1. Field of the Invention
The invention relates to a power factor correction circuit of a power supply and a control method thereof, and more particularly to a power factor correction circuit that is able to estimate the current of the AC power source of a power supply.
2. Description of Related Art
With reference to
Two input terminals of the rectifier 50 could receive an AC power source (VAC). The rectifier 50 has two input terminals connected to two terminals of a filter capacitor (Cx) and generates a sine wave DC voltage.
Two input terminals of the power factor control circuit 60 connect to the two output terminals of the rectifier 50 to receive the sine wave DC voltage. The two input terminals of the power factor control circuit 60 connect to another filter capacitor (Cin). This power factor control circuit 60 could be a boost converter including an active switch 61.
Two output terminals of the power factor control circuit 60 connect to the DC-DC conversion circuit 80. Two output terminals of the DC-DC conversion circuit 80 connect to a load 90. The DC-DC conversion circuit 80 could convert a DC voltage (as 380V) of the power factor control circuit 60 to different DC voltages (such as 28V, 12V, etc.) for offering the DC voltages to the load 90.
With reference to
As stated above, the power factor and total harmonic distortions of the power factor control circuit 60 are improved by controlling the waveform of the inductor current (IL) to follow the waveform of the input voltage (Vin) of the power factor control circuit 60. However, as the AC power source (VAC) is input to the two input terminals of the rectifier 50, modifying the input voltage and an input current (IAC) of the rectifier 50 is the practical way to improve a power factor of the AC power source (VAC).
This invention relates to a power factor correction circuit for estimating and compensating for an input current. After estimating an effect of a filter capacitor on the power factor correction circuit and reference to an estimation current signal, the power factor can be calibrated to improve the power factor and total harmonic distortions of the AC power source.
For the purpose of achieving this invention, the power factor correction circuit includes:
an AC-DC conversion circuit, which has two input terminals and two output terminals, and a first filter capacitor which is connected between the two input terminals, the AC-DC conversion circuit having at least one inductor and at least one active switch;
a power factor controller, which connects to the AC-DC conversion circuit and has at least one output control terminal connected to at least one active switch. The power factor controller outputs a pulse width modulation (PWM) signal to at least one active switch. Duty cycles of the PWM signal refer to a deviation between an estimation current signal and a reference current signal. The estimation current signal is obtained by summing up a compensation current signal and an inductor current signal of the AC-DC conversion circuit, the compensation current signal is obtained by an input voltage of the AC-DC conversion circuit and a first filter capacitor value; the reference current signal is obtained by a deviation between an output voltage of the AC-DC conversion circuit and a reference voltage signal.
This invention also provides a control method for estimating an input current, the control method having steps as below:
generating a compensation current signal according to an input voltage of an AC-DC conversion circuit and a filter capacitor value;
generating an estimation current signal by summing up the compensation current signal and an inductor current signal of the AC-DC conversion circuit;
generating a reference current signal according to a deviation between an output voltage of the AC-DC conversion circuit and a reference voltage;
generating a duty cycle control signal according to a deviation between the estimation current signal and the reference current signal; and
outputting a pulse width modulation (PWM) signal to the AC-DC conversion circuit according to the duty cycle control signal.
This invention circuit could predict a current signal of a filter capacitor, the current signal is generated by the AC-DC conversion circuit, and a duty cycle of the PWM signal is controlled according to the estimation current signal. The PWM signal is not only based on the output voltage and current signal of the AC-DC conversion circuit to calibrate the power factor, but is also based on the estimation current signal. Therefore, this invention could improve the two input terminals of the AC-DC conversion circuit, which means the power factor could be improved and the total harmonic distortions could be reduced.
The AC-DC conversion circuit 100 includes two input terminals and two output terminals. A first filter capacitor (Cx) is connected between the two input terminals. The AC-DC conversion circuit includes at least one inductor (L), at least one capacitor (C) and at least one active switch. The two input terminals of the AC-DC conversion circuit 100 receive an AC power source (VAC). The two output terminals of the AC-DC conversion circuit 100 could connect to a DC-DC conversion circuit 400 which could drop an output voltage of the AC-DC conversion circuit 100 to generate a low voltage DC power for offering a load.
