1. Field of the Invention
The present invention relates in general to the field of signal processing, and more specifically, to power factor correction and a power factor correction controller with feedback reduction.
2. Description of the Related Art
Power control systems provide power factor corrected and regulated output voltages to many applications that utilize a regulated output voltage.
The switch 108 of switching power converter 102 regulates the transfer of energy from the line input voltage Vx(t), through inductor 110, to capacitor 106. The inductor current iL ramps ‘up’ when the switch 108 conducts, i.e. is “ON”. The inductor current iL ramps down when switch 108 is nonconductive, i.e. is “OFF”, and supplies current iL to recharge capacitor 106. The time period during which inductor current iL ramps down is commonly referred to as the “inductor flyback time”. In at least one embodiment, the switching power converter 102 operates in discontinuous current mode, i.e. the inductor current iL ramp up time plus the inductor flyback time is less than the period of switch 108. Capacitor 106 supplies stored energy to load 112 while the switch 108 conducts. The capacitor 106 is sufficiently large so as to maintain a substantially constant output voltage Vc(t), as established by a power factor correction (PFC) and output voltage controller 114 (as discussed in more detail below). The output voltage Vc(t) remains substantially constant during constant load conditions. However, as load conditions change, the output voltage Vc(t) changes. The PFC and output voltage controller 114 responds to the changes in Vc(t) and adjusts the control signal CS0 to maintain a substantially constant output voltage as quickly as possible. The output voltage controller 114 includes a small capacitor 115 to filter any high frequency signals from the line input voltage Vx(t).
The power control system 100 also includes a PFC and output voltage controller 114 to control the switch 108 and, thus control power factor correction and regulate output power of the switching power converter 102. The goal of power factor correction technology is to make the switching power converter 102 appear resistive to the voltage source 101. Thus, the PFC and output voltage controller 114 attempts to control the inductor current iL so that the average inductor current iL is linearly and directly related to the line input voltage Vx(t). Prodić, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, Vol. 22, No. 5, September 2007, pp. 1719-1729 (referred to herein as “Prodić”), describes an example of PFC and output voltage controller 114. The PFC and output voltage controller 114 supplies a pulse width modified (PWM) control signal CS0 to control the conductivity of switch 108. In at least one embodiment, switch 108 is a field effect transistor (FET), and control signal CS0 is the gate voltage of switch 108. The values of the pulse width and duty cycle of control signal CS0 depend on two feedback signals, namely, the line input voltage Vx(t) and the capacitor voltage/output voltage Vc(t).
Switching power converter 114 receives two feedback signals, the line input voltage Vx(t) and the output voltage Vc(t), via a wide bandwidth current loop 116 and a slower voltage loop 118. The current loop 116 operates at a frequency fc that is sufficient to allow the PFC and output controller 114 to respond to changes in the line input voltage Vx(t) and cause the inductor current iL to track the line input voltage to provide power factor correction. The current loop frequency is generally set to a value between 20 kHz and 150 kHz. The voltage loop 118 operates at a much slower frequency fv, typically 10-20 Hz. The capacitor voltage Vc(t) includes a ripple component having a frequency equal to twice the frequency of input voltage Vin(t), e.g. 120 Hz. Thus, by operating at 10-20 Hz, the voltage loop 118 functions as a low pass filter to filter the ripple component.
PFC and output voltage controller 114 is often implemented as an integrated circuit (IC). Thus, the PFC and output voltage controller 114 includes two respective pins to connect to the current feedback loop 118. Pins can be relatively expensive components of the IC. Additionally, high voltage components, such as high voltage resistors, in the voltage loop 118 also increase the cost of PFC and output voltage controller 114.
In one embodiment of the present invention, a power factor correction (PFC) controller is configured to control power factor correction and regulate output voltage of a switching power converter. The switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor. The PFC controller includes an input to receive a feedback signal from the switching power converter. The PFC controller is configured to:
In another embodiment of the present invention, a power factor correction (PFC) controller is configured to control power factor correction and regulate output voltage of a switching power converter. The switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor. The PFC controller includes an input to receive a feedback signal from the switching power converter. The PFC controller is configured to determine a line input voltage and provide a control signal to the switch such that during each period of the switch the switching power converter responds to the control signal and current ramps-up in the inductor for a first time interval when the switch conducts and ramps-down in the inductor for an inductor flyback time interval when the switch is nonconductive. the PFC controller is further configured to determine the output voltage of the switching power converter using the line input voltage, the inductor flyback time interval, and the first time interval.
