Power failure management in disk drives

Information

  • Patent Grant
  • 9390749
  • Patent Number
    9,390,749
  • Date Filed
    Tuesday, July 7, 2015
    9 years ago
  • Date Issued
    Tuesday, July 12, 2016
    8 years ago
Abstract
A disk drive is disclosed comprising a disk, a spindle motor operable to rotate the disk, a head actuated over the disk, an interface operable to receive a host supply voltage, and a capacitor. The host supply voltage is used to charge the capacitor to a capacitor voltage higher than the host supply voltage. During a power failure, the host supply voltage stops charging the capacitor, and a motor supply voltage is generated from the spindle motor. The capacitor voltage is used to operate control circuitry, and when the capacitor voltage decays below the motor supply voltage, the motor supply voltage charges the capacitor.
Description
BACKGROUND

Disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and embedded servo sectors. The embedded servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the velocity of the actuator arm as it seeks from track to track.


When a power failure occurs, it may be desirable to complete pending write commands prior to safely shutting down the disk drive so that user data is not lost. This is of particular concern in disk drives that cache write data in a volatile semiconductor memory prior to writing the data to the disk or a non-volatile semiconductor memory. A conventional disk drive may charge a capacitor to a high voltage using the power supplied by the host, and then use the capacitor voltage to power circuitry in the disk drive to flush a write cache during a power failure. Using a high voltage capacitor to generate the backup power is more cost effective compared to using a lower voltage capacitor or bank of capacitors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a disk drive according to an embodiment of the present invention wherein a host supply voltage is boosted to charge a capacitor, and during a power failure, the capacitor is charged with a motor supply voltage when the capacitor voltage decays below the motor supply voltage.



FIG. 2 shows a disk drive according to an embodiment of the present invention wherein a spindle motor is controlled using a second supply voltage.



FIG. 3 shows a disk drive according to an embodiment of the present invention wherein a microactuator is controlled using the boosted voltage.



FIG. 4 shows a disk drive according to an embodiment of the present invention wherein a spindle motor is controlled using a second supply voltage.



FIG. 5 is a graph of the capacitor voltage wherein the motor supply voltage maintains the capacitor voltage above a safe level for a longer period during a power failure according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION


FIG. 1 shows a disk drive according to an embodiment of the present invention comprising a disk 2, a spindle motor 4 operable to rotate the disk 2, a head 6 actuated over the disk 2, an interface operable to receive a host supply voltage 8, and a capacitor 10. The host supply voltage 8 is used to charge the capacitor 10 to a capacitor voltage 12 higher than the host supply voltage 8. During a power failure, the host supply voltage 8 stops charging the capacitor 10, and a motor supply voltage 14 is generated from the spindle motor 4. The capacitor voltage 12 is used to operate control circuitry 16, and when the capacitor voltage 12 decays below the motor supply voltage 14, the motor supply voltage 14 charges the capacitor 10.


In the embodiment of FIG. 1, the disk 2 comprises embedded servo sectors 180-18N that define a plurality of servo tracks 20. The control circuitry 16 processes a read signal 22 emanating from the head 6 to demodulate the servo sectors 180-18N and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. The control circuitry 16 filters the PES using a suitable compensation filter to generate a control signal 24 applied to a voice coil motor (VCM) 26 which rotates an actuator arm 28 about a pivot in order to actuate the head 6 radially over the disk 2 in a direction that reduces the PES. The servo sectors 180-18N may comprise any suitable position information, such as a track address for coarse positioning and servo bursts for fine positioning.


The spindle motor 4 shown in FIG. 1 comprises a plurality of windings (e.g., φA, φB, φC) having a first end and a second end, wherein the second ends are connected together at a center tap. A commutation controller 30 commutates the windings over commutation intervals by controlling commutation logic 32. The spindle motor 4 is shown as comprising three windings (φA, φB, φC) corresponding to three phases. However, any suitable number of windings may be employed to implement any suitable multi-phase spindle motor. Further, any suitable commutation sequence may be employed to commutate the windings. For example, the commutation logic 32 may control switches to commutate the windings of the spindle motor 4 in a two-phase, three-phase, or hybrid two-phase/three-phase commutation sequence.


