The present disclosure relates to safety systems and more particularly to methods for enhancing the safety of power equipment.
Power equipment such as table saws, miter saws and other woodworking machinery include cutting tools like circular saw blades and knife blades that present a risk of injury to a user of the equipment. Accordingly, safety features or systems are incorporated with power equipment to minimize the risk of injury. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards effectively reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.
Other safety systems try to prevent or minimize injury by detecting and reacting to an event. For instance, U.S. Pat. Nos. 3,953,770, 4,075,961, 4,470,046, 4,532,501 and 5,212,621, the disclosures of which are incorporated herein by reference, disclose radio-frequency safety systems which utilize radio-frequency signals to detect the presence of a user's hand in a dangerous area of the machine and thereupon prevent or interrupt operation of the machine. U.S. Pat. Nos. 3,785,230 and 4,026,177, the disclosures of which are herein incorporated by reference, disclose a safety system for use on circular saws to stop the blade when a user's hand approaches the blade. The system uses the blade as an antenna in an electromagnetic proximity detector to detect the approach of a user's hand prior to actual contact with the blade. Upon detection of a user's hand, the system engages a brake using a standard solenoid.
U.S. Pat. No. 4,117,752, which is herein incorporated by reference, discloses a braking system for use with a band saw, where the brake is triggered by actual contact between the user's hand and the blade. However, the system described for detecting blade contact does not appear to be functional to accurately and reliably detect contact. Furthermore, the system relies on standard electromagnetic brakes operating off of line voltage to stop the blade and pulleys of the band saw. It is believed that such brakes would take 50 ms-1 s to stop the blade. Therefore, the system is too slow to stop the blade quickly enough to avoid serious injury.
A machine that may incorporate a retraction system according to the present disclosure is shown schematically in
Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.
It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.
Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.
Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.
Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.
Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.
The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in
It will be appreciated by those of skill in the art that the exemplary embodiment depicted in
In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in
The pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably, fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.
Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem For Use In Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.
Other systems can also be used to shift the pawl or pawls into contact with the blade, and firing system 76 may also be used to trigger some action other than burning a fusible member. For example, firing system 76 can fire a small explosive charge to move a pawl.
Explosive charge 660 can be used to move pawl 60 by inserting the charge between the pawl and a stationary block 664 adjacent the charge. When the charge detonates, the pawl is pushed away from the block. A compression spring 66 is placed between the block and pawl to ensure the pawl does not bounce back from the blade when the charge is detonated. Prior to detonation, the pawl is held away from the blade by the friction-fit of the charge in both the block and pawl. However, the force created upon detonation of the charge is more than sufficient to overcome the friction fit. Alternatively, the pawl may be held away from the blade by other mechanisms such as a frangible member, gravity, a spring between the pawl and block, etc.
Firing system 76 may also trigger a DC solenoid, which can be over-driven with a current surge to create a rapid displacement, a pressurized air or gas cylinder to supply the pressure in place of the spring or charge, or an electromagnet to either repel the pawl against the blade or to release a spring-loaded pawl toward the blade.
It will be appreciated that activation of the brake mechanism will require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in
While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. Nos. 60/182,866 and 60/157,340, the disclosures of which are herein incorporated by reference.
As briefly mentioned above, reaction subsystem 24 can be configured with a retraction system to retract or move a cutting tool away from the point of accidental contact with a user. Moving away from the point of accidental contact reduces the time the cutting tool is in contact with the user, thereby minimizing any injury to the user. Moving the cutting tool away from the point of accidental contact also prevents the cutting tool from moving toward the user, which could increase any injury to the user. For example, a spinning blade in a miter saw has substantial angular momentum, and that angular momentum could cause the blade to move downward toward a user when a brake pawl hits the blade. The spinning blade in a table saw also has substantial angular momentum that could cause the blade to move upward toward a user when a brake pawl hits the blade, depending on the position of the brake, the weight of the blade and the amount of play in the structure supporting the blade. Preventing any such movement lessens the potential injury to the user. A retraction system may be used in addition to or instead of other safety mechanisms.
Blade 300 is configured to pivot up and down so that a user can position the blade to extend above the table as needed. The blade pivots around a pin 305. A user may pivot the blade to adjust its position by turning a shaft 306 on which a worm gear 307 is mounted. The worm gear is mounted on the shaft so that it turns with the shaft, but so that it may slide on the shaft when necessary, as explained below. Worm gear 307 is mounted on shaft 306 like a collar, with the shaft extending through a longitudinal hole in the worm gear. The worm gear is held in place during normal operation of the saw by a spring clip 308, which is positioned in a groove or channel 309 on the worm gear and which also engages a detent or shoulder on shaft 306 to hold the worm gear in place. The worm gear engages an arcuate rack 310 that supports an arbor block 311, which in turn supports arbor 301 and blade 300. Thus, when a user turns shaft 306, such as by turning a knob attached to the shaft (not shown), worm gear 307 moves arbor block 311 and the blade up or down, depending on the direction that the worm gear is turned.
A brake cartridge 312 is mounted in the saw adjacent blade 300. The brake cartridge includes a pawl 314 biased toward blade 300 by a spring 316. The pawl is held away from blade 300 by a release mechanism 318, as described generally above and as described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism for Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,201, entitled “Replaceable Brake Mechanism for Power Equipment,” and U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” all filed Aug. 14, 2000. The cartridge is configured so that the release mechanism releases the pawl into the blade upon the receipt of a detection signal, as explained generally above and as explained in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, titled “Firing Subsystem for use in a Fast-Acting Safety System,” filed Aug. 14, 2000.
Brake cartridge 312 is positioned on the blade's pivot axis so that pawl 314 can move around pin 305. Thus, when pawl 314 hits the blade, the angular momentum of the blade is transferred to the arbor block, and the blade, arbor block, rack and cartridge try to retract or move down in the direction of arrow 320. Alternatively, the cartridge may be positioned on a pin different from pin 305, but that still pivots with the blade.
The blade will move down to the extent permitted by the contact between rack 310 and worm gear 307. If the worm gear is fixed in place, the downward movement of the blade may strip teeth on the rack and/or worm gear, and may prevent the blade from moving down as far as desired. In the embodiment shown in
When the pawl hits the blade, the resultant angular momentum impulse causes spring clip 308 to snap loose, allowing the worm gear to slide down the shaft toward an end 322 of the shaft. The spring clip snaps loose because the rack moves down when the blade is stopped, and the rack contacts the worm gear and forces the worm gear to move. The force of the rack against the worm gear causes the spring clip to snap loose. The worm gear is put back in place by moving it back along shaft 306 until the spring clip snaps into place on the shaft.
The table saw shown in
In the construction described above, the angular momentum of the blade causes the blade, arbor block and cartridge to all pivot down away from the cutting region when the pawl strikes the blade. Thus, the angular momentum of the blade causes the retraction. Blade 300 is permitted to move downward a sufficient distance so that the blade is completely retracted. In independent experiments, the safety system depicted in
Another embodiment of a retraction system comprises a compressible bushing. Typically, a blade 300 in a table saw, miter saw or other machine is mounted to an arbor over a bushing 333, as shown in
When the saw is in use, spring 356 holds the motor assembly in a normal position rotated fully counter to the direction of blade rotation. However, once the pawl is released to engage the blade, the motor assembly and blade pivot upward against the bias of the spring. In this embodiment, the pawl is positioned at the front of the blade so that the pivot bolt 354 is between the pawl and the arbor. This arrangement encourages the blade to move upward into the housing when stopped. The spring is selected to be sufficiently strong to hold the motor assembly down when cutting through a workpiece, but sufficiently compressible to allow the blade and motor assembly to move upward when the blade is stopped. Of course, the blade and motor assembly may be configured in any of a variety of ways to at least partially absorb the angular momentum of the blade.
The geometry of the configuration shown in
In any of the systems described above, a spring or other force can be used to push the blade away from the point of contact with the user. The spring could be released by a mechanism similar to the mechanism that releases the pawl to strike the blade.
A segment gear 384, like rack 310 described above in connection with
A pocket 388 is formed in arbor block 381 to house a spring 389. In the position shown in
The segment gear and arbor block are coupled by a compound linkage having, as shown in
When the fusible member is burned, the compound linkage is free to move, and the spring pushes arbor block 381 down, away from top portion 386 of the segment gear, as shown by the dashed lines in
Retracting a blade by a spring or some other force may be thought of as direct retraction. A spring or other force may be used with some other retraction system to increase the speed that a cutting tool retracts, or a spring or other force may be used as the sole means of retraction. The systems for direct retraction described above may be used on various pieces of equipment, including table saws, miter saws and band saws.
The band saw shown in
The systems for direct retraction of a cutting tool may also be implemented on hand-held circular saws. Such saws typically include a base plate that contacts a workpiece during sawing. The base plate supports the saw on the workpiece. The base plate may be configured so that it is pushed down when the blade contacts a user. The result of that action is to effectively retract the blade because the base plate would push the user away from the blade.
Exemplary miter saw 89 includes a base assembly 90 adapted to support a workpiece (not shown) during cutting. Typically, one or more fences 92 are mounted on base assembly 90 and adapted to prevent the workpiece from shifting across the base assembly during cutting. Operative structure 12 is coupled to base assembly 90 and includes a platen 94, a tilt mechanism 96, and a pivot arm 98. Platen 94 is coupled to base assembly 90 and rotatable, relative to the base assembly, about the axis indicated at A. Tilt mechanism 96 is coupled to platen 94. At least a portion of the tilt mechanism is rotatable, relative to base assembly 90, about the axis indicated at B. Pivot arm 98 is coupled to tilt mechanism 96 and selectively pivotal toward and away from base assembly 90, as illustrated in
Motor assembly 16 is mounted on pivot arm 98 and includes at least one motor 100 and a control handle 102. Blade 40 is coupled to an arbor shaft (not shown) that is rotatably driven by motor 100. Control handle 102 includes one or more controls (not shown) that are operable by a user to control motor 100. A user brings blade 40 into contact with a workpiece by grasping control handle 102 and pulling pivot arm 98 downward against the upward bias from a nominal position (indicated generally by dash lines in
It will be appreciated by those of skill in the art that the miter saw configuration depicted in
Although not shown in
In any event, second portion 106 retracts the pivot arm upward far enough to remove the blade from contact with the user's body. Preferably, the second portion is configured to move the pivot arm upward at least ⅛-inch, more preferably at least ¼-inch, and most preferably at least ½-inch or more. In embodiments where the reaction subsystem is configured to stop the rotation of blade 40, the second portion preferably retracts the pivot arm before or at the same time the blade is stopped. This prevents the pivot arm from moving downward as a result of angular momentum transferred to the pivot arm from the blade. The second portion of the reaction subsystem may be triggered prior to the first portion, or the second portion may be configured to engage the pivot arm more quickly than the brake pawl engages the blade.
Second portion 106 of exemplary reaction subsystem 24 includes a brace member 108 and a retraction assembly 110. Brace member 108 is pivotally coupled to tilt mechanism 96 at 105. Retraction assembly 110 is pivotally coupled to pivot arm 98 at 107 and configured to slidably receive at least a portion of brace member 108. The retraction assembly is configured to quickly grip or lock onto the brace member and urge the pivot arm upward upon receipt of an actuation signal from control subsystem 26. Once the retraction assembly has been triggered, pivot arm 98 is prevented from further downward movement toward base assembly 90. While second portion 106 is illustrated as having a single brace member and a single retraction assembly on one side of miter saw 89, it will be appreciated that the reaction subsystem may alternatively include a plurality of brace members and/or retraction assemblies positioned at selected locations on miter saw 89.
