paging occasions (see, e.g., 3GPP Technical Specification (TS) 36.211 V16.1.0). In those cases, an IoT UE needs wake up to perform time and frequency synchronization, receive and decode the WUS, and further receive and decode the paging information carried in a PDCCH if the IoT finds the WUS is targeting itself. As the distance between the BS and the IoT UE is generally long, the WUS is often transmitted with a certain RF bandwidth and/or encoded in time or frequency domain to lower its miss-detection rate.
Ultra-low-power UEs (e.g., IoT UEs) may be powered from a battery with very limited capacity or from energy harvested from the environment in which the UEs are located. It is important that the amount of energy consumed by these UEs for communication is kept as low as possible. Allowing these UEs to go into a deep-sleep mode (e.g., idle mode) when there is no need to communicate is one technique for minimizing energy consumption. Another technique is to minimize the amount of energy consumed while the UE is performing necessary communication such as by keeping the UE's transmit power (e.g., Uplink (UL) transmit power) as low as possible.
There are many relevant usages of ultra-low-power UEs as different types of sensors, etc. They can be deployed in an environment in which the UEs have very poor RF links to the BSs, such as in basements, behind walls, etc. This can make it very challenging to guarantee that the UE is woken up properly by the BS and also require that the UL signaling from the UE at the wake-up must occur at a very high transmit power. Furthermore, wake-up mechanisms for such ultra-low power UEs should be robust and reliable against misdetection without consuming too much additional power.
Therefore, there is a need for systems and methods providing an energy efficient yet robust solution to wake up UEs, such as ultra-low power UEs, and transfer data between those UEs and the BS.
Systems and methods are disclosed for power efficient and robust wake-up signaling. In one embodiment, a method performed by a relay User Equipment (UE) for a cellular communications system comprises transmitting a synchronization signal for time and frequency synchronization of one or more remote UEs and transmitting a low-power wake-up signal (LPWUS) to a particular remote UE that is in an idle mode. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the particular remote UE to be less than a power cost for detecting a wake-up signal (WUS) from a base station at the particular remote UE. In this manner, coverage for remote UEs can be improved while at the same time enabling a simpler and lower-power wake-up receiver mode with the remote UEs.
In one embodiment, the LPWUS has a bandwidth that is less than that of a WUS from a base station. In one embodiment, the LPWUS has a bandwidth that is less than 180 kilohertz (kHz).
In one embodiment, transmitting the LPWUS comprises transmitting the LPWUS in at least one Orthogonal Frequency Division Multiplexing (OFDM) symbol.
In one embodiment, the synchronization signal and the LPWUS are transmitted in a same subframe.
In one embodiment, transmitting the synchronization signal comprises transmitting two or more repetitions of the synchronization signal. In one embodiment, transmitting the two or more repetitions of the synchronization signal comprises transmitting at least one of the two or more repetitions of the synchronization signal prior to transmitting the LPWUS. In one embodiment, the two or more repetitions of the synchronization signal and the LPWUS are transmitted in a same subframe.
In one embodiment, a bandwidth of the synchronization signal is greater than a bandwidth of the LPWUS. In one embodiment, the bandwidth of the synchronization signal is less than or equal to a full receive bandwidth of the particular remote UE. In one embodiment, the particular remote UE is an Internet of Things (IoT) UE. In one embodiment, the full receive bandwidth of the particular remote UE is either 1.4 Megahertz (MHZ) or 180 KHz.
In one embodiment, transmitting the synchronization signal comprises transmitting a single instance of the synchronization signal.
In one embodiment, a bandwidth of the synchronization signal is less than a full receive bandwidth of the particular remote UE. In one embodiment, the particular remote UE is an IoT UE. In one embodiment, the full receive bandwidth of the particular remote UE is either 1.4 MHz or 180 KHz.
In one embodiment, a bandwidth of the synchronization signal is the same as a bandwidth of the LPWUS.
In one embodiment, transmitting the synchronization signal comprises transmitting an instance of the synchronization signal in an OFDM symbol that immediately precedes an OFDM symbol in which the LPWUS is transmitted.
In one embodiment, an instance of the synchronization signal immediately precedes, in time, the LPWUS.