The windings of the spindle motor 4 are connected to a back electromotive force (EMF) detector 34 which detects threshold crossings (e.g., zero crossings) in a back EMF voltage generated by the windings with respect to the center tap. Since the back EMF voltage is distorted when current is flowing, the commutation controller 30 supplies a control signal 36 to the back EMF detector 34 identifying the “open” winding generating a valid back EMF signal. At each back EMF threshold crossing the back EMF detector 34 toggles a signal to generate a square wave signal 38. The frequency of the back EMF threshold crossings and thus the frequency of the square wave signal 38 represent the speed of the spindle motor 4. The commutation controller 30 evaluates the square wave signal 38 and adjusts a control signal 40 applied to the commutation logic 32 in order to control the speed of the spindle motor 4.


If a power failure occurs while the disk is spinning, there is residual kinetic energy as the disk continues to rotate the spindle motor 4, and therefore the spindle motor 4 can be converted into a generator for generating a motor supply voltage 14. A diode 42 disconnects the host supply voltage 8 from the windings of the spindle motor 4 and the motor supply voltage 14. The motor supply voltage 14 may be generated from the back EMF voltage in any suitable manner. In one embodiment, the back EMF voltage may be generated through a synchronous rectification technique wherein the back EMF voltage is rectified to generate the motor supply voltage 14. In another embodiment, a boost/brake technique may be employed which periodically shorts the windings in order to boost the back EMF voltage when generating the motor supply voltage 14. An example embodiment of a boost/brake technique is disclosed in U.S. Pat. No. 6,577,465 entitled “Disk drive comprising spin down circuitry having a programmable signal generator for enhancing power and braking control” the disclosure of which is herein incorporated by reference. In one embodiment, the motor supply voltage 14 may be generated using a combination of techniques, for example, by initially using synchronous rectification and then switching to boost/brake when the motor supply voltage falls below a threshold.


In the embodiment of FIG. 1, the host supply voltage 8 is boosted 44, and the boosted supply voltage 46 is used to charge the capacitor 10 during normal operation (i.e., switch 48 connects the capacitor 10 to the boosted supply voltage 46). During a power failure, switch 48 disconnects the capacitor 10 from the voltage booster 44 and switch 52 disconnects the control circuitry 16 from the host supply voltage 8 and connects the control circuitry 16 to a backup voltage 54 generated by a voltage regulator 56 using the capacitor voltage 12. The backup voltage 54 enables the control circuitry 16 to continue operating during the power failure, for example, to continue writing data to the disk 2 or to a non-volatile semiconductor memory in order to finish the current write operation. When the capacitor voltage 12 decays below the motor supply voltage 14, diode 50 begins conducting so that the motor supply voltage 14 begins charging the capacitor 10. In this manner, the voltage regulator 56 is able to supply the backup voltage 54 to the control circuitry 16 for a longer period to help ensure the disk drive shuts down safely during a power failure.


In one embodiment, the motor supply voltage 14 may be used to power a suitable VCM driver (e.g., an H-bridge driver) within the control circuitry 16 during a power failure, whereas the switching circuitry of the VCM driver may be controlled using the backup voltage 54 generated by the voltage regulator 56. Accordingly in this embodiment, the motor supply voltage 14 may be used immediately during a power failure in order to power the VCM driver, whereas the voltage regulator 56 for supplying the switching circuitry of the VCM driver begins using the motor supply voltage 14 after the capacitor voltage 12 decays below the motor supply voltage 14.


In the embodiment of FIG. 1, the disk drive receives a single host supply voltage 8 (e.g., a 5 v supply) for powering the spindle motor 4, VCM 26, and control circuitry 16 during normal operation, as well as for charging the capacitor 10 after boosting 44. In another embodiment shown in FIG. 2, the disk drive receives a first host supply voltage 8A (e.g., a 5 v supply) for powering the control circuitry 16 and charging the capacitor 10, and a second host supply voltage 8B (e.g., a 12 v supply) for powering the spindle motor 4 and VCM 26 during normal operation. During a power failure, a diode 57 disconnects the second host supply voltage 8B from the spindle motor 4 and the VCM 26.



FIG. 3 shows a disk drive according to an embodiment of the present invention comprising a microactuator 58 for actuating the head 6 radially over the disk 2 in fine movements, whereas the VCM 26 actuates the head 6 radially over the disk 2 in coarse movements. Any suitable microactuator 58 may be employed, such as a suitable piezoelectric (PZT) actuator which deflects when modulated with a control voltage. The microactuator 58 may actuate the head 6 in any suitable manner, such as a microactuator 58 that actuates a suspension relative to the actuator arm 28 as shown on FIG. 3. In an alternative embodiment, the microactuator may actuate a head gimbal relative to the suspension. In the embodiment of FIG. 3, the boosted voltage 46 for charging the capacitor 10 is also used to power a microactuator driver 60. During a power failure, a switch 62 disconnects the input of the voltage booster 44 from the supply voltage 8 and connects the input to the backup voltage 54 generated by the voltage regulator 56. In this manner, the voltage booster 44 continues to generate the boosted voltage 46 for powering the microactuator driver 60 during the power failure.