Brace member 108 may take any of a variety of different forms. In the exemplary embodiment, the brace member is an elongate bar or shaft pivotally coupled to tilt mechanism 96. Brace member 108 may be constructed of any suitably rigid material such as steel, aluminum, plastic, ceramic, etc. The pivotal coupling between the brace member and the tilt mechanism allows the brace member to pivot as necessary to follow the retraction assembly as the pivot arm moves toward and away from the base assembly. In the exemplary embodiment, the brace member is coupled to the tilt mechanism by a ball-joint-rod-end-bearing coupling 105, such as are available from a variety of sources including MSC Industrial Supply Company of Melville, N.Y. Alternatively, other types of couplings may be used, such as universal couplings, etc.
In the exemplary embodiment, brace member 108 is coupled to an arm portion 112 of tilt mechanism 96 that extends outward from the tilt mechanism toward the base assembly. While arm 112 is depicted as an integral, unitary portion of the tilt mechanism, the arm portion may alternatively take the form of a separate bracket attached to the tilt mechanism. Alternatively, the arm may be omitted and brace member 108 may be coupled to another portion of the tilt mechanism. As further alternatives, the brace member may be coupled to a different portion of miter saw 10 such as platen 94, fence 92, or base assembly 90, etc. In any event, the brace member should be relatively rigidly supported to ensure that pivot arm 98 is moved upward when retraction assembly 110 is triggered.
Retraction assembly 110 may be coupled to pivot arm 98 in any of a variety of different places. Typically, the retraction assembly and pivot point 107 are disposed to position brace member 108 spaced apart from pivot point 114 of arm 98 to increase the moment of the upward force applied by reaction subsystem 24 to pivot arm 98. It will be appreciated that the further brace member 108 is positioned from pivot point 114, the greater the moment of force provided by the retraction assembly. Thus, it is generally desirable, though not necessary, to position the brace member as close to the front of miter saw 89 (i.e., the left side as shown in
Since brace member 108 is coupled to tilt mechanism 96, the brace member will rotate along with pivot arm 98 about axis A when the miter saw is adjusted for mitered cuts. Similarly, the brace member will tilt about axis B when the miter saw is adjusted for beveled cuts. Thus, the exemplary configuration of reaction subsystem 24 depicted in
Optionally, reaction subsystem 24 may include one or more positioning mechanisms configured to remove any play or looseness in the couplings between brace member 108 and tilt mechanism 96, and/or the couplings between retraction assembly 110 and pivot arm 98. In situations where play or looseness may be present, the positioning mechanism ensures that the brace member and retraction assembly do not shift when the reaction subsystem is triggered.
Turning attention now to
Housing 118 is connected to the side of pivot arm 98 by a pivotal coupling 107 that allows the housing to move relative to the pivot arm as needed. Any of a variety of different couplings may be used which are known to those of skill in the art, such as a shoulder screw, etc. The pivotal coupling allows housing 118 to move as necessary to maintain a constant orientation or alignment with the brace member. In embodiments where the brace member is connected to a different structure on miter saw 89 such as platen 94 or fence 92, coupling 107 may be configured to allow the housing to both pivot parallel to the side of the pivot arm and tilt away from the pivot arm as needed.
As mentioned above, housing 118 is configured to slide along brace member 108. Lower wall portion 120 includes an orifice 130 configured to slide over the brace member. Similarly, upper wall portion 122 includes an orifice 132 configured to slide over the brace member. Orifices 130 and 132 are generally axially aligned and sized to closely fit around the brace member, thereby maintaining the housing in a uniform orientation relative to the brace member as pivot arm 98 is moved toward and away from the workpiece.
Retraction assembly 110 also includes an actuator 134 configured to selectively grip brace member 108 and push the housing upward. Actuator 134 may be any one or a combination of elements, devices or mechanisms configured to quickly and securely grip the brace member. In the exemplary embodiment, actuator 134 includes a clamping device 136 adapted to selectively grip the brace member, and a drive mechanism 138 adapted to urge the housing upward relative to the clamping device. Clamping device 136 is formed to define an orifice 140 adapted to closely fit and slide along the brace member. The clamping device is pivotal between a nominal or unactuated position (as shown in
Clamping device 136 may be constructed of any suitable material adapted to grip the brace member and support the force exerted by drive mechanism 138. Typically, the clamping device is constructed of a material which does not cause damage to brace member 108 when the retraction assembly is triggered. For example, the clamping device and brace member may each be formed from a relatively rigid material such as hardened steel. Alternatively, the clamping device and/or brace member may be formed of any of a variety of other suitable materials known to those of skill in the art.
When in the nominal position, clamping device 136 is disposed adjacent the lower surface of upper wall 122 between end walls 124 and 126. The end walls are spaced to align the clamping device and orifice 140 end-to-end with the upper wall and orifice 132. Each end wall is inwardly tapered adjacent the upper wall so as not to obstruct the movement of the clamping device. Upper wall 122 includes a pair of alignment structures 142 adapted to align the clamping device and orifice 140 side-to-side with the upper wall and orifice 132. When clamping device 136 is in the nominal position, orifice 140 is generally axially aligned with orifice 132 and orifice 130 to slidably receive the brace member.
Clamping device 136 is held in the nominal position by a yieldable support element such as spring 144 that engages the clamping device adjacent a first end 146, as well as a releasable restraining mechanism 148 that engages the clamping device adjacent a second end 150. First end wall 124 includes a recessed region adapted to hold a portion of spring 144 and align the spring with the clamping device. Although spring 144 is depicted as a compression spring, it will be appreciated that spring 144 may be any type of spring or other mechanism adapted to yieldably hold first end 146 adjacent the lower surface of upper wall 122.
Restraining mechanism 148 may take any of a variety of different configurations adapted to releasably support second end 150 of the clamping device. In the exemplary embodiment, drive mechanism 138 (which will be discussed in more detail below) exerts a constant downward force on the clamping device adjacent second end 150. Restraining mechanism 148 is configured to support the clamping device against the force exerted by the drive mechanism. Typically, though not necessarily, the restraining mechanism is generally aligned with the drive mechanism to reduce any bending stress to the clamping device.
Exemplary restraining mechanism 148 is selectively collapsible to release the second end of the clamping device. The restraining mechanism includes an elongate collapsible base 154 adapted to support an elongate brace 156. In its uncollapsed state illustrated in
When in the uncollapsed, upright position, one side of base 154 is disposed against a buttress structure 164. One side of lower end 160 of the brace is also disposed against the buttress structure, while an upper end 166 of the brace is disposed against a shoulder structure 168 on the clamping device. Shoulder structure 168 is configured to position the brace in upright alignment on top of the base. Base 154 and brace 156 are clamped against the buttress structure by a stabilizer member 170. The stabilizer member is held in clamping engagement with the base and the brace by a fusible member 70 such as described above and in the incorporated references. Fusible member 70 extends from the stabilizer member, over a contact mount 72 to an anchor point 172. Contact mount 72 is coupled to a firing subsystem (not shown) adapted to supply sufficient electrical current to melt the fusible member. In the exemplary embodiment, contact mount 72 is anchored to buttress structure 164, which is constructed of an electrically non-conducting material such as plastic, etc.
Lower end 158 of the base includes a beveled region 174 opposite the buttress structure. As shown in
Those of skill in the art will appreciate that the particular configuration of restraining mechanism 148 described above provides a mechanical advantage for supporting second end 150 of the clamping device under the downward force of the drive mechanism. The proportion of downward force translated into pivoting force on the base will vary with the depth of beveled regions 174 and 176. Beveled regions 174 and 176 typically are configured so that much of the downward force applied by the drive mechanism is translated into downward force on base 154 rather than pivoting force. As a result, fusible member 70 is only required to support a portion of the force exerted by the drive mechanism. Indeed, several hundred pounds of downward force may be translated into only 10-20 pounds of outward pivoting force on stabilizer structure 170. This allows the fusible member to have a smaller diameter, thereby requiring less energy to melt. Nevertheless, the outward pivoting force should be sufficient to ensure the base collapses within 5-10 milliseconds, and preferably within 1-5 milliseconds.
In any event, when stabilizer member 170 is released, the upper end of base 154 quickly pivots outward from the buttress structure and collapses beneath the brace, as illustrated in
While second end 150 of the clamping device is pushed downward by the drive mechanism, first end 146 is pushed upward by spring 144. As a result, clamping device 136 pivots about brace member 108 into the locked position where the edges of orifice 140 bind against the sides of the brace member as shown in
As mentioned above, drive mechanism 138 is disposed between upper wall 122 and second end 150 of the clamping device. The drive mechanism is configured to urge the second end and upper wall apart when the clamping device is released from restraining mechanism 148. Once clamping device 136 pivots to the locked position, further downward movement of second end 150 is prevented because the clamping device is locked against the brace member. As a result, the additional drive force exerted by the drive mechanism forces upper wall 122 and housing 118 upward relative to the clamping device and brace member, as illustrated in
Drive mechanism 138 should be configured to overcome the downward momentum of the pivot arm as well as any transferred angular momentum caused by stopping blade 40. In addition, the upward force exerted by the drive mechanism on the housing should be substantially larger than any downward force exerted by spring 144. Typically, the drive mechanism is configured to provide 100-500 pounds of upward force on the pivot arm. The length of upward travel of the pivot arm will depend on the length of translation, or ‘throw,’ of the drive mechanism as well as the distance second end 150 pivots downward before locking against the brace member.
In the exemplary embodiment, drive mechanism 138 includes a plurality of Belleville springs 180 stacked in series. The number of springs in the series is selected to provide a desired throw. Optionally, each spring in the series may alternatively be plural springs stacked in parallel to provide a desired amount of driving force. Springs 180 are disposed in a recessed region 182 of upper wall 122. The recessed region is sized to maintain the springs in general axial alignment. Additionally, clamping device 136 includes a spindle structure 183, adapted to fit within the central bores of at least a portion of the springs to maintain alignment between the springs. The spindle structure also serves to maintain alignment between the springs and the clamping device. It will be appreciated by those of skill in the art that drive mechanism 138 may alternatively take any of a variety of other configurations adapted to lock the clamping device against the brace member and force the pivot arm upward. For example, the drive mechanism may include a coil compression spring, explosive device, etc.
In any event, once the retraction assembly has been triggered, it may be uncoupled from the pivot arm and slid off the brace member. A new, untriggered retraction assembly may then be installed to place miter saw 89 and safety system 18 back in operation. Alternatively, the triggered retraction assembly may be reset using a new fusible member.
While one particular implementation of retraction assembly 110 has been described, it will be appreciated that numerous alterations and modifications are possible within the scope of the invention. Additionally, while the retraction assembly has been described in the context of retracting the pivot arm of a miter saw, it will be appreciated that the retraction assembly may also be adapted for use in other ways and on other machines.
Machines that include various components and features discussed above may be described as follows:
A cutting machine comprising a cutter; a brake adapted to stop the cutter, where the brake has an idle position and a braking position; and an actuation system adapted to selectively move the brake from the idle position to the braking position, where at least a portion of the actuation system must be replaced after moving the brake from the idle position to the braking position; wherein the actuation system includes an explosive device.
A cutting machine comprising a support structure; a cutting tool adapted to cut a workpiece, where the cutting tool is supported by the support structure; a detection system adapted to detect a dangerous condition between the cutting tool and a person; a reaction system adapted to perform a specified action upon detection of the dangerous condition; an explosive to trigger the reaction system to perform the specified action upon firing of the explosive; and a firing subsystem to fire the explosive upon detection of the dangerous condition.
