One or more aspects of embodiments according to the present invention relate to a power efficient method and system for executing host data processing tasks during data retention operations in a storage device
Every day, several quintillion bytes of data may be created around the world. These data come from everywhere: posts to social media sites, digital pictures and videos, purchase transaction records, bank transactions, sensors used to gather data and intelligence, like weather information, cell phone GPS signal, and many others. This type of data and its vast accumulation is often referred to as “big data.” This vast amount of data eventually is stored and maintained in storage nodes, such as hard disk drives (HDDs), solid-state storage drives (SSDs), or the like, and these may reside on networks or on storage accessible via the Internet, which may be referred to as the “cloud.” In some cases the data is not accessed very frequently but it needs to be available at any time with minimal delay. For example, the data may be write once, read many (WORM), such as data posted to social media web sites, or video media posted by users on public video sharing sites.
Related art storage solutions may not be well suited to this application. Hard disk drives, for example, may consume excessive power if kept spinning, and may take too long to start up if allowed to stop after each data access. Data corruption in solid state drives might be a consequence of very long periods of idle time. This limitation is sometimes referred to as a data retention limitation. Thus, there is a need for a system and method for storing large volumes of infrequently accessed data, providing rapid access, and in a power-efficient manner. One patent application that discloses an approach to address the power efficient method to access “cold storage” data is application Ser. No. 14/093,335, but it does not describe any method to execute host data processing tasks in such condition.
Some new SSD implementations provide a mechanism to perform data processing tasks inside the storage device. For example, application Ser. No. 14/015,815 provides a mechanism to perform data processing task inside the drive, but it does not disclose a power efficient mechanism to perform the data processing tasks in WORM workloads.
Aspects of embodiments of the present disclosure are directed toward a power efficient method and system for executing host data processing tasks during data retention operations in a storage device.
These and other features and advantages of the present invention will be appreciated and understood with reference to the specification, claims and appended drawings wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of a power efficient method and system for executing host data processing tasks during data retention operations in a storage device provided in accordance with the present invention and is not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the features of the present invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention. As denoted elsewhere herein, like element numbers are intended to indicate like elements or features.
Garbage Collection—algorithm used to pick the next best block to erase and rewrite
Pre-conditioning—filling an empty drive with host data, and consequently new write will trigger garbage collection tasks.
WORM—Write Once Read Many
Cold Storage—storage device in which the data in occasionally accessed by the Host
IOPS—Number of I/O operations per second
RAID—Redundant Array of Inexpensive Drives/Devices
DRAM—Dynamic Random Access Memory
SoC—System on a Chip
SSD—Solid State Drive
The SSD products are employed in a number of form factors and tuned for several different applications. An embodiment of the present invention is a power efficient method for executing data processing tasks inside a storage device in a WORM environment scheduling such tasks at the time data retention operation is needed by the storage device.
As shown in
In particular and as shown in
The server 110′ and intelligent SSD 130 may be implemented in a cloud-based computing environment. The server 110′ and intelligent SSD 130 may communicate using any storage buses as well as PCIe with any protocol which runs on it. In other embodiments storage nodes may be connected to, and controlled by, a host CPU which need not be a server CPU but may be a CPU in an application not configured as a server.
The server 110′ and the intelligent SSD 130 can be in communication with each other via a wired or wireless connection. For example, in one embodiment, the intelligent SSD 130 may comprise pins (or a socket) to mate with a corresponding socket (or pins) in the server 110′ to establish an electrical and physical connection with, e.g., the CPU 120. In another embodiment, the intelligent SSD 130 can comprise a wireless transceiver to place the server 110′ and the intelligent SSD 130 in wireless communication with each other. The server 110′ and the intelligent SSD 130 may be separately housed from each other, or contained in the same housing.
As shown in
In case the intelligent SSD 130 is used in a “cold storage” environment (Write Once and Read Sporadically), the server 110′ may decide to turn off the storage or command the storage device to enter a power safe mode.
In one embodiment, The Host provides data processing tasks to the server 110′ and also provide information about if this data processing tasks are time sensitive.
Master Node sends a query to Server to perform a data processing task at step 402, Server checks if the task is time sensitive at step 404. If the task is time sensitive, Server turns on SSD at step 408. The intelligent SSD receives the query at step 410, and process the query at step 412. At step 414, it sends the result of the query to server. If the query is not time sensitive, server waits for the timer to expire at step 406; when timer expires, server turns on SSD at step 408. In this case, the intelligent SSD will perform the data processing task at same time it needs to perform the data retention operation and, consequently, saving power consumption.
In another embodiment, the server sends the data processing tasks to SSD which is responsible for managing the scheduling of the tasks, as shown in
In one embodiment, the SSD accumulates a number of data processing tasks that are not time sensitive to be performed at same time, reducing the overall power consumption comparing to executing these tasks separately.
An embodiment of the invention provides a mechanism to provide a lower power data processing execution combining the data processing to the data retention operations in a SSD.
1. A system utilizing this mechanism can minimize the system power consumption by merging data processing tasks and data retention operations inside the SSD.
2. The SSD can accumulate many processing tasks to reduce even more the overall power consumption by combining the data processing tasks.
An embodiment of the invention can be simulated utilizing a model and demonstrate the benefits of its utilization. A SystemC model of a SSD will be modified to include the commands to manage the scheduling of the data processing tasks accordingly to the mechanism in this application (in the embodiment of the invention) and a comparison of a SSD with and without the embodiment of the invention will be provided.
It will be understood that, although the terms “first”, “second”, “third”, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section, without departing from the spirit and scope of the inventive concept.
Spatially relative terms, such as “beneath”, “below”, “lower”, “under”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that such spatially relative terms are intended to encompass different orientations of the device in use or in operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” or “under” other elements or features would then be oriented “above” the other elements or features. Thus, the example terms “below” and “under” can encompass both an orientation of above and below. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concept. As used herein, the terms “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. As used herein, the term “major component” means a component constituting at least half, by weight, of a composition, and the term “major portion”, when applied to a plurality of items, means at least half of the items.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the inventive concept refers to “one or more embodiments of the present invention”. Also, the term “exemplary” is intended to refer to an example or illustration. As used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.
It will be understood that when an element or layer is referred to as being “on”, “connected to”, “coupled to”, or “adjacent to” another element or layer, it may be directly on, connected to, coupled to, or adjacent to the other element or layer, or one or more intervening elements or layers may be present. In contrast, when an element or layer is referred to as being “directly on”, “directly connected to”, “directly coupled to”, or “immediately adjacent to” another element or layer, there are no intervening elements or layers present.
Any numerical range recited herein is intended to include all sub-ranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein.
Although exemplary embodiments of a Power Efficient Method And System For Executing Host Data Processing Tasks During Data Retention Operations In A Storage Device have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that a Power Efficient Method And System For Executing Host Data Processing Tasks During Data Retention Operations In A Storage Device constructed according to principles of this invention may be embodied other than as specifically described herein. The invention is also defined in the following claims, and equivalents thereof.
The present application claims priority to and the benefit of U.S. Provisional Application No. 62/034,055, filed Aug. 6, 2014, entitled “POWER EFFICIENT METHOD AND SYSTEM FOR EXECUTING HOST DATA PROCESSING TASKS DURING DATA RETENTION OPERATIONS IN A STORAGE DEVICE”, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62034055 | Aug 2014 | US |