FIG. 4 shows a disk drive according to an embodiment of the present invention that receives a first host supply voltage 8A (e.g., a 5 v supply) for powering the control circuitry 16 and charging the capacitor 10, and a second host supply voltage 8B (e.g., a 12 v supply) for powering the spindle motor 4 and the VCM 26 during normal operation. During a power failure, the diode 57 disconnects the second host supply voltage 8B from the spindle motor 4 and the VCM 26.


In the embodiments of FIG. 2 and FIG. 4, designing the voltage booster 44 to boost the first host supply voltage 8A may provide a benefit over boosting the second host supply voltage 8B in that the voltage booster 44 may operate at the same input voltage during normal operation as well as during a power failure. That is, in one embodiment the backup voltage 54 generated by the voltage regulator 56 during a power failure may be substantially the same as the first host supply voltage 8A (e.g., 5 v supply). Otherwise the voltage booster 44 would need to boost the second host supply voltage 8B (e.g., 12 v supply) during normal operation, and then boost the backup voltage 54 during the power failure. Designing the voltage booster 44 to operate at a single input voltage may decrease the cost and complexity of the voltage booster 44.



FIG. 5 is a graph illustrating a benefit of charging the capacitor 10 using the motor supply voltage during a power failure. During normal operation, the capacitor voltage is charged to a high level (e.g., 17 v used to power a microactuator). When a power failure occurs, the voltage regulator 56 begins generating the backup voltage 54 using the capacitor voltage 12, thereby causing the capacitor voltage 12 to decay. When the capacitor voltage 12 decays below the motor supply voltage 14, the motor supply voltage 14 begins charging the capacitor 10 which extends the time the capacitor voltage 12 remains above a safe level (a level capable of reliably operating the disk drive). If the motor supply voltage 14 is not used to charge the capacitor 10, the capacitor voltage 12 may fall below the safe level before the disk drive finishes the operations needed to shut down safely.


Any suitable control circuitry may be employed to implement the embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain steps described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC.


In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to implement the embodiments described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry for configuring the switches during a power failure as described in the above embodiments. In one embodiment, the operating voltage regulator(s) and the backup voltage regulator may be implemented within a power large scale integrated (PLSI) circuit coupled to an SOC, or integrated within an SOC.