The present invention is applicable to power equipment, and specifically to woodworking equipment such as table saws, miter saws, band saws, circular saws, jointers, etc. The present invention provides a safety system or reaction system wherein a cutting tool or other dangerous item is retracted upon the occurrence of a specified event, such as when accidental contact between a user and a blade is detected. Retraction of a cutting tool, for example, can minimize any injury from accidental contact with the cutting tool by reducing the amount of time the cutting tool is in contact with a user or by moving the cutting tool to a position where the user cannot contact it. A retraction system may be used in combination with other safety features to maximize the performance of an overall safety system. For example, a retraction system may be used with a system that quickly stops a cutting tool so that the cutting tool simultaneously stops and moves away from a user. A fusible member or explosive may be used to trigger the reaction system to perform the specified action. A firing subsystem may be used to fuse the fusible member or fire the explosive upon detection of the dangerous condition.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application is a continuation of the following U.S. patent applications, all of which are hereby incorporated by reference in their entireties: Ser. No. 11/796,819, filed Apr. 30, 2007, which is a continuation of Ser. No. 09/929,426, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,210,383 on May 1, 2007, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,200, filed Aug. 14, 2000; Ser. No. 12/655,695, filed Jan. 4, 2010, now U.S. Pat. No. 8,006,595 which is a continuation of Ser. No. 11/975,985, filed Oct. 22, 2007, issuing as U.S. Pat. No. 7,640,835 on Jan. 5, 2010, which is a continuation of Ser. No. 09/929,221, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,284,467 on Oct. 23, 2007, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,211, filed Aug. 14, 2000; Ser. No. 12/002,388 filed Dec. 17, 2007, now U.S. Pat. No. 8,011,279 which is a continuation of Ser. No. 09/929,227, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,308,843 on Dec. 18, 2007, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,170, filed Aug. 14, 2000; Ser. No. 11/401,050, filed Apr. 10, 2006, issuing as U.S. Pat. No. 7,788,999 on Sep. 7, 2010, which is a continuation of a number of applications including Ser. No. 09/929,240, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,100,483 on Sep. 5, 2006, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/225,056, filed Aug. 14, 2000; Ser. No. 09/929,241, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,024,975 on Apr. 11, 2006, which in turn claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,169, filed Aug. 14, 2000; Ser. No. 09/929,425, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,137,326 on Nov. 21, 2006, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/225,210, filed Aug. 14, 2000; Ser. No. 10/172,553, filed Jun. 13, 2002, issuing as U.S. Pat. No. 7,231,856 on Jun. 19, 2007, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/298,207, filed Jun. 13, 2001; Ser. No. 10/189,027, filed Jul. 2, 2002, issuing as U.S. Pat. No. 7,712,403 on May 11, 2010, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/302,916, filed Jul. 3, 2001; Ser. No. 10/243,042, filed Sep. 13, 2002, issuing as U.S. Pat. No. 7,197,969 on Apr. 3, 2007, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/324,729, filed Sep. 24, 2001; Ser. No. 10/643,296, filed Aug. 18, 2003, now abandoned, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/406,138, filed Aug. 27, 2002; and Ser. No. 10/794,161, filed Mar. 4, 2004, issuing as U.S. Pat. No. 7,098,800 on Aug. 29, 2006, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/452,159, filed Mar. 5, 2003; Ser. No. 12/800,607, filed May 19, 2010, issuing as U.S. Pat. No. 7,895,927 on Mar. 1, 2011, which is a continuation of a number of applications, including Ser. No. 11/542,938, filed Oct. 2, 2006, now abandoned, which in turn is a continuation of a number of applications, including Ser. No. 10/984,643, filed Nov. 8, 2004, which also is a continuation of a number of applications, including Ser. No. 09/929,226, filed Aug. 13, 2001, issuing as U.S. Pat. No. 6,920,814 on Jul. 26, 2005, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/225,206, filed Aug. 14, 2000; Ser. No. 09/929,240, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,100,483 on Sep. 5, 2006, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/225,056, filed Aug. 14, 2000; Ser. No. 09/929,242, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,509,899 on Mar. 31, 2009, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,089, filed Aug. 14, 2000; Ser. No. 10/051,782, filed Jan. 15, 2002, issuing as U.S. Pat. No. 6,877,410 on Apr. 12, 2005, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/279,313, filed Mar. 27, 2001; Ser. No. 10/052,806, filed Jan. 16, 2002, issuing as U.S. Pat. No. 6,880,440 on Apr. 19, 2005, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/270,942, filed Feb. 22, 2001; Ser. No. 10/205,164, filed Jul. 25, 2002, issuing as U.S. Pat. No. 6,945,149 on Sep. 20, 2005, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/307,756, filed Jul. 25, 2001; Ser. No. 10/202,928, filed Jul. 25, 2002, issuing as U.S. Pat. No. 7,000,514 on Feb. 21, 2006, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/308,492, filed Jul. 27, 2001; and Ser. No. 10/785,361, filed Feb. 23, 2004, issuing as U.S. Pat. No. 6,997,090 on Feb. 14, 2006, which is a continuation of Ser. No. 10/215,929, filed Aug. 9, 2002, now abandoned, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/312,141, filed Aug. 13, 2001; Ser. No. 11/542,938, filed Oct. 2, 2006, now abandoned, which is a continuation of a number of applications, including Ser. No. 09/929,242, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,509,899 on Mar. 31, 2009, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,089, filed Aug. 14, 2000; Ser. No. 11/401,774, filed Apr. 11, 2006, issuing as U.S. Pat. No. 7,525,055 on Apr. 28, 2009, which is a continuation of Ser. No. 11/027,322, filed Dec. 31, 2004, now abandoned, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/533,598, filed Dec. 31, 2003; Ser. No. 11/445,548, filed Jun. 2, 2006, issuing as U.S. Pat. No. 7,347,131 on Mar. 25, 2008; and Ser. No. 11/506,260, filed Aug. 18, 2006, issuing as U.S. Pat. No. 7,359,174 on Apr. 15, 2008, which is a continuation of a number of application including Ser. No. 10/923,282, filed Aug. 20, 2004, now abandoned, which in turn claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/496,568, filed Aug. 20, 2003; Ser. No. 12/590,094, filed Nov. 2, 2009, issuing as U.S. Pat. No. 7,958,806 on Jun. 14, 2011, which is a continuation of Ser. No. 09/929,236, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,610,836 on Nov. 3, 2009, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,201, filed Aug. 14, 2000; Ser. No. 11/811,719, filed Jun. 11, 2007, issuing as U.S. Pat. No. 7,832,314 on Nov. 16, 2010, which is a continuation of Ser. No. 11/061,162, filed Feb. 18, 2005, issuing as U.S. Pat. No. 7,228,772 on Jun. 12, 2007, which is a continuation of Ser. No. 09/929,244, filed Aug. 13, 2001, issuing as U.S. Pat. No. 6,857,345 on Feb. 22, 2005, which in turn claimed the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,212, filed Aug. 14, 2000; Ser. No. 12/587,695, filed Oct. 9, 2009, issuing as U.S. Pat. No. 7,921,754 on Apr. 12, 2011, which is a continuation of Ser. No. 09/929,237, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,600,455 on Oct. 13, 2009, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,059, filed Aug. 14, 2000; Ser. No. 12/661,766, filed Mar. 22, 2010, which is a continuation of Ser. No. 11/810,196, filed Jun. 4, 2007, issuing as U.S. Pat. No. 7,681,479 on Mar. 23, 2010, which is a continuation of Ser. No. 09/929,234, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,225,712 on Jun. 5, 2007, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,094, filed Aug. 14, 2000; Ser. No. 12/655,694, filed Jan. 4, 2010, issuing as U.S. Pat. No. 7,908,950 on Mar. 22, 2011, which is a continuation of Ser. No. 12/079,836, filed Mar. 27, 2008, issuing as U.S. Pat. No. 7,640,837 on Jan. 5, 2010, which is a continuation of Ser. No. 09/929,235, filed Aug. 13, 2001, issuing as U.S. Pat. No. 7,350,444 on Apr. 1, 2008, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,058, filed Aug. 14, 2000; Ser. No. 12/799,211, filed Apr. 19, 2010, which is a continuation of Ser. No. 12/220,946, filed Jul. 29, 2008, issuing as U.S. Pat. No. 7,698,976 on Apr. 20, 2010, which is a continuation of Ser. No. 09/929,238, filed Aug. 13, 2001, now abandoned, which claims the benefit of and priority