In another embodiment of the present invention, a power factor correction (PFC) controller is configured to control power factor correction and regulate output voltage of a switching power converter. The switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor. The PFC controller includes an input to receive a feedback signal from the switching power converter. The PFC controller is configured to determine an output voltage of the switching power converter from the feedback signal and provide a control signal to the switch such that during each period of the switch the switching power converter responds to the control signal and current ramps-up in the inductor for a first time interval when the switch conducts and ramps-down in the inductor for an inductor flyback time interval when the switch is nonconductive. The PFC controller is further configured to determine the line input voltage using the output voltage, the inductor flyback time interval, and the first time interval.
In a further embodiment of the present invention, a method of controlling power factor correction and regulating output voltage of a switching power converter, wherein the switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor, includes receiving a feedback signal from the switching power converter. The method further includes:
In a further embodiment of the present invention, a method of controlling power factor correction and regulating output voltage of a switching power converter, wherein the switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor, includes receiving a feedback signal from the switching power converter and determining a line input voltage. The method further includes providing a control signal to the switch such that during each period of the switch the switching power converter responds to the control signal and current ramps-up in the inductor for a first time interval when the switch conducts and ramps-down in the inductor for an inductor flyback time interval when the switch is nonconductive. The method further includes determining an output voltage of the switching power converter using the line input voltage, the inductor flyback time interval, and the first time interval.
In another embodiment of the present invention, a method of controlling power factor correction and regulating output voltage of a switching power converter, wherein the switching power converter includes an inductor to couple to a line input voltage node and a switch coupled to the inductor, includes receiving a feedback signal from the switching power converter and determining an output voltage of the switching power converter from the feedback signal. The method further includes providing a control signal to the switch such that during each period of the switch the switching power converter responds to the control signal and current ramps-up in the inductor for a first time interval when the switch conducts and ramps-down in the inductor for an inductor flyback time interval when the switch is nonconductive. The method also includes determining a line input voltage using the output voltage, the inductor flyback time interval, and the first time interval.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
A power control system includes a switching power converter and a power factor correction (PFC) and output voltage controller. The switching power converter includes an inductor to supply charge to an output capacitor and a switch to control inductor current ramp-up times and energy transfer to the output capacitor. In at least one embodiment, the PFC and output voltage controller provides a control signal to the switch to control power factor correction and regulate output voltage of the switching power converter. In at least one embodiment, during a single period of the control signal, the PFC and output voltage controller determines the line input voltage and output voltage of the switching power converter using a single feedback signal received from the switching power converter. In at least one embodiment, the PFC and output voltage controller determines an inductor flyback time from the feedback signal. The PFC and output voltage controller determines either the line input voltage or the output voltage, whichever was not determined from the feedback signal, using the determined voltage, the inductor flyback time, and a conducting (“ON”) time of the switch as controlled by the control signal. Using the line input voltage and the output voltage, the PFC and output voltage controller generates the control signal to provide power factor correction and output voltage regulation.
In at least one embodiment, the overall number of input terminals of the PFC and output voltage controller is reduced or an additional pin is available for other uses. For example, by using only one feedback signal to obtain both the line input voltage and the output voltage of the switching power converter, the number of pins of an integrated circuit (IC) switching power converter can be reduced by one. Additionally, in at least one embodiment, by reducing the number of feedback signals received by the PFC and output voltage controller, in at least one embodiment, the number of peripheral components, such as voltage and/or current step-down circuits, can be reduced. Reducing the number of pins and associated peripheral components can lower costs. In at least one embodiment, rather than reducing the number of pins, the PFC and output voltage controller receives one or more additional feedback signals that can be used for reliability and redundancy purposes.
In at least one embodiment, the maximum, nominal voltage of feedback signal VS(t) depends upon the voltage demand of load 112. For example, if load 112 is a 12 V motor, the feedback signal VS(t) will have a maximum nominal value of 12 V; if load 112 is a light emitting diode based fixture, the feedback signal VS(t) may have a nominal value of 400 V, and so on. The exact maximum, nominal voltage of feedback signal VS(t) at SWITCH NODE typically varies slightly from the output voltage Vc(t) due to system impedances, such as a voltage drop across diode 111.