Claims
  • 1. A disk drive comprising: a disk;a head configured to write data to the disk;a microactuator configured to actuate the head;an interface operable to receive a host supply voltage;a power storage device configured to store a backup voltage;a voltage booster configured to receive the host supply voltage at a voltage booster input and generate a boosted host supply voltage; andcontrol circuitry configured to, in response to a power failure event: disconnect the voltage booster input from the host supply voltage and connect the voltage booster input to the backup voltage;generate a boosted backup voltage using the voltage booster; andpower the microactuator using the boosted backup voltage.
  • 2. The disk drive of claim 1, wherein the control circuitry is further configured to power the microactuator using the boosted host supply voltage during normal operation.
  • 3. The disk drive of claim 1, wherein the microactuator is a piezoelectric microactuator.
  • 4. The disk drive of claim 1, wherein the control circuitry is further configured to charge the power storage device using the boosted host supply voltage during normal operation.
  • 5. The disk drive of claim 4, wherein the control circuitry is further configured to charge the power storage device to a voltage level greater than the host supply voltage.
  • 6. The disk drive of claim 1, further comprising a first switch configured to selectively connect the voltage booster input to the host supply voltage or the backup voltage, wherein the control circuitry is further configured to disconnect the voltage booster input from the host supply voltage and connect the voltage booster input to the backup voltage at least in part by operating the first switch.
  • 7. The disk drive of claim 6, further comprising a second switch configured to selectively connect the control circuitry to the host supply voltage or the backup voltage, wherein the control circuitry is further configured to, in response to the power failure event, disconnect the control circuitry from the host supply voltage and connect the control circuitry to the backup voltage by operating the second switch.
  • 8. The disk drive of claim 1, further comprising a diode connected between a motor supply voltage and the power storage device.
  • 9. The disk drive of claim 8, wherein the diode is configured to allow the motor supply voltage to charge the power storage device when the motor supply voltage is greater than a voltage level of the power storage device.
  • 10. A device comprising: control circuitry configured to: provide a host supply voltage received via an interface to a voltage booster over an input of the voltage booster;use the voltage booster to generate a boosted host supply voltage from the host supply voltage; andduring a power failure: disconnect the voltage booster input from the host supply voltage and connect the voltage booster input to a power storage device storing a backup voltage;use the voltage booster to generate a boosted backup voltage; andpower a microactuator using the boosted backup voltage, the microactuator being configured to actuate a head of a disk drive.
  • 11. The device of claim 10, wherein the control circuitry is further configured to use the host supply voltage to charge the power storage device to a voltage level higher than the host supply voltage.
  • 12. The device of claim 10, wherein the microactuator is a piezoelectric microactuator.
  • 13. The device of claim 10, wherein the control circuitry is further configured to charge the power storage device using the boosted host supply voltage during normal operation of the disk drive.
