1. Field
The present disclosure generally relates to a light-emitting diode (LED) driver circuit for use with LED bulbs, and more particularly, to an LED driver circuit with an improved power factor.
2. Description of Related Art
Despite the many benefits of LED bulbs, there are some challenges that have prevented LED bulbs from widely replacing incandescent and fluorescent bulbs in residential application. For example, electrically, LED bulbs operate differently than incandescent and fluorescent bulbs. LED bulbs are current controlled devices, meaning that the light output is control by changes in current as opposed to incandescent and fluorescent bulbs that are voltage controlled.
The difference in control requires that LED bulbs have special driver circuits that convert the standard AC voltage supplied in residential outlets to a current suitable for driving LEDs. These driver circuits, however, typically result in an LED bulb that interacts with the electrical grid very differently than incandescent bulbs.
Power factor is one significant parameter where LED bulbs differ from incandescent bulbs. Power factor is the ratio of real power flowing to a load to the apparent power. A load with a power factor of 1 means that the load is using all power being delivered to the load. Typically, purely resistive loads have a power factor of 1. A power factor of less than 1 indicates that there is energy storage in the load that may return power to the power supply out of phase with the power supply. The lower the power factor, the more wasted power.
LED bulb driver circuits typically have storage elements (e.g., capacitors) that may cause a lower power factor for the LED bulb as compared to an incandescent bulb. This results in an LED bulb that may put more strain on the power supply (i.e., the electrical grid) than is necessary.
LED bulb driver circuits may be modified with additional components or special circuits to improve the power factor. However, these modifications increase the volume occupied by the driver circuit. In space limited LED bulbs, it may be difficult to fit these additional components or special circuits. Additionally, the modifications may also make it more difficult for the LED bulb to work with common residential light dimmers.
A first exemplary embodiment of a light-emitting diode (LED) bulb has a shell and a base attached to the shell. The base is configured to connect to an electrical socket. An LED is within the shell. A driver circuit provides current to the LED. The driver circuit has a power factor control circuit that includes a tracking circuit configured to produce a tracking signal indicative of the voltage of the supply line. The power factor control circuit also includes a switch-mode power supply (SMPS) controller having an input pin and an output pin. The tracking circuit is connected to the input pin. Based on the signal at the input pin, the SMPS controller is configured to change a duty cycle of an output signal on the output pin.
A second exemplary embodiment of an LED bulb has a shell and a base attached to the shell. The base is configured to connect to an electrical socket. An LED is within the shell. A driver circuit provides current to the LED. The driver circuit has an input filter configured to produce a rectified voltage output based on an input line voltage. The driver circuit also has a switch-mode power supply (SMPS) controller connected to the input filter. The SMPS controller is configured to control a drive current to the LED. In response to an alternating current (AC) voltage input, the input filter is configured to store approximately zero energy from one cycle of the AC voltage input to the next cycle.
A first exemplary embodiment of a driver circuit for an LED bulb provides current to an LED. The driver circuit has a power factor control circuit that includes a tracking circuit configured to produce a tracking signal indicative of the voltage of the supply line. The power factor control circuit also includes a switch-mode power supply (SMPS) controller having an input pin and an output pin. The tracking circuit is connected to the input pin. Based on the signal at the input pin, the SMPS controller is configured to change a duty cycle of an output signal on the output pin.
A second exemplary embodiment of a driver circuit for an LED bulb provides current to an LED. The driver circuit has an input filter configured to produce a rectified voltage output based on an input line voltage. The driver circuit also has a switch-mode power supply (SMPS) controller connected to the input filter. The SMPS controller is configured to control a drive current to the LED. In response to an alternating current (AC) voltage input, the input filter is configured to store approximately zero energy from one cycle of the AC voltage input to the next cycle.
The following description is presented to enable a person of ordinary skill in the art to make and use the various embodiments. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein will be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments. Thus, the various embodiments are not intended to be limited to the examples described herein and shown, but are to be accorded the scope consistent with the claims.