In one embodiment, either or both of a bandwidth of the synchronization signal and a bandwidth of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE and the particular remote UE.
In one embodiment, either or both of a modulation or coding of the synchronization signal and a modulation or coding of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE and the particular remote UE. In one embodiment, a transmit power used for transmitting the synchronization signal or the LPWUS is a function of the modulation or coding of the synchronization signal or the LPWUS, respectively.
In one embodiment, the LPWUS is encoded with an identity (ID) of the particular remote UE or ID of a group of remote UEs.
In one embodiment, transmitting the synchronization signal comprises transmitting the synchronization signal to the particular remote UE.
In one embodiment, transmitting the synchronization signal comprises broadcasting the synchronization signal.
Corresponding embodiments of a relay UE are also disclosed. In one embodiment, a relay UE for a cellular communications system is adapted to transmit a synchronization signal for time and frequency synchronization of one or more remote UEs and transmit a LPWUS to a particular remote UE that is in an idle mode. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the particular remote UE to be less than a power cost for detecting a wake-up signal, WUS, from a base station at the particular remote UE.
In another embodiment, a relay UE for a cellular communications system comprises one or more transmitters and processing circuitry associated with the one or more transmitters. The processing circuitry is configured to cause the relay UE to transmit a synchronization signal for time and frequency synchronization of one or more remote UEs and transmit a LPWUS to a particular remote UE that is in an idle mode. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the particular remote UE to be less than a power cost for detecting a wake-up signal, WUS, from a base station at the particular remote UE.
Embodiments of a method performed by a remote UE are also disclosed. In one embodiment, a method performed by a remote UE for a cellular communications system comprises, while in an idle state, receiving, from a relay UE, a synchronization signal for time and frequency synchronization of the remote UE, performing time and frequency synchronization based on the synchronization signal, and detecting a LPWUS from the relay UE. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the remote UE to be less than a power cost for detecting a WUS from a base station at the remote UE.
In one embodiment, the LPWUS has a bandwidth that is less than that of a WUS from a base station. In one embodiment, the LPWUS has a bandwidth that is less than 180 KHz.
In one embodiment, detecting the LPWUS comprises detecting the LPWUS in at least one OFDM symbol.
In one embodiment, the synchronization signal and the LPWUS are in a same subframe.
In one embodiment, receiving the synchronization signal comprises receiving at least one of two or more repetitions of the synchronization signal. In one embodiment, the two or more repetitions of the synchronization signal occur prior to the LPWUS. In one embodiment, the two or more repetitions of the synchronization signal and the LPWUS are transmitted in a same subframe.
In one embodiment, a bandwidth of the synchronization signal is greater than a bandwidth of the LPWUS. In one embodiment, the bandwidth of the synchronization signal is less than or equal to a full receive bandwidth of the particular remote UE. In one embodiment, the remote UE is an IoT UE. In one embodiment, the full receive bandwidth of the particular remote UE is either 1.4 MHz or 180 KHz.
In one embodiment, receiving the synchronization signal comprises receiving a single instance of the synchronization signal.
In one embodiment, a bandwidth of the synchronization signal is less than a full receive bandwidth of the remote UE. In one embodiment, the remote UE is an IoT UE. In one embodiment, the full receive bandwidth of the remote UE is either 1.4 MHz or 180 KHz.
In one embodiment, a bandwidth of the synchronization signal is the same as a bandwidth of the LPWUS.
In one embodiment, receiving the synchronization signal comprises receiving an instance of the synchronization signal in an OFDM symbol that immediately precedes an OFDM symbol in which the LPWUS is transmitted.
In one embodiment, an instance of the synchronization signal immediately precedes, in time, the LPWUS.
In one embodiment, either or both of a bandwidth of the synchronization signal and a bandwidth of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE and the particular remote UE.
In one embodiment, either or both of a modulation or coding of the synchronization signal and a modulation or coding of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE and the particular remote UE.
In one embodiment, the LPWUS is encoded with an ID of the particular remote UE or an ID of a group of particular remote UEs.
In one embodiment, the synchronization signal is a unicast synchronization signal.
In one embodiment, the synchronization signal is a broadcast synchronization signal.