  • 14. The device of claim 10, wherein the control circuitry is further configured to disconnect the voltage booster input from the host supply voltage and connect the voltage booster input to the power storage device using a switch.
  • 15. The device of claim 10, wherein the control circuitry is further configured to compare a motor supply voltage to a voltage level of the power storage device and allow the motor supply voltage to power the power storage device when the motor supply voltage is greater than the voltage level of the power storage device.
  • 16. The device of claim 15, wherein the control circuitry is further configured to compare the motor supply voltage to the voltage level of the power storage device using a diode that is forward biased from the motor supply voltage to the power storage device.
  • 17. The device of claim 10, wherein the control circuitry is further configured to receive the backup voltage from a voltage regulator.
  • 18. The device of claim 10, wherein the control circuitry is further configured to use a motor supply voltage to power a voice coil motor (VCM) when a voltage level of the power storage device is greater than the motor supply voltage.
RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/316,128, entitled “DISK DRIVE CHARGING CAPACITOR USING MOTOR SUPPLY VOLTAGE DURING POWER FAILURE,” filed Dec. 9, 2011, the disclosure of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (380)
Number Name Date Kind
4375663 Arcara et al. Mar 1983 A
4516214 Ray May 1985 A
5047988 Mizuta Sep 1991 A
5414861 Horning May 1995 A
5438549 Levy Aug 1995 A
5461518 Saiki Oct 1995 A
5495372 Bahlmann Feb 1996 A
5504402 Menegoli Apr 1996 A
5596532 Cernea et al. Jan 1997 A
5693570 Cernea et al. Dec 1997 A
5781473 Javanifard et al. Jul 1998 A
5880622 Evertt et al. Mar 1999 A
5889629 Patton, III Mar 1999 A
6014283 Codilian et al. Jan 2000 A
6052076 Patton, III et al. Apr 2000 A
6052250 Golowka et al. Apr 2000 A
6067206 Hull et al. May 2000 A
6078453 Dziallo et al. Jun 2000 A
6091564 Codilian et al. Jul 2000 A
6094020 Goretzki Jul 2000 A
6101065 Alfred et al. Aug 2000 A
6104153 Codilian et al. Aug 2000 A
6115267 Herbert Sep 2000 A
6122133 Nazarian et al. Sep 2000 A
6122135 Stich Sep 2000 A
6141175 Nazarian et al. Oct 2000 A
6160368 Plutowski Dec 2000 A
6181502 Hussein et al. Jan 2001 B1
6189107 Kim et al. Feb 2001 B1
6195222 Heminger et al. Feb 2001 B1
6198584 Codilian et al. Mar 2001 B1
6198590 Codilian et al. Mar 2001 B1
6204988 Codilian et al. Mar 2001 B1
6243223 Elliott et al. Jun 2001 B1
6281652 Ryan et al. Aug 2001 B1
6285521 Hussein Sep 2001 B1
6292320 Mason et al. Sep 2001 B1
6305628 Thompson Oct 2001 B1
6310742 Nazarian et al. Oct 2001 B1
6320718 Bouwkamp et al. Nov 2001 B1
6342984 Hussein et al. Jan 2002 B1
6347018 Kadlec et al. Feb 2002 B1
6369972 Codilian et al. Apr 2002 B1
6369974 Asgari et al. Apr 2002 B1
6462896 Codilian et al. Oct 2002 B1
6476996 Ryan Nov 2002 B1
6484577 Bennett Nov 2002 B1
6493169 Ferris et al. Dec 2002 B1
6496324 Golowka et al. Dec 2002 B1
6498698 Golowka et al. Dec 2002 B1
6507450 Elliott Jan 2003 B1
6534936 Messenger et al. Mar 2003 B2
6538839 Ryan Mar 2003 B1
6545835 Codilian et al. Apr 2003 B1
6549359 Bennett et al. Apr 2003 B1
6549361 Bennett Apr 2003 B1
6560056 Ryan May 2003 B1
6568268 Bennett May 2003 B1
6574062 Bennett et al. Jun 2003 B1
6577465 Bennett et al. Jun 2003 B1
6594102 Kanda et al. Jul 2003 B1
6614615 Ju et al. Sep 2003 B1
6614618 Sheh et al. Sep 2003 B1
6636377 Yu et al. Oct 2003 B1
6643087 Kuroki Nov 2003 B1
6690536 Ryan Feb 2004 B1
6693764 Sheh et al. Feb 2004 B1
6707635 Codilian et al. Mar 2004 B1