In at least one embodiment of the PFC and output voltage controller 202, analog circuitry is used to generate the control signal CS1, and the feedback signal VS(t) can be fed directly into the analog circuitry. In at least one embodiment, PFC and output voltage controller 202 is implemented as an integrated circuit (IC), and input signals to PFC and output voltage controller 202 are voltage or current limited to prevent damaging PFC and output voltage controller 202. Thus, in at least one embodiment, power control system 200 includes a sensor/converter 206 to convert the feedback signal VS(t) to a maximum value, such as +1 V, that can be received directly by an integrated circuit implemented PFC and output voltage controller 202. The sensor/converter 206 can be implemented separately from PFC and output voltage controller 202 or as a wholly or partially integrated component of PFC and output voltage controller 202.
During an inductor current iL ramp-up time interval T1, i.e. when switch 108 is “ON” (i.e. conducts), the inductor current iL ramps up and the voltage VS(t) at the SWITCH NODE decreases to approximately 0. The voltage VS(t) decreases to “approximately” 0 because small, non-ideal voltage drops can occur, such as a voltage drop across switch 108 when switch 108 is conducting or a voltage drop across diode 111, so that the voltage of feedback signal VS(t) differs from, for example, line input voltage Vx(t) or output voltage Vc(t) by such non-ideal voltage drops. However, unless otherwise indicated, for purposes of this application determining or obtaining a line input voltage Vx(t) and/or an output voltage VS(t) of switching power converter 201 includes determining or obtaining an approximate or scaled line input voltage and/or an approximate or scaled output voltage of switching power converter 201.
During inductor flyback time interval T2 when switch 108 is “OFF” (i.e. nonconductive), diode 111 conducts, the inductor current iL ramps down to zero (0) amps, and the voltage VS(t) increases to Vc(t). After the inductor current iL ramps down to zero (0) amps, diode 111 stops conducting, the voltage drop across inductor 110 is approximately zero, and the voltage of feedback signal VS(t) equals Vx(t). When the inductor current iL reaches zero, parasitic impedances, such as the parasitic capacitance across inductor 110, cause a decaying ripple 608 at the SWITCH NODE.
Referring to
The PFC and output voltage controller 202 determines the output voltage Vc(t) from the feedback signal VS(t) by sensing the feedback signal VS(t) during inductor flyback time interval T2. In at least one embodiment, the duration of inductor flyback time interval T2 is unknown. Accordingly, switching power converter 201 waits a sufficient amount of time after the end of time interval T1 to allow any transient signals to dissipate and then determines the output voltage Vc(t) from the feedback signal VS(t). As previously described, the feedback signal VS(t) may represent a scaled version of the output voltage Vc(t). However, in at least one embodiment, when using the output voltage V(t) to determine the line input voltage Vx(t) in operation 308, the scaling can be accounted for by switching power converter 201. Accordingly, unless otherwise indicated, determining the output voltage Vc(t) includes determining a scaled or approximate version of the output voltage Vc(t).
The PFC and output voltage controller 202 determines the line input voltage Vx(t) from the feedback signal VS(t) by sensing the feedback signal VS(t) after the inductor flyback time interval T2. Accordingly, in at least one embodiment, when determining the line input voltage Vx(t) from the feedback signal VS(t) (as subsequently described), operation 306 determines the inductor flyback time interval T2 prior to operation 304. To determine the line input voltage Vx(t) directly from the feedback signal VS(t), the feedback signal VS(t) can be sensed during a period of control signal CS1 any time after inductor flyback time interval T2 and prior to the beginning of the time interval T1 for the next period of control signal CS1 to determine line input voltage Vx(t). In at least one embodiment, the feedback signal VS(t) is sensed after the ripple signal 608 dissipates so as to obtain a more accurate value of line input voltage Vx(t) and sufficiently prior the beginning of the next period of control signal CS1 to allow the switching power converter 201 to perform operations 308, 310, and 312. In at least one embodiment, the switching power converter 201 determines the line input voltage Vx(t) immediately after the inductor flyback time interval T2 by averaging the feedback signal VS(t). As with the output voltage Vc(t), in at least one embodiment, when using the input voltage Vx(t) to determine the output voltage Vc(t), the scaling can be accounted for by switching power converter 201. Accordingly, unless otherwise indicated, determining the line input voltage Vx(t) includes determining a scaled or approximate version of the line input voltage Vx(t).
Operation 306 determines the inductor flyback time interval T2.