from a number of U.S. Provisional Patent Applications including Ser. No. 60/225,057, filed Aug. 14, 2000; Ser. No. 12/590,924, filed Nov. 16, 2009, which is a continuation of Ser. No. 12/154,675, filed May 23, 2008, issuing as U.S. Pat. No. 7,617,752 on Nov. 17, 2009, which is a continuation of Ser. No. 10/053,390, filed Jan. 16, 2002, issuing as U.S. Pat. No. 7,377,199 on May 27, 2008, which is a continuation-in-part of a number of applications including Ser. No. 09/676,190, filed Sep. 29, 2000, issuing as U.S. Pat. No. 7,055,417 on Jun. 6, 2006; and Ser. No. 10/053,390 also claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/270,011, filed Feb. 20, 2001; Ser. No. 12/313,162, filed Nov. 17, 2008, issuing as U.S. Pat. No. 7,789,002 on Sep. 7, 2010, which is a continuation of Ser. No. 11/348,580, filed Feb. 6, 2006, now abandoned, which is a continuation of a number of applications including Ser. No. 10/052,705, filed Jan. 16, 2002, issuing as U.S. Pat. No. 6,994,004 on Feb. 7, 2006, which in turn claimed the benefit of and priority from the following U.S. Provisional Patent Application Ser. No. 60/270,011, filed Feb. 20, 2001, Ser. No. 60/270,941, filed Feb. 22, 2001, Ser. No. 60/270,942, filed Feb. 22, 2001, Ser. No. 60/273,177, filed Mar. 2, 2001, and Ser. No. 60/273,178, filed Mar. 2, 2001; and Ser. No. 11/348,580 also claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/667,485, filed Mar. 31, 2005; and Ser. No. 12/313,162 is also a continuation of Ser. No. 11/098,984, filed Apr. 4, 2005, issuing as U.S. Pat. No. 7,353,737 on Apr. 8, 2008, which is a continuation of a Ser. No. 09/929,238, filed Aug. 13, 2001, now abandoned, Ser. No. 10/047,066, filed Jan. 14, 2002, issuing as U.S. Pat. No. 6,945,148 on Sep. 20, 2005, and Ser. No. 10/051,782, filed Jan. 15, 2002, issuing as U.S. Pat. No. 6,877,410 on Apr. 12, 2005; Ser. No. 12/661,993, filed Mar. 26, 2010, which is a continuation of Ser. No. 11/982,972, filed Nov. 5, 2007, issuing as U.S. Pat. No. 7,685,912 on Mar. 30, 2010, which is a continuation of Ser. No. 10/932,339, filed Sep. 1, 2004, issuing as U.S. Pat. No. 7,290,472 on Nov. 6, 2007, which is a continuation of Ser. No. 10/047,066, filed Jan. 14, 2002, issuing as U.S. Pat. No. 6,945,148 on Sep. 20, 2005, which in turn claimed the benefit of and priority from the following U.S. Provisional Patent Application Ser. No. 60/270,011, filed Feb. 20, 2001, Ser. No. 60/270,941, filed Feb. 22, 2001, Ser. No. 60/270,942, filed Feb. 22, 2001, Ser. No. 60/273,177, filed Mar. 2, 2001, Ser. No. 60/273,178, filed Mar. 2, 2001, and Ser. No. 60/273,902, filed Mar. 6, 2001; and Ser. No. 10/932,339 is also a continuation of Ser. No. 10/050,085, filed Jan. 14, 2002, now abandoned; Ser. No. 10/100,211, filed Mar. 13, 2002, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/275,583, filed Mar. 13, 2001; Ser. No. 11/256,757, filed Oct. 24, 2005, which is a continuation of Ser. No. 09/955,418, filed Sep. 17, 2001, issuing as U.S. Pat. No. 6,957,601 on Oct. 25, 2005, which in turn claimed the benefit of and priority to a number of U.S. Provisional Patent Applications, including: Ser. No. 60/233,459, filed Sep. 18, 2000, Ser. No. 60/270,011, filed Feb. 20, 2001, Ser. No. 60/270,941, filed Feb. 22, 2001, Ser. No. 60/270,942, filed Feb. 22, 2001, Ser. No. 60/273,177, filed Mar. 2, 2001, Ser. No. 60/273,178, filed Mar. 2, 2001, Ser. No. 60/273,902, filed Mar. 6, 2001, Ser. No. 60/275,594, filed Mar. 13, 2001, Ser. No. 60/275,595, filed Mar. 13, 2001, Ser. No. 60/279,313, filed Mar. 27, 2001, Ser. No. 60/292,081, filed May 17, 2001, Ser. No. 60/292,100, filed May 17, 2001, Ser. No. 60/298,207, filed Jun. 13, 2001, Ser. No. 60/302,937, filed Jul. 2, 2001, Ser. No. 60/302,916, filed Jul. 3, 2001, Ser. No. 60/306,202, filed Jul. 18, 2001, Ser. No. 60/307,756, filed Jul. 25, 2001, Ser. No. 60/308,492, filed Jul. 27, 2001, and Ser. No. 60/312,141, filed Aug. 13, 2001; Ser. No. 10/146,527, filed May 15, 2002, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/292,100, filed May 17, 2001; Ser. No. 12/586,469, filed Sep. 21, 2009, which is a continuation of Ser. No. 11/702,330, filed Feb. 5, 2007, issuing as U.S. Pat. No. 7,591,210 on Sep. 22, 2009, which is a continuation of Ser. No. 10/189,031, filed Jul. 2, 2002, issuing as U.S. Pat. No. 7,171,879 on Feb. 6, 2007, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/302,937, filed Jul. 2, 2001; Ser. No. 11/208,214, filed Aug. 19, 2005, issuing as U.S. Pat. No. 7,784,507 on Aug. 31, 2010, which is a continuation of Ser. No. 10/251,576, filed Sep. 20, 2002, now abandoned, which is a continuation of Ser. No. 10/197,975, filed Jul. 18, 2002, now abandoned, and which claimed the benefit of and priority to U.S. Provisional Patent Application Ser. No. 60/323,975, filed Sep. 21, 2001, and Ser. No. 11/208,214 is also a continuation of Ser. No. 09/676,190, filed Sep. 29, 2000, issuing as U.S. Pat. No. 7,055,417 on Jun. 6, 2006, which in turn claimed the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/157,340, filed Oct. 1, 1999 and Ser. No. 60/182,866, filed Feb. 16, 2000; Ser. No. 12/231,080, filed Aug. 29, 2008, issuing as U.S. Pat. No. 7,900,541 on Mar. 8, 2011, which is a continuation of Ser. No. 11/487,717, filed Jul. 17, 2006, issuing as U.S. Pat. No. 7,421,315, on Sep. 2, 2008, which is a continuation of U.S. patent application Ser. No. 10/292,607, filed Nov. 12, 2002, issued as U.S. Pat. No. 7,077,039 on Jul. 18, 2006, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/335,970, filed Nov. 13, 2001; Ser. No. 12/655,962, filed Jan. 11, 2010, now abandoned, which is a continuation of Ser. No. 12/313,277, filed Nov. 17, 2008, issuing as U.S. Pat. No. 7,644,645 on Jan. 12, 2010, which is a continuation of Ser. No. 10/345,630, filed Jan. 15, 2003, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/349,989, filed Jan. 16, 2002; Ser. No. 12/658,759, filed Feb. 12, 2010, now abandoned, which is a continuation of Ser. No. 11/787,471, filed Apr. 17, 2007, issuing as U.S. Pat. No. 7,661,343 on Feb. 16, 2010, which is a continuation of Ser. No. 10/341,260, filed Jan. 13, 2003, now abandoned, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/351,797, filed Jan. 25, 2002; Ser. No. 11/647,676, filed Dec. 29, 2006, issuing as U.S. Pat. No. 7,836,804 on Nov. 23, 2010, which is a continuation of Ser. No. 10/923,290, filed Aug. 20, 2004, issuing as U.S. Pat. No. 7,472,634 on Jan. 6, 2009, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/496,550, filed Aug. 20, 2003; Ser. No. 12/079,820, filed Mar. 27, 2008, issuing as U.S. Pat. No. 7,845,258 on Dec. 7, 2010, which is a continuation of Ser. No. 10/923,273, filed Aug. 20, 2004, issuing as U.S. Pat. No. 7,350,445 on Apr. 1, 2008, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/496,574, filed Aug. 20, 2003; Ser. No. 12/454,569, filed May 18, 2009, which is a continuation of Ser. No. 11/027,600, filed Dec. 31, 2004, issuing as U.S. Pat. No. 7,536,238 on May 19, 2009, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/533,791, filed Dec. 31, 2003; Ser. No. 12/799,915, filed May 3, 2010, which is a continuation of Ser. No. 12/322,069, filed Jan. 26, 2009, issuing as U.S. Pat. No. 7,707,918 on May 4, 2010, which is a continuation of U.S. patent application Ser. No. 11/107,499, filed Apr. 15, 2005, issuing as U.S. Pat. No. 7,481,140 on Jan. 27, 2009; Ser. No. 12/077,576, filed Mar. 19, 2008, now abandoned, which is a continuation of Ser. No. 11/027,254, filed Dec. 31, 2004, now abandoned, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/533,852, filed Dec. 31, 2003; Ser. No. 12/799,920, filed May 3, 2010, which is a continuation of Ser. No. 11/026,114, filed Dec. 31, 2004, issuing as U.S. Pat. No. 7,707,920 on May 4, 2010, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/533,811, filed Dec. 31, 2003; Ser. No. 11/026,006, filed Dec. 31, 2004, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/533,575, filed Dec. 31, 2003; Ser. No. 11/045,972, filed Jan. 28, 2005, issuing as U.S. Pat. No. 7,827,890 on Nov. 9, 2010, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/540,377, filed Jan. 29, 2004; and Ser. No. 12/454,730, filed May 20, 2009, which is a continuation of Ser. No. 11/395,502, filed Mar. 31, 2006, which claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/667,485, filed Mar. 31, 2005.
Number | Name | Date | Kind |
---|---|---|---|
146886 | Doane et al. | Jan 1874 | A |
162814 | Graves et al. | May 1875 | A |
261090 | Grill | Jul 1882 | A |
264412 | Kuhlmann | Sep 1882 | A |
299480 | Kuhlman et al. | May 1884 | A |
302041 | Sill | Jul 1884 | A |
307112 | Groff | Oct 1884 | A |
509253 | Shields | Nov 1893 | A |
545504 | Hoover | Sep 1895 | A |
869513 | Pfeil | Oct 1907 | A |
941726 | Pfalzgraf | Nov 1909 | A |
982312 | Swafford | Jan 1911 | A |
997720 | Troupenat | Jul 1911 | A |
1037843 | Ackley | Sep 1912 | A |