6710953 Vallis et al. Mar 2004 B1
6710966 Codilian et al. Mar 2004 B1
6714371 Codilian Mar 2004 B1
6714372 Codilian et al. Mar 2004 B1
6724564 Codilian et al. Apr 2004 B1
6731450 Codilian et al. May 2004 B1
6735041 Codilian et al. May 2004 B1
6738220 Codilian May 2004 B1
6747837 Bennett Jun 2004 B1
6760186 Codilian et al. Jul 2004 B1
6788483 Ferris et al. Sep 2004 B1
6791785 Messenger et al. Sep 2004 B1
6795268 Ryan Sep 2004 B1
6819518 Melkote et al. Nov 2004 B1
6826006 Melkote et al. Nov 2004 B1
6826007 Patton, III Nov 2004 B1
6847502 Codilian Jan 2005 B1
6850383 Bennett Feb 2005 B1
6850384 Bennett Feb 2005 B1
6856556 Hajeck Feb 2005 B1
6867944 Ryan Mar 2005 B1
6876508 Patton, III et al. Apr 2005 B1
6882496 Codilian et al. Apr 2005 B1
6885514 Codilian et al. Apr 2005 B1
6900958 Yi et al. May 2005 B1
6900959 Gardner et al. May 2005 B1
6903897 Wang et al. Jun 2005 B1
6914740 Tu et al. Jul 2005 B1
6914743 Narayana et al. Jul 2005 B1
6920004 Codilian et al. Jul 2005 B1
6924959 Melkote et al. Aug 2005 B1
6924960 Melkote et al. Aug 2005 B1
6924961 Melkote et al. Aug 2005 B1
6934114 Codilian et al. Aug 2005 B1
6934135 Ryan Aug 2005 B1
6937420 McNab et al. Aug 2005 B1
6937423 Ngo et al. Aug 2005 B1
6952322 Codilian et al. Oct 2005 B1
6954324 Tu et al. Oct 2005 B1
6958881 Codilian et al. Oct 2005 B1
6963465 Melkote et al. Nov 2005 B1
6965488 Bennett Nov 2005 B1
6967458 Bennett et al. Nov 2005 B1
6967811 Codilian et al. Nov 2005 B1
6970319 Bennett et al. Nov 2005 B1
6972539 Codilian et al. Dec 2005 B1
6972540 Wang et al. Dec 2005 B1
6972922 Subrahmanyam et al. Dec 2005 B1
6975480 Codilian et al. Dec 2005 B1
6977789 Cloke Dec 2005 B1
6980389 Kupferman Dec 2005 B1
6987636 Chue et al. Jan 2006 B1
6987639 Yu Jan 2006 B1
6989954 Lee et al. Jan 2006 B1
6992848 Agarwal et al. Jan 2006 B1
6992851 Cloke Jan 2006 B1
6992852 Ying et al. Jan 2006 B1
6995941 Miyamura et al. Feb 2006 B1
6999263 Melkote et al. Feb 2006 B1
6999267 Melkote et al. Feb 2006 B1
7006320 Bennett et al. Feb 2006 B1
7016134 Agarwal et al. Mar 2006 B1
7023637 Kupferman Apr 2006 B1
7023640 Codilian et al. Apr 2006 B1
7027256 Subrahmanyam et al. Apr 2006 B1
7027257 Kupferman Apr 2006 B1
7035026 Codilian et al. Apr 2006 B2
7038522 Fauh et al. May 2006 B2
7046472 Melkote et al. May 2006 B1
7050249 Chue et al. May 2006 B1
7050254 Yu et al. May 2006 B1
7050258 Codilian May 2006 B1
7054098 Yu et al. May 2006 B1
7061714 Yu Jun 2006 B1
7064918 Codilian et al. Jun 2006 B1
7068451 Wang et al. Jun 2006 B1
7068459 Cloke et al. Jun 2006 B1
7068461 Chue et al. Jun 2006 B1
7068463 Ji et al. Jun 2006 B1
7088547 Wang et al. Aug 2006 B1
7095579 Ryan et al. Aug 2006 B1
7110208 Miyamura et al. Sep 2006 B1
7110214 Tu et al. Sep 2006 B1
7113362 Lee et al. Sep 2006 B1
7113365 Ryan et al. Sep 2006 B1
7116505 Kupferman Oct 2006 B1
7126781 Bennett Oct 2006 B1
7126857 Hajeck Oct 2006 B2
7142400 Williams et al. Nov 2006 B1
7158329 Ryan Jan 2007 B1
7161757 Krishnamoorthy Jan 2007 B1
7180703 Subrahmanyam et al. Feb 2007 B1
7184230 Chue et al. Feb 2007 B1
7196864 Yi et al. Mar 2007 B1
7199966 Tu et al. Apr 2007 B1
7203021 Ryan et al. Apr 2007 B1
7209321 Bennett Apr 2007 B1
7212364 Lee May 2007 B1
7212374 Wang et al May 2007 B1
7215504 Bennett May 2007 B1
7224546 Orakcilar et al. May 2007 B1
7248426 Weerasooriya et al. Jul 2007 B1
7251098 Wang et al. Jul 2007 B1
7253582 Ding et al. Aug 2007 B1
7253989 Lau et al. Aug 2007 B1
7265933 Phan et al. Sep 2007 B1
7269755 Moshayedi et al. Sep 2007 B2
7289288 Tu Oct 2007 B1
7298574 Melkote et al. Nov 2007 B1
7301717 Lee et al. Nov 2007 B1
7304819 Melkote et al. Dec 2007 B1
7330019 Bennett et al. Feb 2008 B1
7330327 Chue et al. Feb 2008 B1