Flyback time module 702 includes a comparator 704 to compare the feedback signal VS(t) with a predetermined reference voltage VREF0 and provide an output signal VSENSE
The transition of the comparator output signal VSENSE
Operation 308 determines whichever voltage, i.e. the line input voltage Vx(t) or the output voltage Vc(t), that was not determined in operation 304 using the determined voltage, inductor current iL ramp-up time interval T1, and the determined inductor flyback time interval T2. If operation 304 determines the line input voltage Vx(t), in at least one embodiment, operation 308 determines the output voltage Vc(t) in accordance with Equation [1]:
T1 is the inductor current iL ramp-up time interval, and T2 is the inductor flyback time interval. The voltage Vx and the voltage Vc of Equation [1] represent the respective actual, approximate, scaled, or sampled versions of line input voltage Vx(t) and output voltage Vc(t).
If operation 304 determines the output voltage Vc(t), in at least one embodiment, operation 308 determines the line input voltage Vx(t) in accordance with Equation [2]:
T1 is the inductor current iL ramp-up time interval, and T2 is the inductor flyback time interval. The voltage Vx and the voltage Vc of Equation [2] represent the respective actual, approximate, scaled, or sampled versions of line input voltage Vx(t) and output voltage Vc(t).
Operation 310 determines the pulse width PW and duty cycle D of switch control signal CS1. The PFC and output voltage controller 202 controls the pulse width PW and period T of control signal CS1 Power and control system 200 represents a nonlinear process because the power delivered by the switching power converter 201 is related to a square of the line input voltage Vx(t). PFC and output voltage controller 202 controls the nonlinear process of switching power converter 201 so that a desired amount of energy is transferred to capacitor 106. The desired amount of energy depends upon the voltage and current requirements of load 112. The duty cycle of control signal CS1 is set to maintain the desired output voltage VC(t) and load voltage VL(t), and, in at least one embodiment, the duty cycle D of control signal CS1 equals [VL(t)/(VC(t)+VL(t))]. Energy transfer increases during a period of time as the line input voltage Vx(t) increases.
To regulate the amount of energy transferred and maintain a power factor correction close to one, PFC and output voltage controller 202 varies the period of control signal CS1 so that the inductor current iL tracks the changes in line input voltage Vx(t) and holds the output voltage VC(t) constant. Thus, as the line input voltage Vx(t) increases, PFC and output voltage controller 202 increases the period TT (
In at least one embodiment, line input signal Vx(t) is a rectified voltage and, thus, rises and falls over time. The PFC and output voltage controller 800 is configured to track the changes in line input signal Vx(t) and adjust the period of control signal CS1 to increase as line input signal Vx(t) increases and to decrease as line input signal Vx(t) decreases. To determine each period of control signal CS1, PFC and output voltage controller 800 includes an input signal estimator 805 to estimate the instantaneous values of line input voltage Vx(t) for each cycle of control signal CS1 and generate an estimated voltage value EV(n). In at least one embodiment, the input signal estimator 805 performs operation 304 to determine the line input voltage Vx(t) from the feedback signal VS(t). The PFC and output voltage controller 800 includes a conventional delta-sigma modulator 804 to process the estimated voltage value EV(n) and convert the estimated voltage value EV(n) into a quantizer output signal QT. The quantizer output signal QT represents a period of control signal CS1 for the estimated value of line input voltage Vx(t). Exemplary conventional delta-sigma modulator design and operation is described in the book Understanding Delta-Sigma Data Converters by Schreier and Temes, IEEE Press, 2005, ISBN 0-471-46585-2.
The PFC and output voltage controller 800 includes a pulse width modulator 806 to convert the quantizer output signal QPW(n) into a pulse width and quantizer output signal QT(n) into a period for control signal CS1, where n can be a number representing a particular instance of the associated variable. To perform the conversions, in at least one embodiment, pulse with modulator 806 includes a counter. The quantizer output signal QPW(n) indicates that number of counts for the pulse width of control signal CS1, and the quantizer output signal QT(n) indicates the number of counts for the period of control signal CS1. The pulse width modulator 806 translates the number of counts for the quantizer output signal QPW(n) and the quantizer output signal QT(n) into the respective pulse width and period of control signal CS1. In at least one embodiment, PFC and output voltage controller 800 is implemented using digital technology. In other embodiments, PFC and output voltage controller 800 can be implemented using analog or mixed digital and analog technology.
Referring to
Operation 312 provides the switch control signal CS1 to switching power converter 201. After operation 312, PFC and output voltage regulation process 300 returns to operation 302 for the next period of control signal CS1.
Operations 304 and 306 can be determined using a variety of systems and processes.
In at least one embodiment, operation 306 determines the end of inductor flyback time interval T2 by monitoring the gate charge characteristics of switch 908 to detect the end of inductor flyback time interval T2.
