The described embodiments relate generally to power factor correction in power supply circuits.
In some applications, an AC-to-DC power supply is required that receives a single AC (Alternative Current) supply voltage and outputs multiple DC (Direct Current) supply voltages. Some of the DC supply voltages are to be supplied from the power supply at relatively high powers, whereas others may not need to be supplied at such high powers. In some instances, power factor correction is required such that the waveform of the current drawn by the power supply is made to be in phase with the phase of the waveform of the voltage received by the power supply. Improvements in such power supply circuits are desired.
A power supply system includes an input electromagnetic interference (EMI) filter, a bridge rectifier, and an input smoothing capacitor, and a novel Offline Total Power Management Integrated Circuit (OTPMIC). The OTPMIC includes a Power Factor Correction (PFC) control circuit portion that controls an external PFC boost converter circuit. The OTPMIC also includes a main AC/DC control circuit portion that controls an external main AC/DC converter circuit. The OTPMIC also includes a standby AC/DC control circuit portion that controls an external standby AC/DC converter circuit.
The EMI filter, the bridge rectifier, the input smoothing capacitor, the PFC control circuit portion and the external PFC circuit together form a PFC boost converter AC/DC converter. When enabled, the PFC boost converter receives an input AC supply voltage (for example, 110 volts AC RMS 60 Hertz wall power) and outputs a 400 volt DC supply voltage. When disabled, the PFC boost converter receives the input AC supply voltage but only performs peak rectification, and outputs a peak rectified DC supply voltage. If, for example, the input AC supply voltage is a 110 volt AC signal, then the peak rectified output DC supply voltage is about 156 volts.
The EMI filter, the bridge rectifier, the input smoothing capacitor, the PFC AC/DC converter, the main AC/DC control circuit portion and the external main AC/DC converter circuit together form a main AC/DC converter. The main AC/DC control portion and external main AC/DC converter circuitry of the AC/DC converter receives the DC supply voltage from the output of the PFC boost converter (either 400 volts DC if PFC is on or 156 volts DC if PFC is off). The main AC/DC control portion and external main AC/DC converter circuitry of the AC/DC converter then outputs a first DC supply voltage at a relatively high power. The main AC/DC converter can be turned on and turned off.
The EMI filter, the bridge rectifier, the input smoothing capacitor, the PFC AC/DC converter, the standby AC/DC control portion and the external standby AC/DC converter circuit together form a standby AC/DC converter. The standby AC/DC control portion and external standby AC/DC circuitry of the standby AC/DC converter receives the DC supply voltage from the output of the PFC boost converter (either 400 volts DC or 156 volts DC). The standby AC/DC control portion and external standby AC/DC circuitry of the standby AC/DC converter then outputs a second DC supply voltage at a relatively low power. Typically the standby AC/DC converter is not turned off if the power supply system is operating. The main AC/DC converter, however, may be turned off if it is not required.
In one novel aspect, the PFC control circuit portion of the OTPMIC includes a current sense amplifier circuit, a PFC Pulse Width Modulator (PWM), and a novel PFC Autodetect circuit. The novel PFC Autodetect circuit supplies an enable/disable signal EN/DISB to the PFC PWM. If the EN/DISB signal has a first digital logic value, then the PFC PWM operates to control a switch of the external PFC circuit so that the switch is pulse width modulated and so that the external PFC circuit operates as a boost AC/DC converter having a PFC functionality. If the EN/DISB signal has a second digital logic value, then the PFC pulse width modulator is disabled and does not control the switch to switch. The switch remains off. Rather than operating as a boost converter, the external PFC circuit operates as a peak rectifier.
The PFC Autodetect circuit is operable in a PFC Autodetect mode. In the PFC autodetect mode, if the PFC Autodetect circuit is initially in an autodetect state in which it is disabling the PFC PWM, then the PFC Autodetect circuit monitors current flow in the external PFC circuit. Current flow may be monitored by monitoring a voltage drop across a current sense resistor RSENSE in the main current path within the external PFC circuit. If a high power condition is detected, then the PFC Autodetect circuit switches autodetect state so that the PFC Autodetect circuit asserts the EN/DISB signal high and enables the PFC PWM. In one example, the high power condition is detected as follows. If, in a half period of the incoming AC supply voltage the voltage drop across the sense resistor RSENSE is detected to exceed a first predetermined voltage continuously for a predetermined amount of time, then the PFC Autodetect circuit determines that the high power condition has been detected.