Corresponding embodiments of a remote UE are also disclosed. In one embodiment, a remote UE for a cellular communications system is adapted to, while in an idle state, receive, from a relay UE, a synchronization signal for time and frequency synchronization of the remote UE, perform time and frequency synchronization based on the synchronization signal, and detect a LPWUS from the relay UE. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the remote UE to be less than a power cost for detecting a WUS from a base station at the remote UE.
In another embodiment, a remote UE for a cellular communications system comprises one or more receivers and processing circuitry associated with the one or more receivers. The processing circuitry configured to cause the remote UE to, while in an idle state, receive, from a relay UE, a synchronization signal for time and frequency synchronization of the remote UE, perform time and frequency synchronization based on the synchronization signal, and detect a LPWUS from the relay UE. The LPWUS has one or more characteristics that enable a power cost for detecting the LPWUS at the remote UE to be less than a power cost for detecting a WUS from a base station at the remote UE.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure.
Radio Node: As used herein, a “radio node” is either a radio access node or a wireless communication device.
Radio Access Node: As used herein, a “radio access node” or “radio network node” or “radio access network node” is any node in a Radio Access Network (RAN) of a cellular communications network that operates to wirelessly transmit and/or receive signals. Some examples of a radio access node include, but are not limited to, a base station (e.g., a New Radio (NR) base station (gNB) in a Third Generation Partnership Project (3GPP) Fifth Generation (5G) NR network or an enhanced or evolved Node B (eNB) in a 3GPP Long Term Evolution (LTE) network), a high-power or macro base station, a low-power base station (e.g., a micro base station, a pico base station, a home eNB, or the like), a relay node, a network node that implements part of the functionality of a base station or a network node that implements a gNB Distributed Unit (gNB-DU)) or a network node that implements part of the functionality of some other type of radio access node.
Core Network Node: As used herein, a “core network node” is any type of node in a core network or any node that implements a core network function. Some examples of a core network node include, e.g., a Mobility Management Entity (MME), a Packet Data Network Gateway (P-GW), a Service Capability Exposure Function (SCEF), a Home Subscriber Server (HSS), or the like. Some other examples of a core network node include a node implementing an Access and Mobility Function (AMF), a User Plane Function (UPF), a Session Management Function (SMF), an Authentication Server
Function (AUSF), a Network Slice Selection Function (NSSF), a Network Exposure Function (NEF), a Network Function (NF) Repository Function (NRF), a Policy Control Function (PCF), a Unified Data Management (UDM), or the like.
Communication Device: As used herein, a “communication device” is any type of device that has access to an access network. Some examples of a communication device include, but are not limited to: mobile phone, smart phone, sensor device, meter, vehicle, household appliance, medical appliance, media player, camera, or any type of consumer electronic, for instance, but not limited to, a television, radio, lighting arrangement, tablet computer, laptop, or Personal Computer (PC). The communication device may be a portable, hand-held, computer-comprised, or vehicle-mounted mobile device, enabled to communicate voice and/or data via a wireless or wireline connection.
User Equipment (UE): One type of communication device is a UE, which herein refers to any wireless communication device that has access to (i.e., is served by) a wireless network (e.g., a cellular network). Some examples of a wireless communication device include, but are not limited to: a 3GPP UE (i.e., a UE in a 3GPP network), a Machine Type Communication (MTC) device (also referred to herein as a MTC UE, and an Internet of Things (IoT) device (also referred to herein as an IoT UE). Such UEs may be, or may be integrated into, a mobile phone, smart phone, sensor device, meter, vehicle, household appliance, medical appliance, media player, camera, or any type of consumer electronic, for instance, but not limited to, a television, radio, lighting arrangement, tablet computer, laptop, or PC. The UE may be a portable, hand-held, computer-comprised, or vehicle-mounted mobile device, enabled to communicate voice and/or data via a wireless connection.
Relay UE: As used herein, a “relay UE” is a UE that, in addition to having communication to/from a RAN node (e.g., a base station), can also have communication to and from another UE, for example, via a D2D link or 3GPP sidelink. This other UE is referred to herein as a “remote UE”. Furthermore, a relay UE can receive and transmit data and control signals on behalf of the remote UE(s) to which it has a direct communication link. The relay UE is in proximity of one or more remote UEs.