In at least one embodiment, to perform operation 304 in conjunction with power control system 900, the line input voltage Vx(t) can be determined by directly detecting the line input voltage Vx(t) from a feedback signal at node 916 or, as previously described, determined from the feedback signal VS(t). In another embodiment, to perform operation 304 in conjunction with power control system 900, the output voltage Vc(t) can be determined by directly detecting the output voltage Vc(t) from a feedback signal at node 918 or, as previously described, determined from the feedback signal VS(t). The dashed lines from the SWITCH NODE and nodes 916 and 918 indicate that operation 304 can be performed using any one of the feedback signals, i.e. Vx(t), Vc(t), or VS(t). The output voltage Vc(t) can be detected in any of a variety of ways including as described in the exemplary embodiments of U.S. patent application Ser. No. 11/967,276, entitled “Power Factor Correction Controller With Digital FIR Filter Output Voltage Sampling”, inventor John L. Melanson, assignee Cirrus Logic, Inc., and (“Melanson III”) and U.S. patent application Ser. No. 11/967,277, entitled “Power Supply Dc Voltage Offset Detector”, inventor John L. Melanson, assignee Cirrus Logic, Inc., and (“Melanson IV”), now U.S. Pat. No. 7,863,828. Melanson III and Melanson IV are incorporated herein by reference in their entireties.
Operations 308-312 are performed by PFC and output voltage controller 904 as described in conjunction with PFC and output voltage controller 202.
The transition of the comparator output signal VSENSE
Referring to
Inductor 110 induces a secondary voltage VS(t) in the secondary winding 1206 that is directly proportional to the inverse of the inductor voltage VP(t). The secondary voltage VS(t) represents a feedback signal to PFC and output voltage controller 1204. The feedback signal VS(t) relates to the inductor voltage in accordance with Equation [3]:
“nS” is the number of windings in the second winding 1206, “nPp” is the number of windings in the inductor 110, and k=nS/nP. The value of “nP” is set by the choice of inductor 110. The value of “nS” can be set so that PFC and output voltage controller 1204 can receive feedback signal VS(t) directly without any conversion.
Referring to
VS(t)=(Vc(t)−Vx(t))·k Equation [4].
Operations 308-312 are performed by PFC and output voltage controller 1204 as described in conjunction with PFC and output voltage controller 202.
The additionally sensed, redundant parameters can be converted using sensor/converters 206 as desired, and reliability and redundancy module 1406 can compare the values of line input voltage Vx(t) and output voltage Vc(t) to the corresponding values determined by PFC and output voltage regulation process 300. The reliability and redundancy module 1406 includes logic to, for example, shut down the power control system 1400 if the values disagree by a predetermined margin. In at least one embodiment, if PFC and output voltage regulation process 300 is unable to determine the output voltage VC(t) or the line input voltage Vx(t), the reliability and redundancy module 1406 can use one of the additionally sensed values as a substitute, thus providing redundancy.
Thus, during a single period of the control signal, embodiments of the PFC and output voltage controller obtain the line input voltage and output voltage of the switching power converter using a single feedback signal received from the switching power converter.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 60/915,547, filed May 2, 2007, and entitled “Power Factor Correction (PFC) Controller Apparatuses and Methods,” and is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3790878 | Brokaw | Feb 1974 | A |