1050649 | Harrold et al. | Jan 1913 | A |
1054558 | Jones | Feb 1913 | A |
1074198 | Phillips | Sep 1913 | A |
1082870 | Humason | Dec 1913 | A |
1101515 | Adam | Jun 1914 | A |
1126970 | Folmer | Feb 1915 | A |
1132129 | Stevens | Mar 1915 | A |
1148169 | Howe | Jul 1915 | A |
1154209 | Rushton | Sep 1915 | A |
1205246 | Mowry | Nov 1916 | A |
1228047 | Reinhold | May 1917 | A |
1240430 | Erickson | Sep 1917 | A |
1244187 | Frisbie | Oct 1917 | A |
1255886 | Jones | Feb 1918 | A |
1258961 | Tattersall | Mar 1918 | A |
1311508 | Harrold | Jul 1919 | A |
1324136 | Turner | Dec 1919 | A |
1381612 | Anderson | Jun 1921 | A |
1397606 | Smith | Nov 1921 | A |
15262 | Gurgel | Jan 1922 | A |
1427005 | McMichael | Aug 1922 | A |
1430983 | Granberg | Oct 1922 | A |
1450906 | Anderson | Apr 1923 | A |
1464924 | Drummond | Aug 1923 | A |
1465224 | Lantz | Aug 1923 | A |
1492145 | Talley | Apr 1924 | A |
1496212 | French | Jun 1924 | A |
1511797 | Berghold | Oct 1924 | A |
1526128 | Flohr | Feb 1925 | A |
1527587 | Hutchinson | Feb 1925 | A |
1551900 | Morrow | Sep 1925 | A |
1553996 | Federer | Sep 1925 | A |
1582483 | Runyan | Apr 1926 | A |
1584086 | Fonda | May 1926 | A |
1590988 | Campbell | Jun 1926 | A |
1600604 | Sorlien | Jun 1926 | A |
1616478 | Watson | Feb 1927 | A |
1640517 | Procknow | Aug 1927 | A |
1662372 | Ward | Mar 1928 | A |
1668061 | Falkins | May 1928 | A |
1701948 | Crowe | Feb 1929 | A |
1711490 | Dummond | May 1929 | A |
1712828 | Klehm | May 1929 | A |
1774521 | Neighbour | Sep 1930 | A |
1807120 | Lewis | May 1931 | A |
1811066 | Tannewitz | Jun 1931 | A |
1879280 | James | Sep 1932 | A |
1896924 | Ulrich | Feb 1933 | A |
1902270 | Tate | Mar 1933 | A |
1904005 | Masset | Apr 1933 | A |
1910651 | Tautz | May 1933 | A |
1938548 | Tautz | Dec 1933 | A |
1938549 | Tautz | Dec 1933 | A |
1963688 | Tautz | Jun 1934 | A |
1988102 | Woodward | Jan 1935 | A |
1993219 | Merrigan | Mar 1935 | A |
2007887 | Tautz | Jul 1935 | A |
2010851 | Dummond | Aug 1935 | A |
2020222 | Tautz | Nov 1935 | A |
2038810 | Tautz | Apr 1936 | A |
2044481 | Manley et al. | Jun 1936 | A |
2075282 | Hedgpeth | Mar 1937 | A |
2095330 | Hedgpeth | Oct 1937 | A |
2106288 | Tautz | Jan 1938 | A |
2106321 | Guertin | Jan 1938 | A |
2121069 | Collins | Jun 1938 | A |
2131492 | Ocenasek | Sep 1938 | A |
2163320 | Hammond | Jun 1939 | A |
2168282 | Tautz | Aug 1939 | A |
2241556 | MacMillin et al. | May 1941 | A |
2261696 | Ocenasek | Nov 1941 | A |
2265407 | Tautz | Dec 1941 | A |
2286589 | Tannewitz | Jun 1942 | A |
2292872 | Eastman | Aug 1942 | A |
2299262 | Uremovich | Oct 1942 | A |
2312118 | Neisewander | Feb 1943 | A |
2313686 | Uremovich | Mar 1943 | A |
2328244 | Woodward | Aug 1943 | A |
2352235 | Tautz | Jun 1944 | A |
2377265 | Rady | Mar 1945 | A |
2392486 | Larsen | Jan 1946 | A |
2402232 | Baker | Jun 1946 | A |
2425331 | Kramer | Aug 1947 | A |
2434174 | Morgan | Jan 1948 | A |
2452589 | McWhirter et al. | Nov 1948 | A |
2466325 | Ocenasek | Apr 1949 | A |
2496613 | Wooward | Feb 1950 | A |
2501134 | Meckoski et al. | Mar 1950 | A |
2509813 | Dineen | May 1950 | A |
2517649 | Frechtmann | Aug 1950 | A |
2518684 | Harris | Aug 1950 | A |
2530290 | Collins | Nov 1950 | A |
2554124 | Salmont | May 1951 | A |
2562396 | Schutz | Jul 1951 | A |
2572326 | Evans | Oct 1951 | A |
2590035 | Pollak | Mar 1952 | A |
2593596 | Olson | Apr 1952 | A |
2601878 | Anderson | Jul 1952 | A |
2623555 | Eschenburg | Dec 1952 | A |
2625966 | Copp | Jan 1953 | A |
2626639 | Hess | Jan 1953 | A |
2661777 | Hitchcock | Dec 1953 | A |
2661780 | Morgan | Dec 1953 | A |
2675707 | Brown | Apr 1954 | A |
2678071 | Odlum et al. | May 1954 | A |
2690084 | Van Dam | Sep 1954 | A |
2695638 | Gaskell | Nov 1954 | A |
2704560 | Woessner | Mar 1955 | A |
2711762 | Gaskell | Jun 1955 | A |
2719547 | Gjerde | Oct 1955 | A |
2722246 | Arnoldy | Nov 1955 | A |
2731049 | Akin | Jan 1956 | A |
2736348 | Nelson | Feb 1956 | A |
2737213 | Richards et al. | Mar 1956 | A |
2758615 | Mastriforte | Aug 1956 | A |
2785710 | Mowery, Jr. | Mar 1957 | A |
2786496 | Eschenburg | Mar 1957 | A |
2804890 | Fink | Sep 1957 | A |
2810408 | Boice et al. | Oct 1957 | A |
2839943 | Caldwell et al. | Jun 1958 | A |
2844173 | Gaskell | Jul 1958 | A |
2850054 | Eschenburg | Sep 1958 | A |
2852047 | Odlum et al. | Sep 1958 | A |
2873773 | Gaskell | Feb 1959 | A |
2876809 | Rentsch et al. | Mar 1959 | A |
2883486 | Mason | Apr 1959 | A |
2894546 | Eschenburg | Jul 1959 | A |
2913025 | Richards | Nov 1959 | A |
2913581 | Simonton et al. | Nov 1959 | A |
2937672 | Gjerde | May 1960 | A |
2945516 | Edgemond, Jr. et al. | Jul 1960 | A |
2954118 | Anderson | Sep 1960 | A |
2957166 | Gluck | Oct 1960 | A |
2978084 | Vilkaitis | Apr 1961 | A |
2984268 | Vuichard | May 1961 | A |
2991593 | Cohen | Jul 1961 | A |
3005477 | Sherwen | Oct 1961 | A |
3007501 | Mundell et al. | Nov 1961 | A |
3011529 | Copp | Dec 1961 | A |
3011610 | Stiebel et al. | Dec 1961 | A |
3013592 | Ambrosio et al. | Dec 1961 | A |
3021881 | Edgemond, Jr. et al. | Feb 1962 | A |
3035995 | Seeley et al. | May 1962 | A |
3085602 | Gaskell | Apr 1963 | A |
3105530 | Peterson | Oct 1963 | A |
3129731 | Tyrrell | Apr 1964 | A |
3163732 | Abbott | Dec 1964 | A |
3184001 | Reinsch et al. | May 1965 | A |
3186256 | Reznick | Jun 1965 | A |
3207273 | Jurin | Sep 1965 | A |
3213731 | Renard | Oct 1965 | A |
3224474 | Bloom | Dec 1965 | A |
3232326 | Speer et al. | Feb 1966 | A |
3246205 | Miller | Apr 1966 | A |
3249134 | Vogl et al. | May 1966 | A |
3274876 | Debus | Sep 1966 | A |
3276497 | Heer | Oct 1966 | A |
3280861 | Gjerde | Oct 1966 | A |
3306149 | John | Feb 1967 | A |
3313185 | Drake et al. | Apr 1967 | A |
3315715 | Mytinger | Apr 1967 | A |
3323814 | Phillips | Jun 1967 | A |
3337008 | Trachte | Aug 1967 | A |
3356111 | Mitchell | Dec 1967 | A |
3368596 | Comer | Feb 1968 | A |
3386322 | Stone et al. | Jun 1968 | A |
3439183 | Hurst, Jr. | Apr 1969 | A |
3445835 | Fudaley | May 1969 | A |
3454286 | Anderson et al. | Jul 1969 | A |
3456696 | Gregory et al. | Jul 1969 | A |
3512440 | Frydmann | May 1970 | A |
3538964 | Warrick et al. | Nov 1970 | A |
3540338 | McEwan et al. | Nov 1970 | A |
3547232 | Fergie | Dec 1970 | A |
3554067 | Scutella | Jan 1971 | A |
3566934 | Thrasher | Mar 1971 | A |
3566996 | Crossman | Mar 1971 | A |
3580376 | Loshbough | May 1971 | A |
3581784 | Warrick | Jun 1971 | A |
3593266 | Van Sickle | Jul 1971 | A |
3613748 | De Pue | Oct 1971 | A |
3621894 | Niksich | Nov 1971 | A |
3648126 | Boos et al. | Mar 1972 | A |
3670788 | Pollak et al. | Jun 1972 | A |
3675444 | Whipple | Jul 1972 | A |
3680609 | Menge | Aug 1972 | A |
3688815 | Ridenour | Sep 1972 | A |
3695116 | Baur | Oct 1972 | A |
3696844 | Bernatschek | Oct 1972 | A |
3716113 | Kobayashi et al. | Feb 1973 | A |
3719103 | Streander | Mar 1973 | A |
3740000 | Takada | Jun 1973 | A |
3745546 | Struger et al. | Jul 1973 | A |
3749933 | Davidson | Jul 1973 | A |
3754493 | Niehaus et al. | Aug 1973 | A |
3772590 | Mikulecky et al. | Nov 1973 | A |
3785230 | Lokey | Jan 1974 | A |
3793915 | Huier | Feb 1974 | A |
3805639 | Peter | Apr 1974 | A |
3805658 | Scott et al. | Apr 1974 | A |
3808932 | Russell | May 1974 | A |
3829850 | Guetersloh | Aug 1974 | A |
3829970 | Anderson | Aug 1974 | A |
3858095 | Friemann et al. | Dec 1974 | A |
3861016 | Johnson et al. | Jan 1975 | A |
3863208 | Balban | Jan 1975 | A |
3874747 | Case et al. | Apr 1975 | A |
3880032 | Green | Apr 1975 | A |
3882744 | McCarroll | May 1975 | A |
3886413 | Dow et al. | May 1975 | A |
3889567 | Sato et al. | Jun 1975 | A |
3905263 | Smith | Sep 1975 | A |
3922785 | Fushiya | Dec 1975 | A |
3924688 | Cooper et al. | Dec 1975 | A |
3931727 | Luenser | Jan 1976 | A |
3935777 | Bassett | Feb 1976 | A |
3942607 | Sobat | Mar 1976 | A |
3945286 | Smith | Mar 1976 | A |
3946631 | Malm | Mar 1976 | A |
3947734 | Flyer | Mar 1976 | A |
3949636 | Ball et al. | Apr 1976 | A |
3953770 | Hayashi | Apr 1976 | A |
3960310 | Nussbaum | Jun 1976 | A |
3967161 | Lichtblau | Jun 1976 | A |
3974565 | Ellis | Aug 1976 | A |
3975600 | Marston | Aug 1976 | A |
3978624 | Merkel et al. | Sep 1976 | A |
3994192 | Faig | Nov 1976 | A |
4007679 | Edwards | Feb 1977 | A |
4016490 | Weckenmann et al. | Apr 1977 | A |
4026174 | Fierro | May 1977 | A |
4026177 | Lokey | May 1977 | A |
4029159 | Nymann | Jun 1977 | A |
4047156 | Atkins | Sep 1977 | A |
4048886 | Zettler | Sep 1977 | A |
4060160 | Lieber | Nov 1977 | A |
4063777 | Takada | Dec 1977 | A |
4070940 | McDaniel et al. | Jan 1978 | A |
4075961 | Harris | Feb 1978 | A |
4077161 | Wyle et al. | Mar 1978 | A |
4085303 | McIntyre et al. | Apr 1978 | A |
4090345 | Harkness | May 1978 | A |
4091698 | Obear et al. | May 1978 | A |
4106378 | Kaiser | Aug 1978 | A |
4117752 | Yoneda | Oct 1978 | A |
4145940 | Woloveke et al. | Mar 1979 | A |