Remote UE: As used herein, a “remote UE” is a UE that is capable of both D2D or 3GPP sidelink communication to the relay UE and direct communication to a base station. Typically, the remote UE is power constrained. The remote UE operates in a deep-sleep mode of operation (e.g., 3GPP idle mode) and can be woken up by a wake-up signal. Sometimes in the present disclosure, the term “sensor UE” or “sensor node” is used to denote a type of remote UE that is extremely power constrained.
Network Node: As used herein, a “network node” is any node that is either part of the RAN or the core network of a cellular communications network/system.
Note that the description given herein focuses on a 3GPP cellular communications system and, as such, 3GPP terminology or terminology similar to 3GPP terminology is oftentimes used. However, the concepts disclosed herein are not limited to a 3GPP system.
Low-Power Wake-Up Signal (LPWUS): As used herein, a “LPWUS” is a special paging signal that is transmitted from a relay UE to one or more remote UEs to inform the one or more remote UEs to wake-up from a deep-sleep state (e.g., a 3GPP idle mode). The LPWUS has one or more characteristics (e.g., narrow bandwidth and/or simplified modulation and coding scheme) that enable a power cost for detecting the LPWUS at a remote UE to be less than a power cost for detecting a conventional WUS from a base station at the remote UE. The one or more characteristics of the LPWUS enable detection at the remote UE via a low power receiver, e.g. an envelope detector, comparator, and time-domain correlator.
Note that, in the description herein, reference may be made to the term “cell”; however, particularly with respect to 5G NR concepts, beams may be used instead of cells and, as such, it is important to note that the concepts described herein are equally applicable to both cells and beams.
As discussed above, there is a need for systems and methods providing an energy efficient yet robust solution to wake up UEs, such as ultra-low power UEs, and transfer data between those UEs and the base station. In United States Patent Application Publication No. 2020/0163017 A1 (hereinafter “the '017 Application”), the use of a relay UE to transmit a wake-up signal (WUS) to a remote UE (e.g., an IoT UE) is proposed. However, besides the WUS itself, there is a need to re-establish time synchronization between the IoT UE and the network when the IoT UE wakes up from deep sleep, and this demands further signal transmission/reception. This re-establishment of time synchronization is not addressed in the '017 Application.
Systems and methods are disclosed herein that address the aforementioned and/or other problems. Embodiments of the solution disclosed herein are based on relayed wake-up of a remote UE (e.g., an IoT UE such as, e.g., a sensor) via a relay UE and subsequent data transfer between the relay UE and remote UE. The rationale is that the distance between the relay UE (e.g., selected based on coverage) and the remote UE is much shorter than the distance between base station and the remote UE making such a system more robust and leading to lower power consumption in the remote UE.
By introducing a relay UE, embodiments of the solution disclosed herein enable ultra-low-power UEs to enter/exit deep sleep without having to communicate directly with the base station.
Whereas the basic idea of using a relay node to transmit a wake-up signal to an IoT UE is described in the '017 Application, there are multiple aspects of the embodiments disclosed herein, which are potentially independent, that all support a much more energy efficient and robust system:
Embodiments of the solutions disclosed herein may enable better coverage for UEs that are in deep sleep (i.e., low power) mode, may enable lower uplink transmit power from remote UEs (e.g., IoT UEs) for wake-up sequences and communication, and/or may allow for a simpler and lower power wake-up receiver mode within remote UES.
In this regard,
The base station 102 is aware, e.g., due to the authentication procedures, of remote UEs 106 in an area. The base station 102 can further identify a UE (or multiple UEs) in the vicinity of the remote UEs 106 as the relay UE 104 for these remote UEs 106. For example, the base station 102 may estimate the locations of the UEs under its coverage and select UEs close to the remote UEs 106 as relay candidates. Furthermore, based on received measurement reports from UEs, the base station 102 builds an understanding of coverage/signal strength, transmit power of UEs, mobility of the UEs, etc. and then determines both the remote UEs 106 and the relay UE 104 for those remote UEs 106. Thereafter, the base station 102 notifies both the relay UE 104 and the remote UEs 106 of the pairing. For example, the base station 102 may share UE IDs of the remote UEs 106 with the relay UE 104 and/or inform the remote UEs 106 of a relay ID of the relay UE 104. Once a pairing acknowledgement is received by the base station 102 from each individual remote UE 106 directly (or in some embodiments via the relay UE 104 on behalf of the individual remote UEs 106), the base station 102 notifies the remote UEs 106 directly (or in some embodiments via the relay UE 104), that they can go into a deep sleep mode and, upon reception of a wake-up signal, need to communicate with the relay UE 104 or communicate directly with the base station 102.