In the PFC autodetect mode, if the PFC Autodetect circuit is in the autodetect state in which the PFC PWM is enabled, then the PFC Autodetect circuit monitors the current flow in the external PFC circuit. If a low power condition is detected, then the PFC Autodetect circuit switches the autodetect state so that the PFC Autodetect circuit asserts the EN/DISB to a low digital logic level and disables the PFC pulse width modulator. One example of detecting such a low power condition is as follows. If the voltage drop across the sense resistor RSENSE is detected to remain below a second predetermined voltage throughout each half period of six consecutive half periods of the incoming AC supply voltage, then the PFC Autodetect circuit determines that the low power condition is detected.
In one example, the novel PFC Autodetect circuit has a PFC ON bit and a PFC OFF bit. If the PFC OFF bit is set, then the PFC Autodetect circuit outputs the EN/DISB signal to disable the PFC pulse width modulator regardless of the value of the PFC ON bit. If the PFC ON bit is set and the PFC OFF bit is cleared, then the PFC Autodetect circuit outputs the EN/DISB signal to enable the PFC pulse width modulator. If the PFC ON bit is cleared and the PFC OFF bit is cleared, then the PFC Autodetect circuit operates in the PFC autodetect mode described above.
In one example, the PFC Autodetect circuit stores a multi-bit digital value IMON. The IMON value determines the first predetermined voltage. The first predetermined voltage may, for example, be a voltage proportional to the digital value of IMON. The second predetermined voltage may be fixed fraction (for example, one sixth) of the first predetermined voltage. The PFC Autodetect also stores a multi-bit digital value TMON. The TMON value determines the predetermined about of time. The predetermined amount of time may, for example, be the period of an 8 kHz clock signal multiplied by the digital value of TMON.
In one example, the standby AC/DC converter has an optocoupler link between the secondary side of the standby AC/DC converter and the primary side of the AC/DC converter. Digital information is sent by a processor powered from the standby power supply voltage, and is communicated across this optocoupler link along with analog feedback information, to the OPTMIC. On the OPTMIC the analog feedback information is used by the standby AC/DC control circuit portion for voltage regulation purposes in the standby AC/DC converter. On the OPTMIC the digital information is communicated to the PFC control circuit portion. In one example the digital information includes the IMON value, the TMON value, the PFC ON bit value and the PFC OFF bit value. Once received, these digital values are then stored in appropriate registers and flip-flops in the PFC control circuit portion. The processor that is powered from the standby supply voltage can therefore configure and control the PFC Autodetect circuit even if the main AC/DC converter is turned off.
Further details and embodiments and techniques are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Reference will now be made in detail to background examples and some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
OTPMIC 9 includes a PFC control circuit portion 16, a main AC/DC control circuit portion 17, and a standby AC/DC control circuit portion 18. The PFC control circuit portion 16 controls the external PFC circuit 13 so that together the circuits 10, 11, 12, 16 and 13 form a boost AC/DC converter. External AC/DC circuit 106 is the external portion of this boost AC/DC converter. The phase of the waveform of the current that the boost AC/DC converter draws from input terminals 2 and 3 substantially matches the phase of the sinusoidal 110 volt RMS AC supply voltage waveform on terminals 2 and 3. If the external PFC circuit 13 is enabled, then the external PFC circuit 13 outputs a rough 400 volt DC supply voltage VBUS 19 onto output node and conductor 20. If, however, the external PFC circuit 13 is disabled when the power supply 1 is powered, then the external PFC circuit 13 outputs a peak rectified version of the AC input supply voltage onto conductor 20. Where the AC input supply voltage is a 60 Hertz, 110 volt AC RMS signal, the voltage output onto conductor 20 is a 156 volt DC signal. When the external PFC circuit 13 is disabled, it is not performing power factor correction control of the phase of the current being drawn from the 110 VAC input terminals 2 and 3.
