Power electronic converters have numerous practical applications including regulating flow of electrical current in fixed or mobile applications. Examples of such power electronic converters include alternating current (AC) to direct current (DC) converters (or AC/DC converters, for short), DC to AC converters (or DC/AC converters, for short), and DC to DC converters (or DC/DC converters, for short). Each type of power electronic converter uses one or more power electronic switches to convert an input power to an output power. Example applications for power electronic converters include power supplies for electronics or appliances, motor drives, and battery chargers.
The present disclosure provides a power electronic converter comprising a DC link bus including a DC positive node and a DC negative node and defining a DC link voltage therebetween. The DC link voltage has a ripple as a periodic variation. The power electronic converter includes a DC link capacitor connected between the DC positive node and the DC negative node to regulate the ripple of the DC link voltage. The power electronic converter also includes a switching stage including a switch configured to selectively conduct current from the DC link bus. The power electronic converter also includes a controller configured to control the switch and to vary at least one of a switching frequency or a duty cycle or a phase shift of the switch responsive to the ripple of the DC link voltage.
The present disclosure also provides a method of operating a power electronic converter. The method comprises the steps of commanding a switch to selectively conduct current from a DC link bus to convert a DC power from the DC link bus; and varying at least one of a switching frequency or a duty cycle or a phase shift of the switch responsive to a ripple of a DC link voltage upon the DC link bus.
The present disclosure also provides a power electronic converter comprising a switching stage including a switch configured to selectively conduct current from the a link bus. The power electronic converter also includes a transformer in electrical communication with the switching stage and having a transformer housing. The switch is mounted to an insulated metal substrate in thermal contact with a housing of the transformer for conducting heat from the switch to the transformer housing.
Further details, features and advantages of designs of the invention result from the following description of embodiment examples in reference to the associated drawings.
Referring to the drawings, the present invention will be described in detail in view of following embodiments. Example embodiments of a power electronic converter 10 in the form of a DC to DC converter. However, aspects of the disclosure may also be embodied within other types of power electronic converters, such as an AC to DC converter or a DC to AC converter or an AC to AC converter.
Still referring to
The transformer 44 includes a primary winding (not shown) coupled to the second internal bus 54 and a secondary winding (not shown) coupled to a third internal bus 56. The transformer 44 provides isolation and/or a change in AC voltage between the second internal bus 54 and third internal bus 56. The rectifier 46 is coupled to the third internal bus 56 and converts AC power therefrom to the DC output power upon the output bus 28. The first internal bus 50 thus carries the AC power that is converted to a different voltage level upon the third internal bus 56 by a combination of the resonant tank 52 and the transformer 44. In some embodiments, and particularly where the DC/DC Stage 40 includes a resonant tank 52 with an inductor-inductor-capacitor (LLC) configuration, a switching frequency of the switch 70 may be varied in response to the ripple of the DC link voltage VDC_BUS upon the DC link bus 34, 36.
The rectifier 46 may include four diodes connected as a bridge rectifier. However, the rectifier 46 may have other configurations, such as a single diode, a wave rectifier, and/or one or more switches configured to provide active rectification, which may also be called synchronous rectification (SR).
In some embodiments, the DC link voltage VDC_BUS has a ripple as a periodic variation. The ripple may be sinusoidal, although other waveform shapes are possible. In conventional converter designs, ripple is sought to be minimized. However, in some embodiments of the present disclosure, the ripple of the DC link voltage VDC_BUS is allowed to have a greater amplitude than in conventional designs. In some embodiments, for example, the DC link voltage VDC_BUS may have a peak-to-peak ripple of 80 V. The size of the DC link capacitor 38 is a main factor in determining the amplitude of the ripple of the DC link voltage VDC_BUS. In some embodiments of the present disclosure, the DC link capacitor 38 has a value of 100 μF to provide the peak-to-peak ripple of 80 V, wherein a conventional design may have a value of 500 μF to provide the peak-to-peak ripple that is substantially less than 80 V.
Still referring to
In some embodiments, and as shown in
In some embodiments, and as shown in
The power electronic converter 10 of the present disclosure may be significantly smaller and/or lighter weight than conventional converters that have similar power converting capacity. These savings may be realized by a combination of: 1) reducing the size of the DC link capacitor 38 and 2) attaching the IMS 160 to the transformer housing 152.
A method 200 of operating a power electronic converter is shown in the flow chart of
The method 200 also includes varying at least one of a switching frequency or a duty cycle or a phase shift of the switch 70 responsive to a ripple of a DC link voltage VDC_BUS upon the DC link bus 34, 36 at step 204. Step 204 may include varying the switching frequency of the switch 70 by operating the switching frequency at a low frequency less than a nominal frequency in response to the DC link voltage VDC_BUS being less than a nominal voltage, and operating the switching frequency at a high frequency greater than the nominal frequency in response to the DC link voltage VDC_BUS being greater than the nominal voltage.
The system, methods and/or processes described above, and steps thereof, may be realized in hardware, software or any combination of hardware and software suitable for a particular application. The hardware may include a general purpose computer and/or dedicated computing device or specific computing device or particular aspect or component of a specific computing device. The processes may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable device, along with internal and/or external memory. The processes may also, or alternatively, be embodied in an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device or combination of devices that may be configured to process electronic signals. It will further be appreciated that one or more of the processes may be realized as a computer executable code capable of being executed on a machine readable medium.
The computer executable code may be created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices as well as heterogeneous combinations of processors processor architectures, or combinations of different hardware and software, or any other machine capable of executing program instructions.
Thus, in one aspect, each method described above and combinations thereof may be embodied in computer executable code that, when executing on one or more computing devices performs the steps thereof. In another aspect, the methods may be embodied in systems that perform the steps thereof, and may be distributed across devices in a number of ways, or all of the functionality may be integrated into a dedicated, standalone device or other hardware. In another aspect, the means for performing the steps associated with the processes described above may include any of the hardware and/or software described above. All such permutations and combinations are intended to fall within the scope of the present disclosure.
The foregoing description is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This PCT International Patent application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/887,836 filed on Aug. 16, 2019, and titled “Power Electronic Converter,” the entire disclosure of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/046327 | 8/14/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62887836 | Aug 2019 | US |