When the base station 102 desires to wake-up and fetch data from a remote UE 106 (or a group of remote UEs 106), the base station 102 transmits a WUS which includes identifier (ID) of that remote UE 106 (or that group of remote UEs 106). As described below in detail, the relay UE 104 operates to receive and decode the WUS on behalf of the remote UE 106 (or group of remote UEs 106). The relay UE 104 then generates and transmits a LPWUS so that the remote UE 106 (or group of remote UEs 106) for which the WUS from the base station 102 is intended is (are) woken-up. In one embodiment, the LPWUS is encoded with the ID of the remote UE 106 (or the ID of the group of remote UE(s)) to be woken-up.
As the distance between the relay UE 104 and the remote UEs 106 is much shorter than the distance between base station 102 and the remote UEs 106, the LPWUS transmitted from the relay UE 104 to the remote UEs 106 can be much simplified, as compared to the WUS transmitted by the base station 102, by using a simple radio waveform (for example, by being coded with On-Off Keying (OOK)) so that the power cost to detect the LPWUS by the remote UEs 106 can be much less than that to detect the WUS from the base station 102. For example, an Orthogonal Frequency Division Multiplexing (OFDM) transmitter can be used to generate the LPWUS as an OOK pulse. One example of a OOK wakeup signal and corresponding low-power receiver is described in J. Moody et al., “A-76 dBm 7.4 nW Wakeup Radio With Automatic Offset Compensation”, ISSCC 2018. Upon detecting the LPWUS, the remote UE 106 sends a LPWUS acknowledgement (ACK) only to the relay node 104 and not to the base station 102 which initiated the wake up signaling, which enables reducing the RF transmission power of the LPWUS ACK as compared to that which would be needed to transmit a WUS ACK to the base station 102.
In addition to the LPWUS, embodiments are disclosed herein to establish time and frequency re-synchronization for the remote UEs 106 in association with LPWUS detection. Embodiments disclosed herein optimize the time/frequency synchronization together with LPWUS detection for the sake of UE power saving.
Embodiments of the present disclosure consider one or more of the following aspects for the relay UE 104 to configure the synchronization signals together with the LPWUS:
Below are two example approaches for re-establishing time and frequency synchronization to achieve various levels of accuracy in the remote UE 106:
To reduce the amount of power consumed by the remote UE 106 to perform time/frequency synchronization and LPWUS detection, a time offset between the synchronization signal and the LPWUS can be optimized so that the remote UE 106 can keep its active duration as short as possible while detecting both the synchronization signal and the LPWUS. Thus, in one embodiment, the LPWUS immediately follows the synchronization signal (i.e., the LPWUS starts in the OFDM that immediately follows an OFDM symbol in which the synchronization signal, or one of multiple instances of the synchronization signal, is transmitted).
At the remote UE 106, the remote UE 106 performs time/frequency synchronization based on the synchronization signal and detects (e.g., receives and decodes) the LPWUS (step 206). In one embodiment, the LPWUS is encoded with the UE ID of the remote UE 106 and, as such, detection of the LPWUS includes determining that the UE ID with which the LPWUS is encoded matches the UE ID of the remote UE 106. Upon detecting the LPWUS (and determining that the encoded UE ID matches its own UE ID), the remote UE 106 performs one or more actions, e.g., to become operational (e.g., exists the deep-sleep mode and enters a connected mode) (step 206).
Once the remote UE 106 is operational, the remote UE 106 receives data from and/or transmits data to the relay UE 104 via a respective sidelink (step 208). Note that for uplink data transmission, once the relay UE 104 receives data from the remote UE 106, the relay UE 104 transmits the data to the base station 102. Likewise, for downlink data transmission, once the relay UE 104 receives data for the remote UE 106 from the base station 102, the relay UE 104 transmits the data to the remote UE 106 via the sidelink.
