The present invention relates power electronic apparatuses, in particular frequency converters, including cooling arrangements for cooling the power electronics.
In particular, the invention relates power electronic apparatuses the electrical power of which exceeds 10 kW and may reach even megawatts. Therefore, effective cooling is required in order to safeguard the proper functioning of the apparatus.
For many applications, the most convenient cooling method is cooling by airflow induced by a fan or fans. The fans and cooling arrangements are various also within the air-cooled power electronic apparatuses, and the requirements of a particular system are dictated by the application for which the apparatus is designed.
US 2006/0158847 A1 discloses a cooling device for an electronic apparatus, such as a frequency converter. The cooling device comprises a single radial fan.
US 2007/0258219 A1 discloses an air-cooled power electronics module provided with a suitable number of adjacent fans.
It is an object of the present invention to create a power electronic apparatus having a new cooling arrangement that allows relatively effective cooling in compact size and with an acceptable noise-level.
The object of the invention is achieved by a power electronic apparatus, such as a frequency converter comprising a housing that accommodates the power electronic components, and at least two adjacent axial fans connected to the housing for inducing airflow from outside into the housing in order to cool the power electronic components. Furthermore, the apparatus is provided with a separating wall that extends outside the housing from between the at least two adjacent axial fans in order to reduce noise caused by the fans.
The present invention brings forth a power electronic apparatus having a new cooling arrangement that allows relatively effective cooling in compact size and with an acceptable noise-level.
The compact size and effective airflow are achieved by means of axial flow fans that are connected to the housing of the power electronic apparatus. Such powerful fans are typically noisy, but the noise level is reduced by the afore-specified configuration of the apparatus without impairment of the airflow.
Such fans can also be often driven without a separate AC converter, which also contributes to the compact size of the apparatus.
The inventive concept allows also several useful and advantageous embodiments, which provide further advantages.
According to an embodiment, each of the adjacent fans has an outer diameter d and the separating wall extends outside the housing in a direction opposite to the direction of the airflow. In this opposite direction, the separating wall extends for a length l such that the length l is between 50 and 100% of the outer diameter d, such as between 60 and 80% of the outer diameter d.
According to an embodiment, the separating wall has a height h in the direction perpendicular to the direction of the airflow such that the height h is between 50 and 300% of the outer diameter d, such as between 100 and 200% of the outer diameter d. A more limited range for the height h is between 120 and 170% of the outer diameter d, and a particularly good value for many applications is 150% or about 150% of the outer diameter d.
According to an embodiment, the separating wall is substantially parallel with the direction of the airflow.
According to an embodiment, the adjacent axial fans and the separating wall are all secured to a common face of the housing.
According to an embodiment, further noise reduction is achieved by disposing at least one pair of said adjacent fans at an angle α with respect to each other.
According to an embodiment, the angle α is between 6 and 50 degrees, such as between 10 and 20 degrees.
According to an embodiment, the fans are disposed such that the airflows leaving the pair of said adjacent fans are inclined towards each other.
According to an embodiment, the axes of rotation of the adjacent fans substantially meet each other at a distant point such that the angle α can be measured between the axes 8 of rotation. This is the case wherein the axes of rotation extend along a common plane.
According to another embodiment, the axes of rotation of the adjacent fans do not meet each other but are tilted with respect to a common reference plane. Then, the axes of rotation have tilting angles β with respect to the reference plane, and the angle α can be measured between the projections of the axes of rotation on the reference plane.
According to an embodiment, the tilting angles β are less than 5 degrees.
As is apparent from the above disclosure, the present invention can be applied in a great variety of applications requiring.
For a more complete understanding of the present invention and the advantages thereof, the invention is now described with the aid of the examples and with reference to the following drawings, in which:
The number of fans is not limited but can be selected according to the requirements of each frequency converter application.
The power dissipation is considerable in the frequency converters according to the embodiments. The electrical power of the frequency converter can be between 10 kW and 5 MW, for instance. Then, the thermal power dissipated inside the housing 1 can be very considerable. In order to effectively cool the power electronic components by means of air-cooling, the frequency converter is provided with a sufficient number of air fans 4.
According to the embodiments, the fans 4 are of the axial flow type. An axial flow fan comprises a number of blades attached to a central hub, and in operation, the central hub is rotated around an axis of rotation, whereby the blades cause air to flow in a flow direction generally parallel with the axis of rotation in case the airflow is not deflected. In this document, the direction of a fan refers to the direction of such non-deflected general flow direction and, at the same time, also to the direction of the axis of rotation.