4152833 | Phillips | May 1979 | A |
4161649 | Klos et al. | Jul 1979 | A |
4175452 | Idel | Nov 1979 | A |
4184394 | Gjerde | Jan 1980 | A |
4190000 | Shaull et al. | Feb 1980 | A |
4195722 | Anderson et al. | Apr 1980 | A |
4199930 | Lebet et al. | Apr 1980 | A |
4200002 | Takahashi | Apr 1980 | A |
4206666 | Ashton | Jun 1980 | A |
4206910 | Biesemeyer | Jun 1980 | A |
4249117 | Leukhardt et al. | Feb 1981 | A |
4249442 | Fittery | Feb 1981 | A |
4251599 | McCormick | Feb 1981 | A |
4255995 | Connor | Mar 1981 | A |
4262278 | Howard et al. | Apr 1981 | A |
4267914 | Saar | May 1981 | A |
4270427 | Colberg et al. | Jun 1981 | A |
4276459 | Willett et al. | Jun 1981 | A |
4276799 | Muehling | Jul 1981 | A |
4291794 | Bauer | Sep 1981 | A |
4305442 | Currie | Dec 1981 | A |
4319146 | Wires, Sr. | Mar 1982 | A |
4321841 | Felix | Mar 1982 | A |
4334450 | Benuzzi | Jun 1982 | A |
4351423 | Rogier | Sep 1982 | A |
4372202 | Cameron | Feb 1983 | A |
4372427 | Rogier | Feb 1983 | A |
4374552 | Dayen | Feb 1983 | A |
4385539 | Meyerhoefer et al. | May 1983 | A |
4391358 | Haeger | Jul 1983 | A |
4418597 | Krusemark et al. | Dec 1983 | A |
4427042 | Mitchell et al. | Jan 1984 | A |
4453112 | Sauer et al. | Jun 1984 | A |
4466170 | Davis | Aug 1984 | A |
4466233 | Thesman | Aug 1984 | A |
4470046 | Betsill | Sep 1984 | A |
4492291 | Chometon et al. | Jan 1985 | A |
4503739 | Konieczka | Mar 1985 | A |
4510489 | Anderson, III et al. | Apr 1985 | A |
4512224 | Terauchi | Apr 1985 | A |
4518043 | Anderson et al. | May 1985 | A |
4528488 | Susemihl | Jul 1985 | A |
4532501 | Hoffman | Jul 1985 | A |
4532844 | Chang et al. | Aug 1985 | A |
4557168 | Tokiwa | Dec 1985 | A |
4559858 | Laskowski et al. | Dec 1985 | A |
4560033 | DeWoody et al. | Dec 1985 | A |
4566512 | Wilson | Jan 1986 | A |
4573556 | Andreasson | Mar 1986 | A |
4576073 | Stinson | Mar 1986 | A |
4589047 | Gaus et al. | May 1986 | A |
4589860 | Brandenstein et al. | May 1986 | A |
4599597 | Rotbart | Jul 1986 | A |
4599927 | Eccardt et al. | Jul 1986 | A |
4606251 | Boileau | Aug 1986 | A |
4615247 | Berkeley | Oct 1986 | A |
4621300 | Summerer | Nov 1986 | A |
4625604 | Handler et al. | Dec 1986 | A |
4637188 | Crothers | Jan 1987 | A |
4637289 | Ramsden | Jan 1987 | A |
4644832 | Smith | Feb 1987 | A |
4653189 | Andreasson | Mar 1987 | A |
4657428 | Wiley | Apr 1987 | A |
4661797 | Schmall | Apr 1987 | A |
4672500 | Tholome et al. | Jun 1987 | A |
4675664 | Cloutier et al. | Jun 1987 | A |
4679719 | Kramer | Jul 1987 | A |
4694721 | Brickner, Jr. | Sep 1987 | A |
4718229 | Riley | Jan 1988 | A |
4721023 | Bartlett et al. | Jan 1988 | A |
4722021 | Hornung et al. | Jan 1988 | A |
4751603 | Kwan | Jun 1988 | A |
4756220 | Olsen et al. | Jul 1988 | A |
4757881 | Jonsson et al. | Jul 1988 | A |
4774866 | Dehari et al. | Oct 1988 | A |
4792965 | Morgan | Dec 1988 | A |
4805504 | Fushiya et al. | Feb 1989 | A |
4805505 | Cantlin | Feb 1989 | A |
4831279 | Ingraham | May 1989 | A |
4840135 | Yamauchi | Jun 1989 | A |
4845476 | Rangeard et al. | Jul 1989 | A |
4864455 | Shimomura et al. | Sep 1989 | A |
4875398 | Taylor et al. | Oct 1989 | A |
4888869 | Leatherman | Dec 1989 | A |
4896607 | Hall et al. | Jan 1990 | A |
4906962 | Duimstra | Mar 1990 | A |
4907679 | Menke | Mar 1990 | A |
4934233 | Brundage et al. | Jun 1990 | A |
4936876 | Reyes | Jun 1990 | A |
4937554 | Herman | Jun 1990 | A |
4962685 | Hagstrom | Oct 1990 | A |
4964450 | Hughes et al. | Oct 1990 | A |
4965909 | McCullough et al. | Oct 1990 | A |
4969063 | Scott et al. | Nov 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
5020406 | Sasaki et al. | Jun 1991 | A |
5025175 | Dubois, III | Jun 1991 | A |
5042348 | Brundage et al. | Aug 1991 | A |
5046426 | Julien et al. | Sep 1991 | A |
5052255 | Gaines | Oct 1991 | A |
5074047 | King | Dec 1991 | A |
5081406 | Hughes et al. | Jan 1992 | A |
5082316 | Wardlaw | Jan 1992 | A |
5083973 | Townsend | Jan 1992 | A |
5086890 | Turczyn et al. | Feb 1992 | A |
5094000 | Becht et al. | Mar 1992 | A |
5116249 | Shiotani et al. | May 1992 | A |
5119555 | Johnson | Jun 1992 | A |
5122091 | Townsend | Jun 1992 | A |
5123317 | Barnes, Jr. et al. | Jun 1992 | A |
5146714 | Liiber | Sep 1992 | A |
5148053 | Dubois, III | Sep 1992 | A |
5156508 | Grisley | Oct 1992 | A |
5174349 | Svetlik et al. | Dec 1992 | A |
5184534 | Lee | Feb 1993 | A |
5198702 | McCullough et al. | Mar 1993 | A |
5199343 | OBanion | Apr 1993 | A |
5201110 | Bane | Apr 1993 | A |
5201684 | DeBois, III | Apr 1993 | A |
5201863 | Peot | Apr 1993 | A |
5206625 | Davis | Apr 1993 | A |
5207253 | Hoshino et al. | May 1993 | A |
5212621 | Panter | May 1993 | A |
5218189 | Hutchison | Jun 1993 | A |
5230269 | Shiotani et al. | Jul 1993 | A |
5231359 | Masuda et al. | Jul 1993 | A |
5231906 | Kogej | Aug 1993 | A |
5239978 | Plangetis | Aug 1993 | A |
5245879 | McKeon | Sep 1993 | A |
5257570 | Shiotani et al. | Nov 1993 | A |
5265510 | Hoyer-Ellefsen | Nov 1993 | A |
5272946 | McCullough et al. | Dec 1993 | A |
5276431 | Piccoli et al. | Jan 1994 | A |
5285708 | Bosten et al. | Feb 1994 | A |
5293802 | Shiotani et al. | Mar 1994 | A |
5320382 | Goldstein et al. | Jun 1994 | A |
5321230 | Shanklin et al. | Jun 1994 | A |
5331875 | Mayfield | Jul 1994 | A |
5353670 | Metzger, Jr. | Oct 1994 | A |
5377554 | Reulein et al. | Jan 1995 | A |
5377571 | Josephs | Jan 1995 | A |
5392568 | Howard, Jr. et al. | Feb 1995 | A |
5392678 | Sasaki et al. | Feb 1995 | A |
5401928 | Kelley | Mar 1995 | A |
5411221 | Collins et al. | May 1995 | A |
5423232 | Miller et al. | Jun 1995 | A |
5436613 | Ghosh et al. | Jul 1995 | A |
5447085 | Gochnauer | Sep 1995 | A |
5451750 | An | Sep 1995 | A |
5453903 | Chow | Sep 1995 | A |
5471888 | McCormick | Dec 1995 | A |
5480009 | Wieland et al. | Jan 1996 | A |
5503059 | Pacholok | Apr 1996 | A |
5510587 | Reiter | Apr 1996 | A |
5510685 | Grasselli | Apr 1996 | A |
5513548 | Garuglieri | May 1996 | A |
5531147 | Serban | Jul 1996 | A |
5534836 | Schenkel et al. | Jul 1996 | A |
5572916 | Takano | Nov 1996 | A |
5587618 | Hathaway | Dec 1996 | A |
5592353 | Shinohara et al. | Jan 1997 | A |
5606889 | Bielinski et al. | Mar 1997 | A |
5619896 | Chen | Apr 1997 | A |
5623860 | Schoene et al. | Apr 1997 | A |
5647258 | Brazell et al. | Jul 1997 | A |
5648644 | Nagel | Jul 1997 | A |
5659454 | Vermesse | Aug 1997 | A |
5667152 | Mooring | Sep 1997 | A |
5671633 | Wagner | Sep 1997 | A |
5695306 | Nygren, Jr. | Dec 1997 | A |
5700165 | Harris et al. | Dec 1997 | A |
5720213 | Sberveglieri | Feb 1998 | A |
5722308 | Ceroll et al. | Mar 1998 | A |
5724875 | Meredith et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5741048 | Eccleston | Apr 1998 | A |
5755148 | Stumpf et al. | May 1998 | A |
5768786 | Kane et al. | Jun 1998 | A |
5771742 | Bokaie et al. | Jun 1998 | A |
5782001 | Gray | Jul 1998 | A |
5787779 | Garuglieri | Aug 1998 | A |
5791057 | Nakamura et al. | Aug 1998 | A |
5791223 | Lanzer | Aug 1998 | A |
5791224 | Suzuki et al. | Aug 1998 | A |
5791441 | Matos et al. | Aug 1998 | A |
5797307 | Horton | Aug 1998 | A |
5819619 | Miller et al. | Oct 1998 | A |
5819625 | Sberveglieri | Oct 1998 | A |
5852951 | Santi | Dec 1998 | A |
5857507 | Puzio et al. | Jan 1999 | A |
5861809 | Eckstein et al. | Jan 1999 | A |
5875698 | Ceroll et al. | Mar 1999 | A |
5880954 | Thomson et al. | Mar 1999 | A |
5921367 | Kashioka et al. | Jul 1999 | A |
5927857 | Ceroll et al. | Jul 1999 | A |
5930096 | Kim | Jul 1999 | A |
5937720 | Itzov | Aug 1999 | A |
5942975 | Sorensen | Aug 1999 | A |
5943932 | Sberveglieri | Aug 1999 | A |
5950514 | Benedict et al. | Sep 1999 | A |
5963173 | Lian et al. | Oct 1999 | A |
5974927 | Tsune | Nov 1999 | A |
5989116 | Johnson et al. | Nov 1999 | A |
6009782 | Tajima et al. | Jan 2000 | A |
6018284 | Rival et al. | Jan 2000 | A |
6037729 | Woods et al. | Mar 2000 | A |
D422290 | Welsh et al. | Apr 2000 | S |
6050174 | Schonlau et al. | Apr 2000 | A |
6052884 | Steckler et al. | Apr 2000 | A |
6062121 | Ceroll et al. | May 2000 | A |
6070484 | Sakamaki | Jun 2000 | A |
6095092 | Chou | Aug 2000 | A |
6109157 | Talesky | Aug 2000 | A |
6112785 | Yu | Sep 2000 | A |
6119984 | Devine | Sep 2000 | A |
6131629 | Puzio et al. | Oct 2000 | A |
6133818 | Shieh et al. | Oct 2000 | A |
6141192 | Garzon | Oct 2000 | A |
6148504 | Schmidt et al. | Nov 2000 | A |
6148526 | Kirn et al. | Nov 2000 | A |
6148703 | Ceroll et al. | Nov 2000 | A |
6150826 | Hokodate et al. | Nov 2000 | A |
6161459 | Ceroll et al. | Dec 2000 | A |
6170370 | Sommerville | Jan 2001 | B1 |
6244149 | Ceroll et al. | Jun 2001 | B1 |
6250190 | Ceroll et al. | Jun 2001 | B1 |
6257061 | Nonoyama et al. | Jul 2001 | B1 |
6283002 | Chiang | Sep 2001 | B1 |
6295910 | Childs et al. | Oct 2001 | B1 |
6312028 | Wilkosz | Nov 2001 | B1 |
6325195 | Doherty | Dec 2001 | B1 |
6330848 | Nishio et al. | Dec 2001 | B1 |