As will be described in more detail below, driver circuit 100 includes input protection circuit 106, input filter circuit 108, switched mode power supply (SMPS) circuit 110, thermal protection circuit 112, and power factor control circuit 114. Input protection circuit 106 is configured to protect driver circuit 100 and LEDs 116 from damage due to voltage spikes in the input line voltage or to prevent electrical shorts in the LED bulb from damaging the surrounding environment. Input protection circuit 106 is configured to also limit the input current when a switched voltage is first applied to input 102. Input filter circuit 108 is configured to condition the input line voltage for use with SMPS circuit 110, and to prevent noise generated by SMPS circuit 110 from reaching input 102 and affecting other devices connected to the input line voltage. SMPS circuit 110 is configured to convert the input line voltage to a current that is suitable for driving one or more LEDs 116. Thermal shutdown circuit 112 is configured to reduce or eliminate the current being supplied to LEDs 116 in the event that drive circuit 100, LEDs 116, or some other part of the LED bulb reaches a threshold temperature. Power factor control circuit 114 is configured to adjust the current that SMPS circuit 110 supplies to LEDs 116.
It should be recognized that some of the circuits shown in
Referring to
In constant frequency mode (set by connecting resistor 238 between RT pin 220c and ground, the frequency of the output at GATE pin 220d is set by the value of resistor 238. The duty cycle of the output may then be set by resistor 244.
In constant off-time mode (set by connecting RT pin 220c to GATE pin 220d as shown in
Resistor 244 may be used to ensure that LEDs connected to output 104 are driven at the most efficient current level based on the required light output.
The values for the other components in SMPS circuit 110 may be selected to provide suitable current to the LEDs connected to output 104, based on, among other factors, the input line voltage, the voltage drop across the LEDs, and the current required to drive the LEDs. For example, resistor 238 may be 300 kΩ, and resistor 240 may be 20Ω. Capacitor 222 is a hold-up capacitor to maintain VDD during switching, and may be 1 uF. Switching element 242 may be selected to operate properly with the operating range of SMPS controller 220 and to provide sufficient current for the LEDs. Switching element 242 may be an IRFR320PBF HEXFET Power MOSFET from International Rectifier. Diode 246 provides a current path for the current stored in inductor 248 to be supplied to the LEDs when switching element 242 is turned off. Diode 246 may be a IDD03SG60C SiC Schottky diode from Infineon Technologies. Capacitor 250 may filter the high frequency noise generated by the capacitance of the windings of inductor 248. Capacitor 250 may be 22 nF. Inductor 248 stores energy to supply current to LEDs connected to output 104 while switching element 242 is switched off. Inductor 248 may be an inductor of about 100 turns of 24 gauge, triple-insulated wire wound around a Magnetics CO55118A2 toroid core.
Referring to
Power factor control circuit 112 uses linear dimmer (LD) pin 220h of SMPS controller 220. The voltage applied to LD pin 220h may change the timing of the output signal on GATE pin 220d, which in turn changes the timing of switching element 242. As the voltage on LD pin 220h is lowered, the duty cycle (if in constant-on time mode) of the output signal is decreased, which causes switching element 242 to stay in the off-state a longer portion of each switching cycle. The longer that switching element 242 is off during each switching cycle, the less current that is delivered to the LEDs that are connected across output 104, which causes the output of the LEDs to dim. If a zero voltage is applied to LD pin 220h, the duty cycle will drop to zero and no current will be delivered to output 104 and any connected LEDs will be off.
In a different implementation of SMPS controller 220, LD pin 220h starts to reduce the duty cycle of switching element 242 only when the voltage applied to LD pin 220h drops below a threshold value. In this example, changes in the voltage applied to LD pin 220h will not affect the duty cycle of switching element 242 if the voltage at LD pin 220h remains above the threshold value. However, if the voltage applied to LD pin 220h drops below the threshold value, then SMPS controller 220 will reduce the duty cycle as discussed in the previous paragraph.
In the above explanation of the operation of LD pin 220h to reduce the driver circuit output current and dim the LEDs, SMPS controller 220 was assumed to be in constant off-time mode. If SMPS controller 220 is instead in constant frequency mode, then LD pin 220h will operate a similar fashion, except instead of modulating the duty cycle of the output signal, the frequency of the output signal will change.