The relay node 104 may thereafter determine whether the remote UE 106 is to return to the deep-sleep mode (step 210). If so, in one embodiment, the relay UE 104 transmits a deep-sleep sequence of the remote UE 106 (step 212). The relay UE 104 may confirm to the base station 102 (e.g., upon receiving a deep-sleep ACK from the remote UE 106) that the remote UE 106 is in the deep-sleep state (step 214).
Now, some further description of aspects of the present disclosures related to time/frequency synchronization will be provided. In 3GPP LTE, a base station always broadcasts a Cell Reference Signal (CRS) which can be used by UE (e.g., a remote UE) to perform time/frequency synchronization. 3GPP NR does not specify this always-on broadcast signal from the NR base station (i.e., gNB), instead there are dedicated Synchronization Signal Blocks (SSBs) periodically broadcasted from a NR BS. By detecting SSB, a NR UE can perform time/frequency synchronization to the NR BS.
Assuming the relay UE 104 is always time/frequency synchronized with the network (e.g., with the base station 102), in one embodiment, a dedicated synchronization signal followed by the LPWUS may be transmitted/broadcast by the relay UE 104 (e.g., in step 204). By receiving the synchronization signal, the remote UE 106 (or a group of remote UEs 106) can perform frequency/time synchronization with the relay UE 104 so that it (or they) can correctly receive/decode the LPWUS following the synchronization signal.
Two example schemes for time/frequency re-synchronization, denoted herein as TRS1 and TRS2, are as follows.
TRS1: When the remote UE 106 is supposed to connect to the base station 102 after waking up, the relay UE 104 may configure its synchronization signal to the remote UE(s) 106 in the time and/or frequency domain and/or samples with better Signal to Noise Ratio (SNR) (e.g., via using more complex modulation and coding scheme). In one embodiment, in this case, the relay UE 104 may configure its synchronization signal to the remote UE(s) 106 with a more complex sequence occupying more RF resources in time and/or frequency domain (e.g. the synchronization signal transmitted by the relay UE 104 may be the sidelink synchronization signal specified in 3GPP LTE/NR) in order to guarantee high accuracy of time/frequency synchronization between the remote UE and the relay UE 104 and thus the base station 102. In other words, the amount of time and/or frequency domain resources occupied by the synchronization signal transmitted by the relay UE 104 (or the multiple instances of the synchronization signal transmitted by the relay UE 104) may be a function of whether the remote UE 106 is to communicate directly with the base station 102 after wake-up or is to communicate with the relay UE 104 (i.e., communicate with the base station 102 via the relay UE 104) after wake-up. For the former, more time and/or frequency resources are used in order to provide a sufficient level of time/frequency synchronization accuracy.
Note that, in one alternative example, the LPWUS is transmitted in symbol 3 immediately following the second synchronization symbol (e.g., immediately following a second instance, or repetition, of the synchronization signal in symbol 2), as illustrated in
To further optimize the power consumption of the remote UE 106, when the D2D SNR is high enough (e.g., above a predefined SNR threshold), the remote UE 106 may only receive a partial bandwidth of the synchronization signals. For example, the remote UE 106 may receive the synchronization signal (e.g., in symbols 1 and 2 of the examples of
In one embodiment, the relay UE 104 may transmit additional synchronization signal(s) with a time offset to the LPWUS where the time offset is configured according to the duration of the wakeup process of the remote UE 106. When the remote UE 106 completes its wakeup process (which is triggered by the LPWUS), it can receive the synchronization signals and perform time/frequency synchronization. As multiple symbols with high bandwidth can be used for the synchronization signal, high synchronization accuracy can be achieved between the remote UE 106 and the relay UE 104 (and also the base station 102). For example, after being woken-up by the LPWUS, the remote UE 106 can start a random access to set up radio connection with the base station 102.