The main AC/DC control circuit portion 17 controls the external main AC/DC converter circuit 14 so that together the circuits 10, 11, 12, 16, 13, 17 and 14 form what is referred to here as the main AC/DC converter. If enabled, the external main AC/DC converter circuit 14 receives power (either 400 volts DC or 156 volts DC) from conductor 20 and outputs the supply voltage VOUT 24 onto VOUT terminal 4. The main AC/DC converter circuit 14 here actually receives a rough DC voltage and outputs a DC voltage and in that sense is a DC/DC converter circuit, but circuit 14 is nonetheless referred to here as an AC/DC converter circuit because it is part of the overall main AC/DC converter. VOUT in this case is 24 volts DC. The vertical dashed line 21 in
The standby AC/DC control circuit portion 18 controls the external standby AC/DC converter circuit 15 so that together circuits 10, 11, 12, 16, 13, 18 and 15 form a standby AC/DC converter. The standby AC/DC converter circuit is a “standby” converter in the sense that it continues to output a VISO voltage supply signal 23 (for example, 5 volts DC) throughout the time that the system 1 is powered, regardless of whether the main AC/DC converter circuit is disabled or is not disabled. If the main AC/DC converter is enabled, then the main AC/DC converter outputs the VOUT voltage supply signal 24 (for example, 12 volts DC). If disabled, then main AC/DC converter circuit does not output the VOUT voltage supply signal 24. The standby AC/DC converter has a smaller output power capability as compared to the larger output power capability of the main AC/DC converter. The standby AC/DC converter may for example be rated to output ten watt maximum, whereas the main AC/DC converter may be rated to output five hundred watts maximum. The external standby AC/DC converter circuit 15 receives power (either 400 volts DC or 156 volts DC) from conductor 20 and outputs the supply voltage signal VISO 23 onto terminal 6. As in the case of the main AC/DC converter circuit discussed above, the standby AC/DC converter circuit 15 here actually receives a rough DC voltage and outputs a DC voltage and in that sense is a DC/DC converter circuit, but circuit 15 is nonetheless referred to here as an AC/DC converter circuit because it is part of the overall standby AC/DC converter. In
The PFC control circuit portion 16 monitors VHV 58 present on input node and conductor 28 through a resistor voltage divider circuit involving resistors 35 and 36 and capacitor 37. The ACS signal 104 received onto the integrated circuit 9 via ACS terminal 38 is therefore a fixed fraction of the voltage of signal VHV 58. The PFC control circuit portion 16 also monitors VBUS 19 present on output node and conductor 20 through a resistor voltage divider circuit involving resistors 39 and 40. The voltage received onto the integrated circuit 9 via FBC terminal 41 is therefore a fixed fraction of the voltage of signal VBUS 19 on conductor 20. The PFC control circuit portion 16 also monitors the voltage VSENSE 60 dropped across sense resistor RSENSE 31 via terminal GND 43, terminal CSL 42, and current sense amplifier circuit 26. The PFC control circuit portion 16 controls the switch 29 of the external PFC circuit 13 by driving a control signal 44 out of terminal DRC 45. Terminal COMPC 46 is a terminal for coupling an external compensation circuit 47, 48 and 49 to circuitry inside the integrated circuit.
The power factor control circuitry may be realized in numerous different ways that are known in the art. In the illustrated example, current sense amplifier circuit 26 outputs a current sense signal CS 50. The magnitude of current sense signal CS 50 is a scaled version of the voltage drop across current sense resistor RSENSE 31. This voltage CS 50 is multiplied by analog multiplier circuit 51 with the voltage divided version of signal VHV 58. Error amplifier 52 compares the voltage divided version of signal VBUS 19 received via terminal 41 with a 2.5 volt voltage reference signal and outputs an error signal ERR. An analog divider circuit 53 divides the signal output by the multiplier 51 by the error signal ERR output by the error amplifier 52 to generate a control signal 54. The level of the control signal 54 controls the pulse width of the drive signal 44 output by the pulse width modulator PFC PWM 27. If PFC PWM 27 is enabled, then switch 29 is pulse width modulated on and off as described above to make sure that the phase of the current drawn through terminals 2 and 3 substantially matches the phase of the voltage VAC received on terminals 2 and 3.
The PFC PWM 27, however, has an input control lead 55 that receives a digital enable/disable 56 signal EN/DISB 56 from the novel PFC Autodetect circuit 28. If the EN/DISB signal has a high digital logic value, then the PFC PWM 27 is enabled and operates as set forth above to carry out power factor correction. If the EN/DISB signal has a low digital logic value, then the PFC PWM 27 is disabled such that switch 29 is off and remains off.