3881167 | Pelton et al. | Apr 1975 | A |
4075701 | Hofmann | Feb 1978 | A |
4334250 | Theus | Jun 1982 | A |
4409476 | Lofgren et al. | Oct 1983 | A |
4414493 | Henrich | Nov 1983 | A |
4476706 | Hadden et al. | Oct 1984 | A |
4523128 | Stamm | Jun 1985 | A |
4677366 | Wilkinson et al. | Jun 1987 | A |
4683529 | Bucher | Jul 1987 | A |
4700188 | James | Oct 1987 | A |
4737658 | Kronmuller et al. | Apr 1988 | A |
4797633 | Humphrey | Jan 1989 | A |
4937728 | Leonardi | Jun 1990 | A |
4940929 | Williams | Jul 1990 | A |
4973919 | Allfather | Nov 1990 | A |
4979087 | Sellwood et al. | Dec 1990 | A |
4980898 | Silvian | Dec 1990 | A |
4992919 | Lee et al. | Feb 1991 | A |
4994952 | Silva et al. | Feb 1991 | A |
5001620 | Smith | Mar 1991 | A |
5055746 | Hu et al. | Oct 1991 | A |
5109185 | Ball | Apr 1992 | A |
5121079 | Dargatz | Jun 1992 | A |
5206540 | de Sa e Silva et al. | Apr 1993 | A |
5264780 | Bruer et al. | Nov 1993 | A |
5278490 | Smedley | Jan 1994 | A |
5323157 | Ledzius et al. | Jun 1994 | A |
5359180 | Park et al. | Oct 1994 | A |
5383109 | Maksimovic et al. | Jan 1995 | A |
5424932 | Inou et al. | Jun 1995 | A |
5477481 | Kerth | Dec 1995 | A |
5479333 | McCambridge et al. | Dec 1995 | A |
5481178 | Wilcox et al. | Jan 1996 | A |
5565761 | Hwang | Oct 1996 | A |
5589759 | Borgato et al. | Dec 1996 | A |
5638265 | Gabor | Jun 1997 | A |
5691890 | Hyde | Nov 1997 | A |
5747977 | Hwang | May 1998 | A |
5757635 | Seong | May 1998 | A |
5768111 | Zaitsu | Jun 1998 | A |
5781040 | Myers | Jul 1998 | A |
5783909 | Hochstein | Jul 1998 | A |
5798635 | Hwang et al. | Aug 1998 | A |
5867379 | Maksimovic et al. | Feb 1999 | A |
5900683 | Rinehart et al. | May 1999 | A |
5912812 | Moriarty, Jr. | Jun 1999 | A |
5929400 | Colby et al. | Jul 1999 | A |
5946202 | Balogh | Aug 1999 | A |
5946206 | Shimizu et al. | Aug 1999 | A |
5952849 | Haigh et al. | Sep 1999 | A |
5962989 | Baker | Oct 1999 | A |
5963086 | Hall | Oct 1999 | A |
5966297 | Minegishi | Oct 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6043633 | Lev et al. | Mar 2000 | A |
6072969 | Yokomori et al. | Jun 2000 | A |
6083276 | Davidson et al. | Jul 2000 | A |
6084450 | Smith et al. | Jul 2000 | A |
6091233 | Hwang | Jul 2000 | A |
6125046 | Jang et al. | Sep 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6175218 | Choi et al. | Jan 2001 | B1 |
6178104 | Choi | Jan 2001 | B1 |
6181114 | Hemena et al. | Jan 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6211627 | Callahan | Apr 2001 | B1 |
6229271 | Liu | May 2001 | B1 |
6229292 | Redl et al. | May 2001 | B1 |
6246183 | Buonavita | Jun 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6300723 | Wang et al. | Oct 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304473 | Telefus et al. | Oct 2001 | B1 |
6343026 | Perry | Jan 2002 | B1 |
6344811 | Melanson | Feb 2002 | B1 |
6344986 | Jain et al. | Feb 2002 | B1 |
6369525 | Chang et al. | Apr 2002 | B1 |
6385063 | Sadek et al. | May 2002 | B1 |
6407514 | Glaser et al. | Jun 2002 | B1 |
6407515 | Hesler | Jun 2002 | B1 |
6407691 | Yu | Jun 2002 | B1 |
6441558 | Muthu et al. | Aug 2002 | B1 |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6452521 | Wang | Sep 2002 | B1 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6495964 | Muthu et al. | Dec 2002 | B1 |
6509913 | Martin, Jr. et al. | Jan 2003 | B2 |
6531854 | Hwang | Mar 2003 | B2 |