7333280 Lifchits et al. Feb 2008 B1
7333290 Kupferman Feb 2008 B1
7339761 Tu et al. Mar 2008 B1
7362601 Uematsu Apr 2008 B2
7365932 Bennett Apr 2008 B1
7388728 Chen et al. Jun 2008 B1
7391583 Sheh et al. Jun 2008 B1
7391584 Sheh et al. Jun 2008 B1
7409590 Moshayedi et al. Aug 2008 B2
7433143 Ying et al. Oct 2008 B1
7440210 Lee Oct 2008 B1
7440225 Chen et al. Oct 2008 B1
7450334 Wang et al. Nov 2008 B1
7450336 Wang et al. Nov 2008 B1
7453661 Jang et al. Nov 2008 B1
7457071 Sheh Nov 2008 B1
7466509 Chen et al. Dec 2008 B1
7468855 Weerasooriya et al. Dec 2008 B1
7477471 Nemshick et al. Jan 2009 B1
7480116 Bennett Jan 2009 B1
7489464 McNab et al. Feb 2009 B1
7492546 Miyamura Feb 2009 B1
7495857 Bennett Feb 2009 B1
7499236 Lee et al. Mar 2009 B1
7502192 Wang et al. Mar 2009 B1
7502195 Wu et al. Mar 2009 B1
7502197 Chue Mar 2009 B1
7505223 McCornack Mar 2009 B1
7542225 Ding et al. Jun 2009 B1
7548392 Desai Jun 2009 B1
7551390 Wang et al. Jun 2009 B1
7558016 Le et al. Jul 2009 B1
7573670 Ryan et al. Aug 2009 B1
7576941 Chen et al. Aug 2009 B1
7580212 Li et al. Aug 2009 B1
7583470 Chen et al. Sep 2009 B1
7595954 Chen et al. Sep 2009 B1
7602575 Lifchits et al. Oct 2009 B1
7616399 Chen et al. Nov 2009 B1
7619844 Bennett Nov 2009 B1
7623316 Rana et al. Nov 2009 B1
7626782 Yu et al. Dec 2009 B1
7630162 Zhao et al. Dec 2009 B2
7639447 Yu et al. Dec 2009 B1
7656604 Liang et al. Feb 2010 B1
7656607 Bennett Feb 2010 B1
7660067 Ji et al. Feb 2010 B1
7663835 Yu et al. Feb 2010 B1
7675707 Liu et al. Mar 2010 B1
7679854 Narayana et al. Mar 2010 B1
7688534 McCornack Mar 2010 B1
7688538 Chen et al. Mar 2010 B1
7688539 Bryant et al. Mar 2010 B1
7697233 Bennett et al. Apr 2010 B1
7701661 Bennett Apr 2010 B1
7710676 Chue May 2010 B1
7715138 Kupferman May 2010 B1
7729079 Huber Jun 2010 B1
7733189 Bennett Jun 2010 B1
7733712 Walston et al. Jun 2010 B1
7746592 Liang et al. Jun 2010 B1
7746594 Guo et al. Jun 2010 B1
7746595 Guo et al. Jun 2010 B1
7760461 Bennett Jul 2010 B1
7800853 Guo et al. Sep 2010 B1
7800856 Bennett Sep 2010 B1
7800857 Calaway et al. Sep 2010 B1
7839591 Weerasooriya et al. Nov 2010 B1
7839595 Chue et al. Nov 2010 B1
7839600 Babinski et al. Nov 2010 B1
7843662 Weerasooriya et al. Nov 2010 B1
7852588 Ferris et al. Dec 2010 B1
7852592 Liang et al. Dec 2010 B1
7864481 Kon et al. Jan 2011 B1
7864482 Babinski et al. Jan 2011 B1
7869155 Wong Jan 2011 B1
7876522 Calaway et al. Jan 2011 B1
7876523 Panyavoravaj et al. Jan 2011 B1
7916415 Chue Mar 2011 B1
7916416 Guo et al. Mar 2011 B1
7916420 McFadyen et al. Mar 2011 B1
7916422 Guo et al. Mar 2011 B1
7929238 Vasquez Apr 2011 B1
7961422 Chen et al. Jun 2011 B1
8000053 Anderson Aug 2011 B1
8031423 Tsai et al. Oct 2011 B1
8054022 Ryan et al. Nov 2011 B1
8059357 Knigge et al. Nov 2011 B1
8059360 Melkote et al. Nov 2011 B1
8072703 Calaway et al. Dec 2011 B1
8077428 Chen et al. Dec 2011 B1
8078901 Meyer et al. Dec 2011 B1
8081395 Ferris Dec 2011 B1
8085020 Bennett Dec 2011 B1
8116023 Kupferman Feb 2012 B1
8145934 Ferris et al. Mar 2012 B1
8179626 Ryan et al. May 2012 B1
8189286 Chen et al. May 2012 B1
8213106 Guo et al. Jul 2012 B1
8254222 Tang Aug 2012 B1
8300348 Liu et al. Oct 2012 B1
8315005 Zou et al. Nov 2012 B1
8320069 Knigge et al. Nov 2012 B1
8351174 Gardner et al. Jan 2013 B1
8358114 Ferris et al. Jan 2013 B1
8358145 Ferris et al. Jan 2013 B1
8390367 Bennett Mar 2013 B1
8432031 Agness et al. Apr 2013 B1
8432629 Rigney et al. Apr 2013 B1
8451697 Rigney et al. May 2013 B1
8482873 Chue et al. Jul 2013 B1
8498076 Sheh et al. Jul 2013 B1
8498172 Patton, III et al. Jul 2013 B1
8508881 Babinski et al. Aug 2013 B1
8531798 Xi et al. Sep 2013 B1
8537486 Liang et al. Sep 2013 B2