In the first embodiment, the AC-DC conversion circuit 100 has a rectifier 10 and a switching circuit 20.
The rectifier 10 includes two input terminals and two output terminals. The two input terminals of the rectifier 10 could be used as the two input terminals of the AC-DC conversion circuit 100 to receive the AC power source (VAC). The first filter capacitor (Cx) is connected between the two input terminals of the rectifier 10 for filtering and reducing electromagnetic interference (EMI). In this embodiment, the rectifier 10 is a full-bridge rectifier.
The switching circuit 20 has two input terminals, which are connected to the two output terminals of the rectifier 10. A second filter capacitor (Cin) is connected between the two input terminals of the switching circuit 20 for filtering. The switching circuit 20 is used for converting a DC sign wave voltage output from the rectifier 10 to a DC voltage.
With reference to
With reference to
The voltage loop control module 31 receives a reference voltage (Vref), an input voltage (Vin) and an output voltage (Vout) of the switching circuit 20. The voltage loop control module 31 has a voltage loop compensator 310. The voltage loop compensator 310 generates a reference current signal (iref) according to an input voltage (Vin) and a deviation that is calculated from the output voltage (Vout)and the reference voltage (Vref).
The inductor current estimation module 32 connects to an input terminal of the switching circuit 20 and includes an inductor current compensator 320. A compensation current signal (IC,COM) is generated according to the input voltage (Vin) of the switching circuit 20 and a filter capacitor value. The filter capacitor value is chosen among the first filter capacitor (Cx) value, the second filter capacitor (Cin) value, or sum of both the capacitor values (Cx+Cin). The inductor current estimation module 32 sums up the compensation current signal (IC,COM) and an inductor current signal (IL) of the switching circuit 20 to generate an estimation current signal (IL,COM).
Two input terminals of the current loop control module 33 are connected to output terminals of both the voltage loop control module 31 and the inductor current estimation module 32. The current loop control module 33 has a current loop compensator 330 that outputs a duty cycle control signal according to the reference current signal (iref) and the estimation current signal (IL,COM).
The driver 34 is connected between the output terminal of the current loop control module 33 and the active switch 21 of the switching circuit. The driver 34 according to the duty cycle control signal outputs the PWM signal to the active switch 21.
The following steps explain how the compensation current signal (IC,COM) is produced. With reference to
VAC=Vin=Vinpeak sin wt
This relation is conditional on 0<ωt<π and without considering a voltage drop of the diode of the rectifier 10.
A first current signal (ICX) of the first filter capacitor (Cx) and a second current signal (IC) of the second filter capacitor (Cin) have a continuous representation:
Therefore, the discrete representation of the capacitor current could be deduced as below:
In the representation, Vin[n] is a currently sampled value of the voltage (Vin)and Vin[n−1] is a previously sampled value of the input voltage
I
L
=I
in
−I
C
I
in=
I
ACIN=(IAC−ICX)
I
L=(IAC−ICX)−IC
After transpose, the formula is as below,
I
AC
=I
L
+I
CX
+I
C
so,
In formula (1), IL,COM is an estimation current; IAC is an output current of the AC power source; ICX is a capacitor current; IACIN is an input current of the rectifier 10; Iin is an output current of the rectifier 10; IC is a capacitor current; IL is an inductor current, and Vin[n] is a sampled input voltage. Because the current signal (ICX) of the first filter capacitor (CX) and the current signal (IC) of the second filter capacitor (Cin) are un-measurable by the switching circuit 20, according to the formula (1), this invention provides the estimation current (IL,COM) that is a sum of the inductor current (IL) of the switching circuit 20, the current signal (ICX) of the first filter capacitor (CX), and the current signal (IC) of the second filter capacitor (Cin) for approaching the output current (IAC) of the AC power source (VAC).