TRS2: When the remote UE 106 is not supposed to connect to the base station 102 after waking up, the relay UE 104 may configure its synchronization signal to the remote UE 106 with a simpler sequence occupying less RF resources in the time and/or frequency domain. As example is shown in
In one embodiment, the LPWUS has a bandwidth that is less than that of a WUS (e.g., the WUS of step 500) from the base station 102. In one embodiment, the LPWUS has a bandwidth that is less than 180 kilohertz (kHz). In one embodiment, the LPWUS is transmitted in at least one OFDM symbol. In one embodiment, the synchronization signal and the LPWUS are transmitted in a same subframe. In one embodiment, transmitting the synchronization signal in step 502 includes transmitting two or more instances, or repetitions, of the synchronization signal. The repetitions may be transmitted in the time domain and/or the frequency domain. In one embodiment, at least one repetitions of the synchronization signal is transmitted prior to the LPWUS. In one embodiment, all of the repetitions of the synchronization signal (e.g., in a subframe) are transmitted prior to the LPWUS (e.g., in the same subframe). In one embodiment, the two or more repetitions of the synchronization signal and the LPWUS are transmitted in a same subframe.
In one embodiment, a bandwidth of the synchronization signal is greater than a bandwidth of the LPWUS. In one embodiment, the bandwidth of the synchronization signal is less than or equal to a full receive bandwidth of the remote UE 106-1. In one embodiment, the remote UE 106-1 is an IoT UE. In one embodiment, the full receive bandwidth of the remote UE 106-1 is either 1.4 Megahertz (MHz) or 180 KHz.
In one embodiment, a single instance of the synchronization signal is transmitted. In one embodiment, this single instance of the synchronization signal is transmitted in at least one OFDM symbol that immediately precedes the LPWUS. In one embodiment, a bandwidth of the synchronization signal is less than a full receive bandwidth of the remote UE 106-1. In one embodiment, the remote UE 106-1 is an IoT UE. In one embodiment, the full receive bandwidth of the remote UE 106-1 is either 1.4 MHz or 180 KHz.
In one embodiment, a bandwidth of the synchronization signal is the same as a bandwidth of the LPWUS.
In one embodiment, at least one instance of the synchronization signal is transmitted in at least one OFDM symbol that immediately precedes an OFDM symbol in which the LPWUS is transmitted.
In one embodiment, either or both of a bandwidth of the synchronization signal and a bandwidth of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE 104 and the remote UE 106-1.
In one embodiment, either or both of a modulation or coding of the synchronization signal and a modulation or coding of the LPWUS is a function of one or more metrics related to one or more characteristics of a wireless channel between the relay UE 104 and the remote UE 106-1. In one embodiment, a transmit power used for transmitting the synchronization signal or the LPWUS is a function of the modulation or coding of the synchronization signal or the LPWUS, respectively.
In one embodiment, the LPWUS is encoded with an ID of the remote UE 106-1 or an ID of a group of the remote UEs 106.
In one embodiment, the relay UE 104 unicasts the synchronization signal and/or the LPWUS to the remote UE 106-1. In another embodiment, the relay UE 104 broadcasts the synchronization signal and/or the LPWUS to multiple remote UEs 106 including the remote UE 106-1.
It should be noted that while the embodiments described herein focus on the LPWUS, the embodiments can be extended to additionally or alternatively apply to a Go-To-Sleep (GTS) signal which is transmitted by the base station 102 and a Low-Power GTS (LPGTS) signal transmitted from the relay UE 104 to the remote UE 106-1 to cause the remote UE 106-1 to enter the deep-sleep state.
As used herein, a “virtualized” radio access node is an implementation of the radio access node 600 in which at least a portion of the functionality of the radio access node 600 is implemented as a virtual component(s) (e.g., via a virtual machine(s) executing on a physical processing node(s) in a network(s)). As illustrated, in this example, the radio access node 600 may include the control system 602 and/or the one or more radio units 610, as described above. The control system 602 may be connected to the radio unit(s) 610 via, for example, an optical cable or the like. The radio access node 600 includes one or more processing nodes 700 coupled to or included as part of a network(s) 702. If present, the control system 602 or the radio unit(s) are connected to the processing node(s) 700 via the network 702. Each processing node 700 includes one or more processors 704 (e.g., CPUs, ASICs, FPGAs, and/or the like), memory 706, and a network interface 708.