The fans 4 according to the embodiment are also in itself relatively powerful in order to achieve the necessary airflow through the housing 1. The power of each fan 4 can be between 10 W and 1 000 W, for instance. In apparatuses having higher power consumption, fans 4 with the input power of at least 50 W are typically used. Examples of such fans include Papst 6314/2TDHHP with the input power of 67 W and Japan Servo D1751S24B8ZP300 with the input power of 82 W. The level of noise can be in the range 65 to 85 dB when such fans operate.
In an embodiment, the electrical power of the frequency converter is selected from between 10 kW and 500 kW, and the input power of the fans 4 is between 60 W and 200 W.
In a first test set-up, the noise was measured when using one fan 4 at a time in the basic construction of the frequency converter as shown in
In general, the reference plane for the angles goes via the central hubs of the fans and follows the general non-deflected flow direction of the air leaving the fans. Such a general flow direction of the air is of course somewhat imaginary in a practical apparatus set-up, as the housing 1 and other environment factors always guide the airflow at least to some extent. However, a skilled reader understands that the reference plane is needed in order to clearly define the angles and should not be ascribed other technical meaning.
As is apparent from the above discussion, the fans 4 can also be fitted such that the axes 8 of rotation extend at an angle with respect to the reference plane, such as the plane of the cross-section in
In
The angle of about 10 degrees was found effective in reducing noise of the fans without impairment in the flow of cooling air also in measurements made with a second test set-up. The second test set-up corresponded otherwise to the first test set-up described above, except that there was an angle α of about 10 degrees between the axes 8 of the adjacent fans 4. The angles β1 and β2 were negligible, i.e. less than 2 degrees. The noise level of 65.8 dB was measured when operating two Japan Servo D1751S24B8ZP300 fans simultaneously. Thus, the noise level at the reference point was about 4.5 dB lower than when operating only one of the fans 4. If we take into account that the noise level should have been raised when using two identical fans 4 instead of one fan, we conclude that considerable reduction of noise was achieved by means of the angle α.
The separating wall 9 extends a length l in a direction opposite to the flow direction of the air. The length l is 11 cm in the embodiments of
More generally, the length l of the separating wall 9 could be selected to be between 20 and 130% of the outer diameter of the fan housing 14. It is expected that, for most of the applications, a good value for the length l can be found in the range between 30 and 60% of the outer diameter of the fan housing 14. The outer diameter of the fan housing itself can be selected according to the needs of the application. Typical outer diameters may range between 15 and 40 cm, for instance.
An alternative way to define the length l of the separating wall 9 more generally is with reference to the depth a of the fan housing 14. Defined by this way, the length l of the separating wall 9 could be selected to be between 50 and 400% of the depth a of the fan housing 14. It is expected that, for most of the applications, a good value for the length l can be found in the range between 80 and 200% of the depth of the fan housing 14. Typical depths may range between 4 and 15 cm, for instance.
When designing the length of the separating wall 9, it should be noted that the actual component forming the wall is longer than the above-referred length l in the embodiment shown in
Another parameter of the separating wall 9 is its height h in the direction perpendicular to the length l. The height h can be selected, for example, between 50 and 300% of the outer diameter of the fan housing. It is expected that, for most of the applications, a good value for the height h can be found in the range between 100 and 200% of the outer diameter of the fan housing. A particularly good value for many applications is 150% or about 150% of the outer diameter d.
The separating wall 9 is made of a sufficiently rigid material, such as metal or hard plastic, and it is preferable unified in the sense that it does not contain holes allowing airflows to interfere with each other.
The use of a separating wall 9 between the adjacent fans was found to further reduce the noise level with regard to the apparatus set-up according to the second embodiment. This was found by measurements of a third test set-up that corresponded otherwise to the first test set-up described above, except that there was an angle α of about 10 degrees between the axes 8 of the adjacent fans 4 and a separating wall 9 with a length l of 11 cm between the fans 4. The angles β1 and β2 were negligible, i.e. less than 2 degrees. The noise level of 65.6 dB was measured when operating two Japan Servo D1751S24B8ZP300 fans simultaneously. When using two Papst 6314/2TDHHP fans simultaneously, the measured noise level was 68.4 dB at the same reference point. Thus, for the two simultaneously operating Papst fans, this embodiment gave about 5.6 dB noise reduction with regard to the measurements performed with only of such fans turned on.