In the example illustrated, the PFC Autodetect circuit 28 stores a PFC ON bit value 61, a PFC OFF bit value 62, a 4-bit IMON value 63, and a 5-bit TMON value 64. These bits can be stored in a single register, or may be stored in multiple registers and/or flip-flops and/or other sequential logic elements. If the PFC OFF bit is set, then the PFC Autodetect circuit 28 is disabled regardless of the values of the PFC ON bit, the value of IMON, and the value of TMON. When the PFC Autodetect circuit 28 is disabled, the EN/DISB signal 56 supplied to PFC PWM 27 is a low digital logic level and the PFC PWM 27 is disabled.
If the PFC OFF bit value is cleared, then the PFC Autodetect circuit 28 may be set always to drive the EN/DISB signal 56 to a high digital logic value, or the PFC Autodetect circuit 28 may be set to operate in its autodetect mode. If the PFC ON bit is set when the PFC OFF bit is cleared, then the PFC Autodetect circuit is set always to drive the EN/DISB signal 56 to the high digital logic value. If, however, the PFC ON bit is cleared when the PFC OFF bit is cleared, then the PFC Autodetect circuit is set to operate in the autodetect mode.
In the autodetect mode, the PFC Autodetect circuit 28 may be in an autodetect state in which the EN/DISB signal 56 is at a high digital logic level, or the PFC Autodetect circuit 28 may be in an autodetect state in which the EN/DISB signal 56 is at a high digital logic level. If the PFC Autodetect circuit 28 is in the state in which the EN/DISB signal 56 is at the high digital logic level, then the PFC Autodetect circuit 28 monitors the voltage drop across the current sense resistor RSENSE 31 and if a high power condition is detected, then the PFC Autodetect circuit 28 switches the autodetect state the state that asserts the EN/DISB signal, thereby enabling the PFC PWM 27. One example of detecting such a high power condition is as follows. If, in a half period of the incoming AC supply voltage signal 59 on terminals 2 and 3, the voltage drop across RSENSE 31 is detected to exceed a first predetermined voltage for a predetermined amount of time, then the autodetect state of the PFC Autodetect circuit 28 is switched so that the PFC Autodetect circuit 28 then asserts the EN/DISB signal 56 to a high digital logic level. If, in a half period of the incoming AC supply signal 59 on terminals 2 and 3, the voltage drop across RSENSE 31 is not detected to exceed the first predetermined voltage for the predetermined amount of time, then the autodetect state of the PFC Autodetect circuit 28 is not switched and EN/DISB signal 56 continues to be output from the PFC Autodetect circuit 28 at a low digital logic level.
If the PFC Autodetect circuit 28 is in the autodetect state in which the EN/DISB signal 56 is at the high digital logic level, then the PFC Autodetect circuit 28 monitors the voltage drop across the current sense resistor RSENSE 31. If a low power condition is detected then the PFC Autodetect circuit 28 switches the autodetect state so that the EN/DISB signal 56 is a digital low logic level, thereby disabling the PFC PWM 27. One example of detecting such a low power condition is as follows. If the voltage drop across RSENSE is detected to be below a second predetermined voltage throughout one entire half period, of each of six consecutive half periods of the incoming VAC signal on terminals 2 and 3, then the low power condition is detected. If the low power condition is detected, then state of the PFC Autodetect circuit 28 is switched so that the PFC Autodetect circuit 28 then asserts the EN/DISB signal 56 to a low logic level. If, on the other hand, the low power condition is not detected, then the PFC Autodetect circuit 28 does not switch states and continues to output the EN/DISB signal 56 at the high digital logic state.
In one example, the 4-bit value IMON sets the first predetermined voltage. The first predetermined may, for example, be a voltage proportional to the digital number IMON. The second predetermined voltage is a fixed fraction of the first predetermined voltage. The second predetermined voltage may, for example, be one sixth of the first predetermined voltage. The 5-bit value TMON sets the predetermined amount of time. The predetermined amount of time may, for example, be the product of the period of a clock signal multiplied by the digital number TMON.
In the illustrated example, the PFC Autodetect circuit 28 receives a digital signal 57 that is communicated across the optocoupler link 25 from the secondary side of the standby AC/DC converter and into the OTPMIC integrated circuit 9 via a feedback terminal FB. The actual signal communicated across the optocoupler link 25 is a signal IFB 67 that includes a low frequency analog signal (AS) 68 with the higher frequency digital signal (DS) 57 modulated onto the analog signal AS 68. The digital signal DS 57 received in this manner is used to setup and control the PFC Autodetect circuit 28 by loading register and flip-flops in the PFC Autodetect circuit 28 that store the PFC ON, PFC OFF, IMON and TMON values. The low frequency analog signal AS 68 is used by the standby AC/DC controller circuit portion 18 for feedback voltage regulation purposes. The digital signal DS 57 as described above is supplied to the PFC control circuit portion 16 and is used to setup the PFC Autodetect circuit 28.