Power factor control circuit 114 improves the LED bulb's power factor by limiting the LED bulb's current consumption so that it tracks that of the input line voltage, which makes the LED bulb act more like an incandescent bulb (i.e., resistive load). Accordingly, an LED bulb using driver circuit 100 will supply current that is relatively in phase with the input voltage. In contrast, LED bulbs using other driver circuit designs that do not track the input voltage will supply current out of phase with the input voltage by supplying current to the LEDs even when the input voltage is zero between input cycles.
Referring back to
For example, if driver circuit 100 is connected to a 120VAC, 60 Hz input line voltage, bridge rectifier 212 may be a 400V diode bridge rectifier. Capacitor 204 may be selected to suppress high frequencies generated by SMPS circuit 110 and may be 2.2 nF. Inductors 208 and 216 may be 1-2 mH inductors or more specifically, about 200 turns of 36 gauge wires wound around a Magnetics CO58028A2 toroid core. The damping network of resistor 210 and capacitor 206 may help minimize ringing of driver circuit 100 when input 102 is connected to the input line voltage through a residential dimmer. Resistor 210 may be 120Ω and capacitor 206 may be 680 nf. Filter capacitors 214 and 218 may be 100 nF.
To further improve power factor of an LED bulb, driver circuit 100 stores very little energy from once cycle of the input line voltage to the next. This is in contrast to conventional driver circuits that use large storage capacitors to store energy between cycles of the input line voltage.
For example, consider a voltage input coming from a residential dimmer that is dimmed to 50%.
In contrast,
The minimal energy storage of driver circuit 100 is based on the small sizes of the capacitors in input filter 108, especially capacitors 214 and 218. In other driver circuit designs with more energy storage, these capacitors may be up to tens of microfarads or more. Electrolytic capacitors may have to be used to reach these capacitances. However, electrolytic capacitors may have reliability concerns over the targeted long lifetime of LED bulbs and at the elevated operating temperatures typical of LED bulbs. Electrolytic capacitors may also be difficult to fit within an LED bulb. Therefore, the minimal energy storage of driver circuit 100 may also allow for use of ceramic capacitors, which may improve reliability and use less space.
Another potential benefit of the low energy storage is that an LED bulb using driver circuit 100 may not need any additional circuitry to dim the LEDs in response to a residential dimmer because the output of the input filter is already representative of the dimmer output. In contrast, LED bulbs using other driver circuit designs with more energy storage may need additional components to dim the LEDs because the output of the input filter is not representative of the input line voltage.
Referring back to
Referring to
Although a feature may appear to be described in connection with a particular embodiment, one skilled in the art would recognize that various features of the described embodiments may be combined. Moreover, aspects described in connection with an embodiment may stand alone.
This application is a Continuation of U.S. patent application Ser. No. 13/479,245, filed May 23, 2012, issued as U.S. Pat. No. 8,461,767, which is a Continuation of U.S. patent application Ser. No. 13/155,345, filed Jun. 7, 2011, issued as U.S. Pat. No. 8,188,671, each of which is hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6396718 | Ng et al. | May 2002 | B1 |
7633779 | Garrity et al. | Dec 2009 | B2 |
20050212501 | Acatrinei | Sep 2005 | A1 |
20050253533 | Lys et al. | Nov 2005 | A1 |
20070267984 | Peng | Nov 2007 | A1 |
20090021182 | Sauerlaender | Jan 2009 | A1 |
20090195186 | Guest et al. | Aug 2009 | A1 |
20090295292 | Harmgardt et al. | Dec 2009 | A1 |
20100207536 | Burdalski et al. | Aug 2010 | A1 |
20100308742 | Melanson | Dec 2010 | A1 |
20110279044 | Maiw | Nov 2011 | A1 |
Entry |
---|
Non Final Office Action received for U.S. Appl. No. 13/155,345, mailed on Dec. 9, 2011, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 13/155,345, mailed on Mar. 21, 2012, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 13/479,245, mailed on Aug. 16, 2012, 10 pages. |
Final Office Action received for U.S. Appl. No. 13/479,245, mailed on Dec. 6, 2012, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 13/479,245, mailed on Feb. 12, 2013, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/41404, mailed on Aug. 28, 2012, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/041404, mailed on Dec. 27, 2013, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20130271000 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13479245 | May 2012 | US |
Child | 13912143 | US | |
Parent | 13155345 | Jun 2011 | US |
Child | 13479245 | US |