6580258 | Wilcox et al. | Jun 2003 | B2 |
6583550 | Iwasa et al. | Jun 2003 | B2 |
6628106 | Batarseh et al. | Sep 2003 | B1 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6646848 | Yoshida et al. | Nov 2003 | B2 |
6657417 | Hwang | Dec 2003 | B1 |
6713974 | Patchornik et al. | Mar 2004 | B2 |
6724174 | Esteves et al. | Apr 2004 | B1 |
6727832 | Melanson | Apr 2004 | B1 |
6737845 | Hwang | May 2004 | B2 |
6741123 | Andersen et al. | May 2004 | B1 |
6753661 | Muthu et al. | Jun 2004 | B2 |
6756772 | McGinnis | Jun 2004 | B2 |
6768655 | Yang et al. | Jul 2004 | B1 |
6781351 | Mednik et al. | Aug 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6806659 | Mueller et al. | Oct 2004 | B1 |
6839247 | Yang | Jan 2005 | B1 |
6860628 | Robertson et al. | Mar 2005 | B2 |
6870325 | Bushell et al. | Mar 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6882552 | Telefus et al. | Apr 2005 | B2 |
6888322 | Dowling et al. | May 2005 | B2 |
6894471 | Corva et al. | May 2005 | B2 |
6933706 | Shih | Aug 2005 | B2 |
6940733 | Schie et al. | Sep 2005 | B2 |
6944034 | Shteynberg et al. | Sep 2005 | B1 |
6956750 | Eason et al. | Oct 2005 | B1 |
6958920 | Mednik et al. | Oct 2005 | B2 |
6963496 | Bimbaud | Nov 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6970503 | Kalb | Nov 2005 | B1 |
6975079 | Lys et al. | Dec 2005 | B2 |
6975523 | Kim et al. | Dec 2005 | B2 |
6980446 | Simada et al. | Dec 2005 | B2 |
7003023 | Krone et al. | Feb 2006 | B2 |
7034611 | Oswal et al. | Apr 2006 | B2 |
7050509 | Krone et al. | May 2006 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7064531 | Zinn | Jun 2006 | B1 |
7072191 | Nakao et al. | Jul 2006 | B2 |
7075329 | Chen et al. | Jul 2006 | B2 |
7078963 | Andersen et al. | Jul 2006 | B1 |
7088059 | McKinney et al. | Aug 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7102902 | Brown et al. | Sep 2006 | B1 |
7106603 | Lin et al. | Sep 2006 | B1 |
7109791 | Epperson et al. | Sep 2006 | B1 |
7135824 | Lys et al. | Nov 2006 | B2 |
7145295 | Lee et al. | Dec 2006 | B1 |
7158633 | Hein | Jan 2007 | B1 |
7161816 | Shteynberg et al. | Jan 2007 | B2 |
7180250 | Gannon | Feb 2007 | B1 |
7183957 | Melanson | Feb 2007 | B1 |
7221130 | Ribeiro et al. | May 2007 | B2 |
7233135 | Noma et al. | Jun 2007 | B2 |
7255457 | Ducharme et al. | Aug 2007 | B2 |
7266001 | Notohamiprodjo et al. | Sep 2007 | B1 |
7276861 | Shteynberg et al. | Oct 2007 | B1 |
7288902 | Melanson | Oct 2007 | B1 |
7292013 | Chen et al. | Nov 2007 | B1 |
7310244 | Yang et al. | Dec 2007 | B2 |
7345458 | Kanai et al. | Mar 2008 | B2 |
7388764 | Huynh et al. | Jun 2008 | B2 |
7394210 | Ashdown | Jul 2008 | B2 |
7538499 | Ashdown | May 2009 | B2 |
7545130 | Latham | Jun 2009 | B2 |
7554473 | Melanson | Jun 2009 | B2 |
7569996 | Holmes et al. | Aug 2009 | B2 |
7583136 | Pelly | Sep 2009 | B2 |
7656103 | Shteynberg et al. | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7710047 | Shteynberg et al. | May 2010 | B2 |
7719246 | Melanson | May 2010 | B2 |
7719248 | Melanson | May 2010 | B1 |
7746043 | Melanson | Jun 2010 | B2 |
7746671 | Radecker et al. | Jun 2010 | B2 |
7750738 | Bach | Jul 2010 | B2 |
7756896 | Feingold | Jul 2010 | B1 |
7777563 | Midya et al. | Aug 2010 | B2 |
7804256 | Melanson | Sep 2010 | B2 |
7804480 | Jeon et al. | Sep 2010 | B2 |
20020065583 | Okada | May 2002 | A1 |
20020145041 | Muthu et al. | Oct 2002 | A1 |
20020150151 | Krone et al. | Oct 2002 | A1 |
20020166073 | Nguyen et al. | Nov 2002 | A1 |
20030095013 | Melanson et al. | May 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20030223255 | Ben-Yaakov | Dec 2003 | A1 |