As a result of power factor correction being enabled, the VBUS supply voltage output from the external PFC circuit 13 increases from the 156 volt peak rectified value to a rough 400 volt DC level. Also, the voltage dropped across the sense resistor RSENSE is proportional to the current drawn from the AC voltage source. As a result of power factor correction being enabled, the shape of VSENSE 60 changes from being surges of current as seen in the first two half periods to being a smooth wave shape whose phase is in phase with the phase of the incoming AC supply voltage VAC 59.
As shown in
The autodetect state of the PFC Autodetect circuit 28 is stored in an SR latch 80. If SR latch 80 is set, then the EN/DISB signal 56 is a digital logic high level. If SR latch 80 is cleared, then the EN/DISB signal 56 is a digital logic low level.
Assume for explanation purposes here that the PFC Autodetect circuit is in the state in which EN/DISB signal 56 is at a digital logic level low. SR latch is therefore cleared. Further assume that neither the PFC ON bit nor the PFC OFF bit is set. In such a state, the PFC Autodetect circuit 28 monitors the VSENSE voltage to detect a high power condition. A signal CYCLE_SIG 82 that defines each half period of the incoming VAC signal 59 is generated by a cycle detect circuit 83. There are multiple ways of realizing cycle detect circuit 83. In one non-limiting example, a scaled version of the incoming sinusoidal AC signal is full wave rectified and compared to a reference voltage to generate the CYCLE_SIG signal. The signal CYCLE_SIG 82 in one example pulses low between each successive half period of the incoming VAC signal 59, but otherwise is a digital logic level high. This signal CYCLE_SIG is used to asynchronously clear a counter CNTRA 83 at the beginning of each half period. The VSENSE voltage signal 60 between terminals 42 and 43 is amplified by the current sense amplifier circuit 26 to generate signal CS 50 that is proportional to VSENSE 60. This signal CS 50 is supplied onto the non-inverter input lead of a comparator 84. The 4-bit IMON value is converted into a voltage by DAC (Digital to Analog Converter) 85. The resulting signal 86 is a voltage that has a magnitude equal to IMON multiplied by 45 mV. This signal 86 is supplied onto the inverting input lead of comparator 84. If the current sense voltage signal CS 50 is higher than the voltage of signal 86, then comparator 84 asserts signal 87 to be a digital logic high. If the current sense voltage signal CS 50 is lower than the voltage of signal 86, then comparator 84 asserts signal 87 to be a digital logic low. The digital signal 87 is supplied onto a count enable CEN input of the counter CNTRA 83. After the counter CNTRA 83 has been asynchronously cleared at the beginning of a half period, if the signal 87 is a digital logic high then the counter CNTRA 83 is enabled to count. The counter increments on each rising edge of the 8 kHz signal 65. Accordingly, if the voltage drop across the sense resistor RSENSE 31 increases in the middle of a half period high enough that CS 50 exceeds the voltage of signal 86 for an amount of time during the peak of diode current flow, then the counter CNTRA 83 will be enabled to count. Digital comparator 88 compares the count output of counter CNTRA 83 with the 5-bit value TMON 64. If the count becomes equal to TMON, then the A≧B signal 89 as output by the digital comparator 88 transitions from a digital low to a digital high. Because PFC ON is a digital low, the OR gate 90 passes the rising transition to the set input of SR latch 80. The SR latch 80 is therefore set, and the EN/DISB signal 56 is made to transition from its digital logic low level to its digital logic high level. The PFC Autodetect circuit 28 therefore has transitioned state from outputting EN/DISB of a digital logic low level to outputting EN/DISB of a digital logic high level. If, however, during the half period the count output by CNTRA 83 did not reach the TMON value, then at the end of the half period the signal CYCLE_SIG 82 will pulse low and will asynchronously reset the counter CNTRA 83 without any set pulse having been sent to the SR latch 80.