According to the result of the estimation current signal (IL,COM) and with reference to
the discrete representation (2) could be rewritten as below,
The scale amplification unit 323 provides a filter capacitor value, which is chosen from the value of the first filter capacitor (CS), the second filter capacitor (Cin), or the sum of both the capacitors (Cin+Cx). In the embodiment, the filter capacitor value is Cin+Cx, therefore a compensation current signal (IC,COM) could be deduced and the continuous representation is
I
C,COM(t)=(Cin+CX)Min(t)=(Cin+CX)wVinpeak cos wt (3)
, the discrete representation of the formula (3) is
so the formula (1) could be rewritten to
I
L,COM
=I
L
+I
C,COM
, and the low pass filter unit 322 is used to filter noises in the input voltage (Vin) being differentiated. The low pass filter unit 322 could provide a filtering parameter (LPF). Therefore, the estimation current signal (IL,COM) can be rewritten to
I
L,COM
=I
L
+I
C,COM·LPF
With reference to Table 1 and Table 2, the power factor correction data with the estimation current signal (IL,COM) and without the estimation current signal (IL,COM) are respectively showed.
After adding the estimation current signal (IL,COM), a power factor (PF) at the two input terminals of the AC-DC conversion circuit 100 is increased and a harmonic distortion is obviously decreased. Comparing
Table 1 shows the power factors and harmonic distortion with the estimation current signal and without the estimation current signal.
Table 2 shows the power factors and harmonic distortion with the estimation current signal and without the estimation current signal.
With reference to
, and the level shift unit 325 provides a first default scale parameter
The scale amplification unit 326 provides a second default scale parameter −(Clin+CX)ω2, so
I
C,COM(t)=Mout(t)·[−(Cin+CX)ω2]=(Cin+CX)wVinpeak cos wt (4).
Wherein the discrete representation (4) could be rewritten to
I
C,COM
[n]=(Cin+CX)(Vin[n]−Vin[n−1])
, so the discrete representation (4) of the second embodiment and the discrete representation (3) of the first embodiment could get the same results.
To summarize, with reference to
generating a compensation current signal (IC,COM) according to an input voltage (Vin) of an AC-DC conversion circuit 100 and a filter capacitor value (STEP 101);
generating an estimation current signal (IL,COM) according to a sum of the compensation current signal (IC,COM) and an inductor current signal (IL) of the AC-DC conversion circuit 100 (STEP 102);
generating a reference current signal (iref) according to a deviation between an output voltage (Vout) of the AC-DC conversion circuit 100 and a reference voltage (Vref) (STEP 103);
generating a duty cycle control signal according to a deviation between the estimation current signal (IL,COM) and the reference current signal (iref) (STEP 104); and
outputting a pulse width modulation signal to the AC-DC conversion circuit 100 according to the duty cycle control signal (STEP 105). In the step of generating a compensation current signal (IC,COM)(STEP 101) of the first embodiment, the input voltage (Vin) is differentiated and amplified to generate the compensation current signal (IC,COM); or the input voltage (Vin) is differentiated to pass through a low pass filter and performed with a scale amplification to generate the compensation current signal (IC,COM).
In the step of generating the compensation current signal (IC,COM)(STEP 101) of the second embodiment, the input voltage (Vin) is integrated, shifted and performed with the scale amplification to generate the compensation current signal (IC,COM).
To summarize, the inductor current estimation module according to the input voltage (Vin) of the AC-DC conversion circuit 100 and the filter capacitor value generates the estimation current signal (IL,COM) which approaches the input current (IAC) that is received from the AC power source (VAC). The power factor correction circuit according to the estimation current signal (IL,COM) outputs the pulse width modulation signal to control the current (IAC) waveform of the two input terminals of the AC-DC conversion circuit 100 to approach a voltage waveform of the AC power source (VAC) of a power supply for increasing the power factor of the two input terminals of the AC-DC conversion circuit 100 and decreasing the harmonic distortion.
Number | Date | Country | Kind |
---|---|---|---|
100137077 | Oct 2011 | TW | national |