8542455 Huang et al. Sep 2013 B2
8553351 Narayana et al. Oct 2013 B1
8564899 Lou et al. Oct 2013 B2
8576506 Wang et al. Nov 2013 B1
8605382 Mallary et al. Dec 2013 B1
8605384 Liu et al. Dec 2013 B1
8610391 Yang et al. Dec 2013 B1
8611040 Xi et al. Dec 2013 B1
8619385 Guo et al. Dec 2013 B1
8630054 Bennett Jan 2014 B2
8630059 Chen et al. Jan 2014 B1
8634154 Rigney et al. Jan 2014 B1
8634283 Rigney et al. Jan 2014 B1
8643976 Wang et al. Feb 2014 B1
8649121 Smith et al. Feb 2014 B1
8654466 McFadyen Feb 2014 B1
8654467 Wong et al. Feb 2014 B1
8665546 Zhao et al. Mar 2014 B1
8665551 Rigney et al. Mar 2014 B1
8670206 Liang et al. Mar 2014 B1
8687312 Liang Apr 2014 B1
8693123 Guo et al. Apr 2014 B1
8693134 Xi et al. Apr 2014 B1
8699173 Kang et al. Apr 2014 B1
8711027 Bennett Apr 2014 B1
8717696 Ryan et al. May 2014 B1
8717699 Ferris May 2014 B1
8717704 Yu et al. May 2014 B1
8724245 Smith et al. May 2014 B1
8724253 Liang et al. May 2014 B1
8724422 Agness et al. May 2014 B1
8724524 Urabe et al. May 2014 B2
8737008 Watanabe et al. May 2014 B1
8737013 Zhou et al. May 2014 B2
8743495 Chen et al. Jun 2014 B1
8743503 Tang et al. Jun 2014 B1
8743504 Bryant et al. Jun 2014 B1
8749904 Liang et al. Jun 2014 B1
8760796 Lou et al. Jun 2014 B1
8767332 Chahwan et al. Jul 2014 B1
8767343 Helmick et al. Jul 2014 B1
8767354 Ferris et al. Jul 2014 B1
8773787 Beker Jul 2014 B1
8779574 Agness et al. Jul 2014 B1
8780473 Zhao et al. Jul 2014 B1
8780477 Guo et al. Jul 2014 B1
8780479 Helmick et al. Jul 2014 B1
8780489 Gayaka et al. Jul 2014 B1
8792202 Wan et al. Jul 2014 B1
8797664 Guo et al. Aug 2014 B1
8804267 Huang et al. Aug 2014 B2
8824081 Guo et al. Sep 2014 B1
8824262 Liu et al. Sep 2014 B1
9093105 Ferris Jul 2015 B2
20010024339 Yaegashi Sep 2001 A1
20020141102 Kusumoto Oct 2002 A1
20040080858 Suzuki Apr 2004 A1
20060069870 Nicholson Mar 2006 A1
20070033433 Pecone Feb 2007 A1
20080111423 Baker et al. May 2008 A1
20090140575 McGee et al. Jun 2009 A1
20090206657 Vuk et al. Aug 2009 A1
20090206772 Bayer et al. Aug 2009 A1
20090254772 Cagno et al. Oct 2009 A1
20090289607 Mentelos Nov 2009 A1
20100035085 Jung et al. Feb 2010 A1
20100052625 Cagno Mar 2010 A1
20100066431 Carter Mar 2010 A1
20100072816 Kenkare et al. Mar 2010 A1
20100090663 Pappas et al. Apr 2010 A1
20100146333 Yong et al. Jun 2010 A1
20100202240 Moshayedi et al. Aug 2010 A1
20100302664 Heo Dec 2010 A1
20100329065 Johnston et al. Dec 2010 A1
20100332858 Trantham et al. Dec 2010 A1
20110066872 Miller et al. Mar 2011 A1
20110080768 Li et al. Apr 2011 A1
20110080782 Li et al. Apr 2011 A1
20110093650 Kwon et al. Apr 2011 A1
20110198931 Ly Aug 2011 A1
20120284493 Lou et al. Nov 2012 A1
20130120870 Zhou et al. May 2013 A1
20130148240 Ferris et al. Jun 2013 A1
Foreign Referenced Citations (1)
Number Date Country
2010151347 Dec 2010 WO
Non-Patent Literature Citations (8)
Entry
Notice of Allowance dated Mar. 30, 2015 from U.S. Appl. No. 13/316,128, 12 pages.
Non-Final Office Action dated Dec. 17, 2014 from U.S. Appl. No. 13/316,128, 10 pages.
Final Office Action dated Oct. 1, 2014 from U.S. Appl. No. 13/316,128, 46 pages.
Interview Summary dated Jun. 18, 2014 from U.S. Appl. No. 13/316,128, 3 pages.
Interview Summary dated Feb. 24, 2014 from U.S. Appl. No. 13/316,128, 3 pages.
Final Office Action dated Nov. 29, 2013 from U.S. Appl. No. 13/316,128, 12 pages.
Interview Summary dated Aug. 9, 2013 from U.S. Appl. No. 13/316,128, 3 pages.
Non-Final Office Action dated Apr. 24, 2013 from U.S. Appl. No. 13/316,128, 15 pages.
Related Publications (1)
Number Date Country
20150310886 A1 Oct 2015 US
Continuations (1)
Number Date Country
Parent 13316128 Dec 2011 US
Child 14792798 US