Next, assume that the PFC Autodetect circuit 28 is in the autodetect state in which the SR latch 80 is outputting a digital logic high level signal 56. Further assume as above that neither the PFC ON bit nor the PFC OFF bit is set. In this state, the PFC Autodetect circuit 28 monitors VSENSE 60 to detect a low power condition. Resistors 91 and 92 form a resistor voltage divider that outputs onto the inverting input lead of comparator 93 a voltage signal that has one sixth the magnitude of voltage signal VIMON 86. The current sense signal CS 50 is supplied onto the non-inverting input lead of comparator 93. The signal 94 output by comparator 93 will therefore be at the high digital logic level if the current sense signal is higher than the voltage of signal 86 divided by six. If CYCLE_SIG 82 is low such as it is between half periods, then AND gate 95 cannot output a digital high signal to SR latch 96. But if CYCLE_SIG 82 is at a digital high level as it is during the center portion of each half period, then AND gate 95 will output a high level if the current sense signal CS 50 is higher than the voltage of signal 86 divided by six. If the voltage of the CS signal is ever higher than the voltage of signal 86 divided by six (during the center portion of a half period), then the AND gate 95 will supply a high signal onto the set input of SR latch 96, thereby causing the SR latch 96 to be set. As a result, a high signal is supplied onto the synchronous load enable SLED input lead of counter CNTAB 97. Once set, the SR latch 96 will remain latched until the end of the half cycle when CYCLE_SIG going low will cause a high signal to be supplied via inverter 98 onto the reset input of SR latch 96. Because the digital high is maintained on the SLED input lead until CYCLE_SIG goes low, the counter CNTRB 97 will be clocked when its SLED input lead is receiving a digital logic high signal. The counter CNTRB 97 will therefore parallel load in the “0000” value on its parallel input leads 99 on the falling edge of CYCLE_SIG 82 at the end of the half period. In this way, if the current sense VSENSE ever pulses high enough such that signal CS 50 exceeds the voltage of signal 86 divided by six, then at the end of the half cycle the counter CNTRB 97 will be parallel loaded with “0000”, thereby effectively clearing the 4-bit counter.
If, on the other hand, VSENSE does not pulse high enough such that signal CS 50 exceeds the voltage of signal 86 divided by six (during the center portion of a half period), then the SR latch 96 will not be set. At the end of the half period when CYCLE_SIG pulses low, the synchronous load input lead SLED is receiving a digital logic low value and the synchronous count enable SCEN input lead is receiving a digital logic high value. Accordingly, on the falling edge of signal CYCLE_SIG 82 at the end of the half period, the counter CNTRB 97 increments. CNTRB 97 is clocked on the falling edges of CYCL_SIG due to inverter 105. If there are six consecutive half periods in which the voltage drop across sense resistor RSENSE 31 never got high enough to set the SR latch 96, then the CNTRB=6 signal 100 as output by counter CNTRB 97 will be asserted high. The high signal will pass through OR gate 101 and will cause the SR latch 80 to reset. Resetting the SR latch 80 causes the EN/DISB signal 56 to be asserted to a digital logic low level. Accordingly, if a low power condition is detected, then the PFC PWM 27 is disabled.
A power on reset circuit 102 outputs an active high power on reset POR signal 103. POR 103 is a high digital logic high level initially during power on of the integrated circuit. Under such circumstances, the high POR signal 103 overrides all other signals and resets the SR latch 80, thereby forcing EN/DISB 56 low and disabling the PFC PWM 27. When the power on reset condition has passed, then the POR signal 103 transitions to a low digital logic level and the POR circuit 102 has no effect on the PFC Autodetect circuit 28. If the PFC OFF bit is set, then the SR latch 80 is also forced to reset and is held in that condition. Therefore setting the PFC OFF bit causes the PFC PWM 27 to be disabled as long as PFC OFF is set. If the PFC OFF bit is not set and POR 103 is not high but if the PFC ON bit is set, then the SR latch 80 will be set and will be held in that condition. The signal EN/DISB 56 is therefore forced to a digital logic high level, and the PFC PWM 27 is held in the enabled condition.
If the high power condition is detected, then the PFC Autodetect circuit 28 transitions to the PFC Autodetect state (204) in which power factor correction is turned on. In the example of the circuit of
Although certain specific embodiments are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific embodiments described above. The example of the high power condition set forth above is but one example. A PFC Autodetect circuit in other examples can use different input parameters and a different rule to determine that a high power condition has been detected. Likewise, the example of the low power condition set forth above is but one example. A PFC Autodetect circuit in other examples can use different input parameters and a different rule to determine that a low power condition has been detected. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.