20040004465 | McGinnis | Jan 2004 | A1 |
20040046683 | Mitamura et al. | Mar 2004 | A1 |
20040085030 | Laflamme et al. | May 2004 | A1 |
20040085117 | Melbert et al. | May 2004 | A1 |
20040169477 | Yanai et al. | Sep 2004 | A1 |
20040227571 | Kuribayashi | Nov 2004 | A1 |
20040228116 | Miller et al. | Nov 2004 | A1 |
20040232971 | Kawasaki et al. | Nov 2004 | A1 |
20040239262 | Ido et al. | Dec 2004 | A1 |
20050057237 | Clavel | Mar 2005 | A1 |
20050156770 | Melanson | Jul 2005 | A1 |
20050168492 | Hekstra et al. | Aug 2005 | A1 |
20050184895 | Petersen et al. | Aug 2005 | A1 |
20050197952 | Shea et al. | Sep 2005 | A1 |
20050207190 | Gritter | Sep 2005 | A1 |
20050218838 | Lys | Oct 2005 | A1 |
20050222881 | Booker | Oct 2005 | A1 |
20050253533 | Lys et al. | Nov 2005 | A1 |
20050270813 | Zhang et al. | Dec 2005 | A1 |
20050275354 | Hausman, Jr. et al. | Dec 2005 | A1 |
20050275386 | Jepsen et al. | Dec 2005 | A1 |
20060002110 | Dowling | Jan 2006 | A1 |
20060013026 | Frank et al. | Jan 2006 | A1 |
20060022916 | Aiello | Feb 2006 | A1 |
20060023002 | Hara et al. | Feb 2006 | A1 |
20060116898 | Peterson | Jun 2006 | A1 |
20060125420 | Boone et al. | Jun 2006 | A1 |
20060184414 | Pappas et al. | Aug 2006 | A1 |
20060214603 | Oh et al. | Sep 2006 | A1 |
20060226795 | Walter et al. | Oct 2006 | A1 |
20060261754 | Lee | Nov 2006 | A1 |
20060285365 | Huynh et al. | Dec 2006 | A1 |
20070024213 | Shteynberg et al. | Feb 2007 | A1 |
20070029946 | Yu et al. | Feb 2007 | A1 |
20070040512 | Jungwirth et al. | Feb 2007 | A1 |
20070053182 | Robertson | Mar 2007 | A1 |
20070055564 | Fourman | Mar 2007 | A1 |
20070103949 | Tsuruya | May 2007 | A1 |
20070126656 | Huang et al. | Jun 2007 | A1 |
20070182699 | Ha et al. | Aug 2007 | A1 |
20070285031 | Shteynberg et al. | Dec 2007 | A1 |
20080012502 | Lys | Jan 2008 | A1 |
20080027841 | Eder | Jan 2008 | A1 |
20080043504 | Ye et al. | Feb 2008 | A1 |
20080054815 | Kotikalapoodi et al. | Mar 2008 | A1 |
20080116818 | Shteynberg et al. | May 2008 | A1 |
20080130336 | Taguchi | Jun 2008 | A1 |
20080150433 | Tsuchida et al. | Jun 2008 | A1 |
20080154679 | Wade | Jun 2008 | A1 |
20080174291 | Hansson et al. | Jul 2008 | A1 |
20080174372 | Tucker et al. | Jul 2008 | A1 |
20080175029 | Jung et al. | Jul 2008 | A1 |
20080192509 | Dhuyvetter et al. | Aug 2008 | A1 |
20080224635 | Hayes | Sep 2008 | A1 |
20080239764 | Jacques et al. | Oct 2008 | A1 |
20080259655 | Wei et al. | Oct 2008 | A1 |
20080278132 | Kesterson et al. | Nov 2008 | A1 |
20090067204 | Ye et al. | Mar 2009 | A1 |
20090070188 | Scott et al. | Mar 2009 | A1 |
20090147544 | Melanson | Jun 2009 | A1 |
20090174479 | Yan et al. | Jul 2009 | A1 |
20090218960 | Lyons et al. | Sep 2009 | A1 |
20100141317 | Szajnowski | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
19713814 | Oct 1998 | DE |
0585789 | Mar 1994 | EP |
0632679 | Jan 1995 | EP |
0838791 | Apr 1998 | EP |
0910168 | Apr 1999 | EP |
1014563 | Jun 2000 | EP |
1164819 | Dec 2001 | EP |
1213823 | Jun 2002 | EP |
1460775 | Sep 2004 | EP |
1528785 | May 2005 | EP |
2204905 | Jul 2010 | EP |
WO9725836 | Jul 1997 | WO |
0197384 | Dec 2001 | WO |
0227944 | Apr 2002 | WO |
02091805 | Nov 2002 | WO |
WO2006013557 | Feb 2006 | WO |
WO 2006022107 | Mar 2006 | WO |
2006067521 | Jun 2006 | WO |
W02006135584 | Dec 2006 | WO |
2007026170 | Mar 2007 | WO |
2007079362 | Jul 2007 | WO |
WO2008072160 | Jun 2008 | WO |
WO2008152838 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080272745 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60915547 | May 2007 | US |