6336273 | Nilsson et al. | Jan 2002 | B1 |
6352137 | Stegall et al. | Mar 2002 | B1 |
6357328 | Ceroll et al. | Mar 2002 | B1 |
6361092 | Eagle et al. | Mar 2002 | B1 |
6366099 | Reddi | Apr 2002 | B1 |
6376939 | Suzuki et al. | Apr 2002 | B1 |
6404098 | Kayama et al. | Jun 2002 | B1 |
6405624 | Sutton | Jun 2002 | B2 |
6418829 | Pilchowski | Jul 2002 | B1 |
6420814 | Bobbio | Jul 2002 | B1 |
6427570 | Miller et al. | Aug 2002 | B1 |
6430007 | Jabbari | Aug 2002 | B1 |
6431425 | Moorman et al. | Aug 2002 | B1 |
6450077 | Ceroll et al. | Sep 2002 | B1 |
6453786 | Ceroll et al. | Sep 2002 | B1 |
6460442 | Talesky et al. | Oct 2002 | B2 |
6471106 | Reining | Oct 2002 | B1 |
6479958 | Thompson et al. | Nov 2002 | B1 |
6484614 | Huang | Nov 2002 | B1 |
D466913 | Ceroll et al. | Dec 2002 | S |
6492802 | Bielski | Dec 2002 | B1 |
D469354 | Curtsinger | Jan 2003 | S |
6502493 | Eccardt et al. | Jan 2003 | B1 |
6530303 | Parks et al. | Mar 2003 | B1 |
6536536 | Gass et al. | Mar 2003 | B1 |
6543324 | Dils | Apr 2003 | B2 |
6546835 | Wang | Apr 2003 | B2 |
6564909 | Razzano | May 2003 | B1 |
6575067 | Parks et al. | Jun 2003 | B2 |
6578460 | Sartori | Jun 2003 | B2 |
6578856 | Kahle | Jun 2003 | B2 |
6581655 | Huang | Jun 2003 | B2 |
6595096 | Ceroll et al. | Jul 2003 | B2 |
D478917 | Ceroll et al. | Aug 2003 | S |
6601493 | Crofutt | Aug 2003 | B1 |
6607015 | Chen | Aug 2003 | B1 |
D479538 | Welsh et al. | Sep 2003 | S |
6617720 | Egan, III et al. | Sep 2003 | B1 |
6619348 | Wang | Sep 2003 | B2 |
6640683 | Lee | Nov 2003 | B2 |
6644157 | Huang | Nov 2003 | B2 |
6647847 | Hewitt et al. | Nov 2003 | B2 |
6659233 | DeVlieg | Dec 2003 | B2 |
6684750 | Yu | Feb 2004 | B2 |
6722242 | Chuang | Apr 2004 | B2 |
6734581 | Griffis | May 2004 | B1 |
6736042 | Behne et al. | May 2004 | B2 |
6742430 | Chen | Jun 2004 | B2 |
6796208 | Jorgensen | Sep 2004 | B1 |
6800819 | Sato et al. | Oct 2004 | B2 |
6826988 | Gass et al. | Dec 2004 | B2 |
6826992 | Huang | Dec 2004 | B1 |
6840144 | Huang | Jan 2005 | B2 |
6854371 | Yu | Feb 2005 | B2 |
6857345 | Gass et al. | Feb 2005 | B2 |
6874397 | Chang | Apr 2005 | B2 |
6874399 | Lee | Apr 2005 | B2 |
6877410 | Gass et al. | Apr 2005 | B2 |
6880440 | Gass et al. | Apr 2005 | B2 |
6883397 | Kimizuka | Apr 2005 | B2 |
6889585 | Harris et al. | May 2005 | B1 |
6920814 | Gass et al. | Jul 2005 | B2 |
6922153 | Pierga et al. | Jul 2005 | B2 |
6945148 | Gass et al. | Sep 2005 | B2 |
6945149 | Gass et al. | Sep 2005 | B2 |
6957601 | Gass et al. | Oct 2005 | B2 |
6968767 | Yu | Nov 2005 | B2 |
6986370 | Schoene et al. | Jan 2006 | B1 |
6994004 | Gass et al. | Feb 2006 | B2 |
6997090 | Gass et al. | Feb 2006 | B2 |
7000514 | Gass et al. | Feb 2006 | B2 |
7024975 | Gass et al. | Apr 2006 | B2 |
7055417 | Gass et al. | Jun 2006 | B1 |
7077039 | Gass et al. | Jul 2006 | B2 |
7098800 | Gass | Aug 2006 | B2 |
7100483 | Gass et al. | Sep 2006 | B2 |
7137326 | Gass et al. | Nov 2006 | B2 |
7171879 | Gass et al. | Feb 2007 | B2 |
7197969 | Gass et al. | Apr 2007 | B2 |
7210383 | Gass et al | May 2007 | B2 |
7357056 | Gass et al. | Apr 2008 | B2 |
7373863 | O'Banion et al. | May 2008 | B2 |
7472634 | Gass et al. | Jan 2009 | B2 |
7509899 | Gass et al. | Mar 2009 | B2 |
7827889 | Carrier | Nov 2010 | B2 |
7895927 | Gass | Mar 2011 | B2 |
20010032534 | Ceroll et al. | Oct 2001 | A1 |
20020017175 | Gass et al. | Feb 2002 | A1 |
20020017176 | Gass et al. | Feb 2002 | A1 |
20020017178 | Gass et al. | Feb 2002 | A1 |
20020017179 | Gass et al. | Feb 2002 | A1 |
20020017180 | Gass et al. | Feb 2002 | A1 |
20020017181 | Gass et al. | Feb 2002 | A1 |
20020017182 | Gass et al. | Feb 2002 | A1 |
20020017183 | Gass et al. | Feb 2002 | A1 |
20020017184 | Gass et al. | Feb 2002 | A1 |
20020017336 | Gass et al. | Feb 2002 | A1 |
20020020261 | Gass et al. | Feb 2002 | A1 |
20020020262 | Gass et al. | Feb 2002 | A1 |
20020020263 | Gass et al. | Feb 2002 | A1 |
20020020265 | Gass et al. | Feb 2002 | A1 |
20020020271 | Gass et al. | Feb 2002 | A1 |
20020043776 | Chuang | Apr 2002 | A1 |
20020050201 | Lane et al. | May 2002 | A1 |
20020056348 | Gass et al. | May 2002 | A1 |
20020056349 | Gass et al. | May 2002 | A1 |
20020056350 | Gass et al. | May 2002 | A1 |
20020059853 | Gass et al. | May 2002 | A1 |
20020059854 | Gass et al. | May 2002 | A1 |
20020069734 | Gass et al. | Jun 2002 | A1 |
20020088325 | Talesky et al. | Jul 2002 | A1 |
20020096030 | Wang | Jul 2002 | A1 |
20020096591 | Tanji | Jul 2002 | A1 |
20020109036 | Denen et al. | Aug 2002 | A1 |
20020134212 | Ceroll et al. | Sep 2002 | A1 |
20020170399 | Gass et al. | Nov 2002 | A1 |
20020170400 | Gass | Nov 2002 | A1 |
20020174755 | Behne et al. | Nov 2002 | A1 |
20020190581 | Gass et al. | Dec 2002 | A1 |
20030000359 | Eccardt et al. | Jan 2003 | A1 |
20030002942 | Gass et al. | Jan 2003 | A1 |
20030005588 | Gass et al. | Jan 2003 | A1 |
20030015253 | Gass et al. | Jan 2003 | A1 |
20030019341 | Gass et al. | Jan 2003 | A1 |
20030020336 | Gass et al. | Jan 2003 | A1 |
20030037651 | Gass et al. | Feb 2003 | A1 |
20030037655 | Chin-Chin | Feb 2003 | A1 |
20030056853 | Gass et al. | Mar 2003 | A1 |
20030058121 | Gass et al. | Mar 2003 | A1 |
20030074873 | Freiberg et al. | Apr 2003 | A1 |
20030089212 | Parks et al. | May 2003 | A1 |
20030090224 | Gass et al. | May 2003 | A1 |
20030101857 | Chuang | Jun 2003 | A1 |
20030109798 | Kermani | Jun 2003 | A1 |
20030131703 | Gass et al. | Jul 2003 | A1 |
20030140749 | Gass et al. | Jul 2003 | A1 |
20030213349 | Chang | Nov 2003 | A1 |
20040011177 | Huang | Jan 2004 | A1 |
20040040426 | Gass et al. | Mar 2004 | A1 |
20040060404 | Metzger, Jr. | Apr 2004 | A1 |
20040103544 | Hartmann | Jun 2004 | A1 |
20040104085 | Lang et al. | Jun 2004 | A1 |
20040118261 | Garcia et al. | Jun 2004 | A1 |
20040159198 | Peot et al. | Aug 2004 | A1 |
20040194594 | Dils et al. | Oct 2004 | A1 |
20040200329 | Sako | Oct 2004 | A1 |
20040226424 | O'Banion et al. | Nov 2004 | A1 |
20040226800 | Pierga et al. | Nov 2004 | A1 |
20040255745 | Peot et al. | Dec 2004 | A1 |
20050057206 | Uneyama | Mar 2005 | A1 |
20050066784 | Gass | Mar 2005 | A1 |
20050087049 | Miller | Apr 2005 | A1 |
20050092149 | Hartmann | May 2005 | A1 |
20050139051 | Gass et al. | Jun 2005 | A1 |
20050139056 | Gass et al. | Jun 2005 | A1 |
20050139057 | Gass et al. | Jun 2005 | A1 |
20050139058 | Gass et al. | Jun 2005 | A1 |
20050139459 | Gass et al. | Jun 2005 | A1 |
20050155473 | Gass | Jul 2005 | A1 |
20050166736 | Gass et al. | Aug 2005 | A1 |
20050178259 | Gass et al. | Aug 2005 | A1 |
20050204885 | Gass et al. | Sep 2005 | A1 |
20050211034 | Sasaki et al. | Sep 2005 | A1 |
20050235793 | O'Banion et al. | Oct 2005 | A1 |
20050268767 | Pierga et al. | Dec 2005 | A1 |
20050274432 | Gass et al. | Dec 2005 | A1 |
20060000337 | Gass | Jan 2006 | A1 |
20060032352 | Gass et al. | Feb 2006 | A1 |
20060096425 | Keller | May 2006 | A1 |
20060123960 | Gass et al. | Jun 2006 | A1 |
20060123964 | Gass et al. | Jun 2006 | A1 |
20060179983 | Gass et al. | Aug 2006 | A1 |
20060219076 | Gass et al. | Oct 2006 | A1 |
20060225551 | Gass | Oct 2006 | A1 |
20060230896 | Gass | Oct 2006 | A1 |
20060247795 | Gass et al. | Nov 2006 | A1 |
20060254401 | Gass et al. | Nov 2006 | A1 |
20060272463 | Gass | Dec 2006 | A1 |
20070028733 | Gass | Feb 2007 | A1 |
20080016998 | Keller | Jan 2008 | A1 |
20090178524 | Gass et al. | Jul 2009 | A1 |
20110023673 | Gass | Feb 2011 | A1 |
20110056351 | Gass et al. | Mar 2011 | A1 |
20110072942 | Gass | Mar 2011 | A1 |
20110079124 | Carrier | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2140991 | Jan 1995 | CA |
297525 | Jun 1954 | CH |
76186 | Aug 1921 | DE |
2917497 | Apr 1979 | DE |
2800403 | Jul 1979 | DE |
3427733 | Jan 1986 | DE |
4205965 | Feb 1992 | DE |
4235161 | May 1993 | DE |
4326313 | Feb 1995 | DE |
19609771 | Jun 1998 | DE |
20102704 | Feb 2001 | DE |
146460 | Nov 1988 | EP |
0362937 | Apr 1990 | EP |
2152184 | Jan 2001 | ES |
2556643 | Jun 1985 | FR |
2570017 | Mar 1986 | FR |
598204 | Feb 1948 | GB |
1132708 | Nov 1968 | GB |
2096844 | Oct 1982 | GB |
2142571 | Jan 1985 | GB |
06328359 | Nov 1994 | JP |
WO 0126064 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20110023670 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
60225200 | Aug 2000 | US | |
60225211 | Aug 2000 | US | |
60225170 | Aug 2000 | US | |
60225056 | Aug 2000 | US | |
60225169 | Aug 2000 | US | |
60225210 | Aug 2000 | US | |
60298207 | Jun 2001 | US | |
60302916 | Jul 2001 | US | |
60324729 | Sep 2001 | US | |
60406138 | Aug 2002 | US | |
60452159 | Mar 2003 | US | |
60225206 | Aug 2000 | US | |
60225089 | Aug 2000 | US | |
60279313 | Mar 2001 | US | |
60270942 | Feb 2001 | US | |
60307756 | Jul 2001 | US | |
60308492 | Jul 2001 | US | |
60312141 | Aug 2001 | US | |
60533598 | Dec 2003 | US | |
60496568 | Aug 2003 | US | |
60225201 | Aug 2000 | US | |