The effect of a separating wall 9 between the adjacent fans was found also when measuring noise in a fourth test set-up that was otherwise according to the above test set-ups but relied solely on a separating wall 9 as the means for noise reduction. The separating wall 9 was made of plastic, and its length l was 10 cm. The angles α, β1 and β2 were negligible. The noise level of 70.9 dB was measured when operating two Japan Servo D1751S24B8ZP300 fans simultaneously. When using two Papst 6314/2TDHHP fans simultaneously, the measured noise level was 74 dB at the same reference point. Thus, it can be seen that noise reduction was attained as the noise levels were not increased by about 3 dB, which increase was expected in context of the first test set-up used as the reference.
Therefore, it was shown that further noise reduction can be obtained by means of a separating wall. Even though the effect of the separating wall is not as great as the effect of the angle α, it is reasonable to provide the separating wall at least in such applications of the frequency converter wherein the noise level is critical and the housing 1 can readily accommodate the separating wall. The separating wall itself is not expensive and as it does not impair the cooling airflow, it is a reasonable and safe measure to use in such application. Thus, a further embodiment is also shown in
The above-described embodiments can, of course, be modified in various ways.
For example, the number of fans 4 can be varied according to the needs of the applications.
It is also possible that for example three fans are all inclined towards each other in a triangular configuration.
Also in the embodiments of
As can be seen in
As can be seen in
The minimum distance between the adjacent fans 4 is typically between 20% and 100% of the diameter d of the fan 4. Generally, the minimum distance between the adjacent fans 4 can be designed to be less than 200% of the diameter d. In case the adjacent fans have different diameters, the minimum distance can be calculated on the basis of diameter of the fan 4 having the smaller diameter.
The above description is only to exemplify the invention and is not intended to limit the scope of protection offered by the claims. The claims are also intended to cover the equivalents thereof and not to be construed literally.
Number | Date | Country | Kind |
---|---|---|---|
09180402 | Dec 2009 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4648007 | Garner | Mar 1987 | A |
5409419 | Euchner et al. | Apr 1995 | A |
6061237 | Sands et al. | May 2000 | A |
6081423 | Griffin | Jun 2000 | A |
6104608 | Casinelli et al. | Aug 2000 | A |
6135875 | French | Oct 2000 | A |
6183214 | Ko | Feb 2001 | B1 |
6315656 | Pawlowski | Nov 2001 | B1 |
6406257 | Houdek | Jun 2002 | B1 |
6459578 | Wagner | Oct 2002 | B1 |
6481527 | French et al. | Nov 2002 | B1 |
6961248 | Vincent et al. | Nov 2005 | B2 |
6991533 | Tsai et al. | Jan 2006 | B2 |
7154748 | Yamada | Dec 2006 | B2 |
7639496 | Lv et al. | Dec 2009 | B2 |
7733649 | Anderi et al. | Jun 2010 | B2 |
7944693 | Kempf | May 2011 | B2 |
7974094 | Hendrix et al. | Jul 2011 | B2 |
8154871 | Kuwahara | Apr 2012 | B2 |
8199485 | Cheng et al. | Jun 2012 | B2 |
8210914 | McMahan et al. | Jul 2012 | B2 |
20020094772 | Gough | Jul 2002 | A1 |
20030198018 | Cipolla et al. | Oct 2003 | A1 |
20030214785 | Perazzo | Nov 2003 | A1 |
20030224717 | Tsai et al. | Dec 2003 | A1 |
20060158847 | Kauranen et al. | Jul 2006 | A1 |
20070082598 | Kempf et al. | Apr 2007 | A1 |
20070231118 | Krippene | Oct 2007 | A1 |
20070258219 | Howes et al. | Nov 2007 | A1 |
20080212279 | Hirota et al. | Sep 2008 | A1 |
20080257639 | Yamaguchi et al. | Oct 2008 | A1 |
20090262499 | Chou | Oct 2009 | A1 |
20090284918 | Chou | Nov 2009 | A1 |
20100014250 | Kitahara | Jan 2010 | A1 |
20110116221 | Cheng et al. | May 2011 | A1 |
20120201003 | Shimasaki et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
201 14 240 | Jan 2002 | DE |
1 983 814 | Oct 2008 | EP |
Entry |
---|
European Search Report dated May 28, 2010. |
Office Action dated Sep. 21, 2012 issued by the U.S. Patent and Trademark Office in corresponding U.S. Appl. No. 12/972,621. |
European Search Report dated Mar. 28, 2010 issued by the European Patent Office in corresponding European Application No. 09180407.0. |
Number | Date | Country | |
---|---|---|---|
20110149512 A1 | Jun 2011 | US |