In this example, functions 710 of the radio access node 600 described herein are implemented at the one or more processing nodes 700 or distributed across the one or more processing nodes 700 and the control system 602 and/or the radio unit(s) 610 in any desired manner. In some particular embodiments, some or all of the functions 710 of the radio access node 600 described herein are implemented as virtual components executed by one or more virtual machines implemented in a virtual environment(s) hosted by the processing node(s) 700. As will be appreciated by one of ordinary skill in the art, additional signaling or communication between the processing node(s) 700 and the control system 602 is used in order to carry out at least some of the desired functions 710. Notably, in some embodiments, the control system 602 may not be included, in which case the radio unit(s) 610 communicate directly with the processing node(s) 700 via an appropriate network interface(s).
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of radio access node 600 or a node (e.g., a processing node 700) implementing one or more of the functions 710 of the radio access node 600 in a virtual environment according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory).
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of the UE 900 according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory).
With reference to
The telecommunication network 1100 is itself connected to a host computer 1116, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server, or as processing resources in a server farm. The host computer 1116 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider. Connections 1118 and 1120 between the telecommunication network 1100 and the host computer 1116 may extend directly from the core network 1104 to the host computer 1116 or may go via an optional intermediate network 1122. The intermediate network 1122 may be one of, or a combination of more than one of, a public, private, or hosted network; the intermediate network 1122, if any, may be a backbone network or the Internet; in particular, the intermediate network 1122 may comprise two or more sub-networks (not shown).
The communication system of
Example implementations, in accordance with an embodiment, of the UE, base station, and host computer discussed in the preceding paragraphs will now be described with reference to
The communication system 1200 further includes a base station 1218 provided in a telecommunication system and comprising hardware 1220 enabling it to communicate with the host computer 1202 and with the UE 1214. The hardware 1220 may include a communication interface 1222 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1200, as well as a radio interface 1224 for setting up and maintaining at least a wireless connection 1226 with the UE 1214 located in a coverage area (not shown in
The communication system 1200 further includes the UE 1214 already referred to. The UE's 1214 hardware 1234 may include a radio interface 1236 configured to set up and maintain a wireless connection 1226 with a base station serving a coverage area in which the UE 1214 is currently located. The hardware 1234 of the UE 1214 further includes processing circuitry 1238, which may comprise one or more programmable processors, ASICs, FPGAS, or combinations of these (not shown) adapted to execute instructions. The UE 1214 further comprises software 1240, which is stored in or accessible by the UE 1214 and executable by the processing circuitry 1238. The software 1240 includes a client application 1242. The client application 1242 may be operable to provide a service to a human or non-human user via the UE 1214, with the support of the host computer 1202. In the host computer 1202, the executing host application 1212 may communicate with the executing client application 1242 via the OTT connection 1216 terminating at the UE 1214 and the host computer 1202. In providing the service to the user, the client application 1242 may receive request data from the host application 1212 and provide user data in response to the request data. The OTT connection 1216 may transfer both the request data and the user data. The client application 1242 may interact with the user to generate the user data that it provides.
It is noted that the host computer 1202, the base station 1218, and the UE 1214 illustrated in
In
The wireless connection 1226 between the UE 1214 and the base station 1218 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to the UE 1214 using the OTT connection 1216, in which the wireless connection 1226 forms the last segment.
A measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection 1216 between the host computer 1202 and the UE 1214, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection 1216 may be implemented in the software 1210 and the hardware 1204 of the host computer 1202 or in the software 1240 and the hardware 1234 of the UE 1214, or both. In some embodiments, sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 1216 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the software 1210, 1240 may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 1216 may include message format, retransmission settings, preferred routing, etc.; the reconfiguring need not affect the base station 1218, and it may be unknown or imperceptible to the base station 1218. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating the host computer's 1202 measurements of throughput, propagation times, latency, and the like. The measurements may be implemented in that the software 1210 and 1240 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1216 while it monitors propagation times, errors, etc.
Any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses. Each virtual apparatus may comprise a number of these functional units. These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include Digital Signal Processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as Read Only Memory (ROM), Random Access Memory (RAM), cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein. In some implementations, the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.
While processes in the figures may show a particular order of operations performed by certain embodiments of the present disclosure, it should be understood that such order is exemplary (e.g., alternative embodiments may perform the operations in a different order, combine certain operations, overlap certain operations, etc.).
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/057678 | 3/23/2022 | WO |