60225212 | Aug 2000 | US | |
60225059 | Aug 2000 | US | |
60225094 | Aug 2000 | US | |
60225058 | Aug 2000 | US | |
60225057 | Aug 2000 | US | |
60270011 | Feb 2001 | US | |
60270941 | Feb 2001 | US | |
60270942 | Feb 2001 | US | |
60273177 | Mar 2001 | US | |
60273178 | Mar 2001 | US | |
60667485 | Mar 2005 | US | |
60273902 | Mar 2001 | US | |
60275583 | Mar 2001 | US | |
60233459 | Sep 2000 | US | |
60275594 | Mar 2001 | US | |
60275595 | Mar 2001 | US | |
60292081 | May 2001 | US | |
60292100 | May 2001 | US | |
60298207 | Jun 2001 | US | |
60302937 | Jul 2001 | US | |
60306202 | Jul 2001 | US | |
60323975 | Sep 2001 | US | |
60157340 | Oct 1999 | US | |
60182866 | Feb 2000 | US | |
60335970 | Nov 2001 | US | |
60349989 | Jan 2002 | US | |
60351797 | Jan 2002 | US | |
60496550 | Aug 2003 | US | |
60496574 | Aug 2003 | US | |
60533791 | Dec 2003 | US | |
60533852 | Dec 2003 | US | |
60533811 | Dec 2003 | US | |
60533575 | Dec 2003 | US | |
60540377 | Jan 2004 | US | |
60667485 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11796819 | Apr 2007 | US |
Child | 12806830 | US | |
Parent | 09929426 | Aug 2001 | US |
Child | 11796819 | US | |
Parent | 12806830 | US | |
Child | 11796819 | US | |
Parent | 12655695 | Jan 2010 | US |
Child | 12806830 | US | |
Parent | 11975985 | Oct 2007 | US |
Child | 12655695 | US | |
Parent | 09929221 | Aug 2001 | US |
Child | 11975985 | US | |
Parent | 12806830 | US | |
Child | 11975985 | US | |
Parent | 12002388 | Dec 2007 | US |
Child | 12806830 | US | |
Parent | 09929227 | Aug 2001 | US |
Child | 12002388 | US | |
Parent | 12806830 | US | |
Child | 12002388 | US | |
Parent | 11401050 | Apr 2006 | US |
Child | 12806830 | US | |
Parent | 09929240 | Aug 2001 | US |
Child | 11401050 | US | |
Parent | 09929241 | Aug 2001 | US |
Child | 09929240 | US | |
Parent | 09929425 | Aug 2001 | US |
Child | 09929241 | US | |
Parent | 10172553 | Jun 2002 | US |
Child | 09929425 | US | |
Parent | 10189027 | Jul 2002 | US |
Child | 10172553 | US | |
Parent | 10243042 | Sep 2002 | US |
Child | 10189027 | US | |
Parent | 10643296 | Aug 2003 | US |
Child | 10243042 | US | |
Parent | 10794161 | Mar 2004 | US |
Child | 10643296 | US | |
Parent | 12806830 | US | |
Child | 10643296 | US | |
Parent | 12800607 | May 2010 | US |
Child | 12806830 | US | |
Parent | 11542938 | Oct 2006 | US |
Child | 12800607 | US | |
Parent | 10984643 | Nov 2004 | US |
Child | 11542938 | US | |
Parent | 09929226 | Aug 2001 | US |
Child | 10984643 | US | |
Parent | 09929240 | US | |
Child | 09929226 | US | |
Parent | 09929242 | Aug 2001 | US |
Child | 09929240 | US | |
Parent | 10051782 | Jan 2002 | US |
Child | 09929242 | US | |
Parent | 10052806 | Jan 2002 | US |
Child | 10051782 | US | |
Parent | 10205164 | Jul 2002 | US |
Child | 10052806 | US | |
Parent | 10202928 | Jul 2002 | US |
Child | 10205164 | US | |
Parent | 10785361 | Feb 2004 | US |
Child | 10202928 | US | |
Parent | 10215929 | Aug 2002 | US |
Child | 10785361 | US | |
Parent | 12806830 | US | |
Child | 10785361 | US | |
Parent | 11542938 | US | |
Child | 12806830 | US | |
Parent | 09929242 | US | |
Child | 11542938 | US | |
Parent | 11401774 | Apr 2006 | US |
Child | 09929242 | US | |
Parent | 11027322 | Dec 2004 | US |
Child | 11401774 | US | |
Parent | 11445548 | Jun 2006 | US |
Child | 11542938 | US | |
Parent | 11506260 | Aug 2006 | US |
Child | 11445548 | US | |
Parent | 10923282 | Aug 2004 | US |
Child | 11506260 | US | |
Parent | 12806830 | US | |
Child | 11506260 | US | |
Parent | 12590094 | Nov 2009 | US |
Child | 12806830 | US | |
Parent | 09929236 | Aug 2001 | US |
Child | 12590094 | US | |
Parent | 12806830 | US | |
Child | 12590094 | US | |
Parent | 11811719 | Jun 2007 | US |
Child | 12806830 | US | |
Parent | 11061162 | Feb 2005 | US |
Child | 11811719 | US | |
Parent | 09929244 | Aug 2001 | US |
Child | 11061162 | US | |
Parent | 12806830 | US | |
Child | 11061162 | US | |
Parent | 12587695 | Oct 2009 | US |
Child | 12806830 | US | |
Parent | 09929237 | Aug 2001 | US |
Child | 12587695 | US | |
Parent | 12806830 | US | |
Child | 12587695 | US | |
Parent | 12661766 | Mar 2010 | US |
Child | 12806830 | US | |
Parent | 11810196 | Jun 2007 | US |
Child | 12661766 | US | |
Parent | 09929234 | Aug 2001 | US |
Child | 11810196 | US | |
Parent | 12806830 | US | |
Child | 11810196 | US | |
Parent | 12655694 | Jan 2010 | US |
Child | 12806830 | US | |
Parent | 12079836 | Mar 2008 | US |
Child | 12655694 | US | |
Parent | 09929235 | Aug 2001 | US |
Child | 12079836 | US | |
Parent | 12806830 | US | |
Child | 12079836 | US | |
Parent | 12799211 | Apr 2010 | US |
Child | 12806830 | US | |
Parent | 12220946 | Jul 2008 | US |
Child | 12799211 | US | |
Parent | 09929238 | Aug 2001 | US |
Child | 12220946 | US | |
Parent | 12806830 | US | |
Child | 12220946 | US | |
Parent | 12590924 | Nov 2009 | US |
Child | 12806830 | US | |
Parent | 12154675 | May 2008 | US |
Child | 12590924 | US | |
Parent | 10053390 | Jan 2002 | US |
Child | 12154675 | US | |
Parent | 12313162 | Nov 2008 | US |
Child | 12806830 | US | |
Parent | 11348580 | Feb 2006 | US |
Child | 12313162 | US | |
Parent | 10052705 | Jan 2002 | US |
Child | 11348580 | US | |
Parent | 11098984 | Apr 2005 | US |
Child | 12313162 | US | |
Parent | 09929238 | US | |
Child | 11098984 | US | |
Parent | 10047066 | Jan 2002 | US |
Child | 09929238 | US | |
Parent | 10051782 | US | |
Child | 10047066 | US | |
Parent | 12806830 | US | |
Child | 10047066 | US | |
Parent | 12661993 | Mar 2010 | US |
Child | 12806830 | US | |
Parent | 11982972 | Nov 2007 | US |
Child | 12661993 | US | |
Parent | 10932339 | Sep 2004 | US |
Child | 11982972 | US | |
Parent | 10047066 | US | |
Child | 10932339 | US | |
Parent | 10050085 | Jan 2002 | US |
Child | 10047066 | US | |
Parent | 12806830 | US | |
Child | 10047066 | US | |
Parent | 10100211 | Mar 2002 | US |
Child | 12806830 | US | |
Parent | 11256757 | Oct 2005 | US |
Child | 10100211 | US | |
Parent | 09955418 | Sep 2001 | US |
Child | 11256757 | US | |
Parent | 12806830 | US | |
Child | 11256757 | US | |
Parent | 10146527 | May 2002 | US |
Child | 12806830 | US | |
Parent | 12586469 | Sep 2009 | US |
Child | 10146527 | US | |
Parent | 11702330 | Feb 2007 | US |
Child | 12586469 | US | |
Parent | 10189031 | Jul 2002 | US |
Child | 11702330 | US | |
Parent | 12806830 | US | |
Child | 11702330 | US | |
Parent | 11208214 | Aug 2005 | US |
Child | 12806830 | US | |
Parent | 10251576 | Sep 2002 | US |
Child | 11208214 | US | |
Parent | 10197975 | Jul 2002 | US |
Child | 10251576 | US | |
Parent | 09676190 | US | |
Child | 11208214 | US | |
Parent | 12806830 | US | |
Child | 11208214 | US | |
Parent | 12231080 | Aug 2008 | US |
Child | 12806830 | US | |
Parent | 11487717 | Jul 2006 | US |
Child | 12231080 | US | |
Parent | 10292607 | Nov 2002 | US |
Child | 11487717 | US | |
Parent | 12806830 | US | |
Child | 11487717 | US | |
Parent | 12655962 | Jan 2010 | US |
Child | 12806830 | US | |
Parent | 12313277 | Nov 2008 | US |
Child | 12655962 | US | |
Parent | 10345630 | Jan 2003 | US |
Child | 12313277 | US | |
Parent | 12806830 | US | |
Child | 12313277 | US | |
Parent | 12658759 | Feb 2010 | US |
Child | 12806830 | US | |
Parent | 11787471 | Apr 2007 | US |
Child | 12658759 | US | |
Parent | 10341260 | Jan 2003 | US |
Child | 11787471 | US | |
Parent | 12806830 | US | |
Child | 11787471 | US | |
Parent | 11647676 | Dec 2006 | US |
Child | 12806830 | US | |
Parent | 10923290 | Aug 2004 | US |
Child | 11647676 | US | |
Parent | 12806830 | US | |
Child | 11647676 | US | |
Parent | 12079820 | Mar 2008 | US |
Child | 12806830 | US | |
Parent | 10923273 | Aug 2004 | US |
Child | 12079820 | US | |
Parent | 12806830 | US | |
Child | 12079820 | US | |
Parent | 12454569 | May 2009 | US |
Child | 12806830 | US | |
Parent | 11027600 | Dec 2004 | US |
Child | 12454569 | US | |
Parent | 12806830 | US | |
Child | 12454569 | US | |
Parent | 12799915 | May 2010 | US |
Child | 12806830 | US | |
Parent | 12322069 | Jan 2009 | US |
Child | 12799915 | US | |
Parent | 11107499 | Apr 2005 | US |
Child | 12322069 | US | |
Parent | 12806830 | US | |
Child | 12322069 | US | |
Parent | 12077576 | Mar 2008 | US |
Child | 12806830 | US | |
Parent | 11027254 | Dec 2004 | US |
Child | 12077576 | US | |
Parent | 12806830 | US | |
Child | 12077576 | US | |
Parent | 12799920 | May 2010 | US |
Child | 12806830 | US | |
Parent | 11026114 | Dec 2004 | US |
Child | 12799920 | US | |
Parent | 12806830 | US | |
Child | 12799920 | US | |
Parent | 11026006 | Dec 2004 | US |
Child | 12806830 | US | |
Parent | 11045972 | Jan 2005 | US |
Child | 11026006 | US | |
Parent | 12454730 | May 2009 | US |
Child | 11045972 | US | |
Parent | 11395502 | Mar 2006 | US |
Child | 12454730 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09676190 | Sep 2000 | US |
Child | 10053390 | US | |
Parent | 12806830 | US | |
Child | 10053390 | US |