Power generating and control apparatus for the treatment of tissue

Information

  • Patent Grant
  • 9277955
  • Patent Number
    9,277,955
  • Date Filed
    Monday, April 11, 2011
    13 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
Apparatus, systems, and methods are provided for the generation and control of energy delivery in a dosage to elicit a therapeutic response in diseased tissue. A balloon catheter can have electrodes attached to a power generator and controller such that the balloon and electrodes contact tissue during energy treatment. Energy selectively may be applied to tissue based on measured impedance to achieve gentle heating. Calibration of the apparatus and identification of attached accessories by computing the circuit impedance prior to energy dosage facilitate regulation of power delivery about a set point. Energy delivery can be controlled to achieve substantially uniform bulk tissue temperature distribution. Energy delivery may beneficially affect nerve activity.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention is generally related to medical devices, systems, and methods which apply (or otherwise make use of) energy, as well as to other fields in which accurate control over electrical energy is beneficial. In exemplary embodiments, the invention provides an energy generating and control apparatus for the selective delivery of energy dosage during catheter-based treatment for luminal diseases, particularly for atherosclerotic plaque, vulnerable or “hot” plaque, and the like.


2. Discussion of Related Art


Physicians use catheters to gain access to, and repair, interior tissues of the body, particularly within the lumens of the body such as blood vessels. For example, balloon angioplasty and other catheters often are used to open arteries that have been narrowed due to atherosclerotic disease.


Balloon angioplasty is often effective at opening an occluded blood vessel, but the trauma associated with balloon dilation can impose significant injury, so that the benefits of balloon dilation may be limited in time. Stents are commonly used to extend the beneficial opening of the blood vessel.


Stenting, in conjunction with balloon dilation, is often the preferred treatment for atherosclerosis. In stenting, a collapsed metal framework is mounted on a balloon catheter that is introduced into the body. The stent is manipulated into the site of occlusion and expanded in place by the dilation of the underlying balloon. Stenting has gained widespread acceptance, and produces generally acceptable results in many cases. Along with treatment of blood vessels, particularly the coronary arteries, stents can also be used in treating many other tubular obstructions within the body, such as for treatment of reproductive, gastrointestinal, and pulmonary obstructions.


Restenosis or a subsequent narrowing of the body lumen after stenting has occurred in a significant number of cases. More recently, drug coated stents (such as Johnson and Johnson's Cypher™ stent, the associated drug comprising Sirolimus™) have demonstrated a markedly reduced restenosis rate, and others are developing and commercializing alternative drug eluting stents. In addition, work has also been initiated with systemic drug delivery (intravenous or oral) that may also improve the procedural angioplasty success rates.


While drug-eluting stents appear to offer significant promise for treatment of atherosclerosis in many patients, there remain many cases where stents either cannot be used or present significant disadvantages. Generally, stenting leaves an implant in the body. Such implants can present risks, including mechanical fatigue, corrosion, and the like, particularly when removal of the implant is difficult and involves invasive surgery. Stenting may have additional disadvantages for treating diffuse artery disease, for treating bifurcations, for treating areas of the body susceptible to crush, and for treating arteries subject to torsion, elongation, and shortening.


A variety of modified restenosis treatments or restenosis-inhibiting occlusion treatment modalities have also been proposed, including intravascular radiation, cryogenic treatments, ultrasound energy, and the like, often in combination with balloon angioplasty and/or stenting. While these and different approaches show varying degrees of promise for decreasing the subsequent degradation in blood flow following angioplasty and stenting, the trauma initially imposed on the tissues by angioplasty remains problematic.


More recently, still further disadvantages of dilation have come to light. These include the existence of vulnerable plaque, which can rupture and release materials that may cause myocardial infarction or heart attack.


A number of alternatives to stenting and balloon angioplasty so as to open stenosed arteries have also been proposed. For example, a wide variety of atherectomy devices and techniques have been disclosed and attempted. Despite the disadvantages and limitations of angioplasty and stenting, atherectomy has not gained the widespread use and success rates of dilation-based approaches.


Additionally, methods in the art of debulking diseased tissue to reduce or eliminate lesions, such as atherectomy and ablation, generally provide few if any means for protecting healthy tissue from being damaged through the course of treating diseased tissue.


In light of the above, it would be advantageous to provide new devices, systems, and methods for remodeling of the lumens of the body, and particularly tissue of the blood vessels. It would further be desirable to avoid significant cost or complexity while providing structures which could remodel body lumens without having to resort to the trauma of extreme dilation, damage to neighboring healthy tissue, and to allow the opening of blood vessels and other body lumens which are not suitable for stenting.


BRIEF SUMMARY OF THE INVENTION

The present invention relates to the treatment of tissue through the delivery of energy in a controlled dosage. Tissue may be targeted by applying energy, making tissue characterization analysis, and further selectively energizing a plurality of energy delivery surfaces through the use of an energy source with a controller.


In exemplary embodiments, the apparatus for power delivery may comprise a power generating circuit further comprising: a power generating source, an amplifier block, a power output set point controller, voltage and current feedback at the point of power delivery used to measure impedance at the power delivery target, a peak effective power sensor block receiving the voltage and current feedback, and a Proportional, Integral, Derivative (PID) controller receiving a signals from the power output set point controller and the peak effective power sensor block, whereby the PID controller modulates total input voltage to the power amplifier block such that the output of power from the circuit is maintained within a range about the power output set point in response to measured impedance at the power delivery target.


In some exemplary embodiments output power is Radio Frequency (RF) power while in alternate exemplary embodiments power may be in the form of ultrasound, microwave, laser, or other suitable forms of energy.


In some exemplary embodiments the apparatus for delivery may be further comprised of a catheter, wherein the catheter may be further comprised to have a plurality of energy delivery surfaces, most preferably a plurality of energy delivery surfaces mounted to an inflatable balloon.


In some exemplary embodiments there is provided a method for preferably calibrating the apparatus comprised of using a variety of loads to calculate power circuit impedance with vector network analysis such that the measure of real-time change in circuit load impedance during power generation may represent the real-time change in impedance at the power delivery target of the apparatus.


In some exemplary embodiments there is provided a method comprising identifying an accessory attached to the apparatus by repeating calibration to ascertain the type of attached accessory based on its impedance characteristics.


In some exemplary embodiments there is provided a method of applying energy in a controlled manner to achieve a substantially uniform bulk temperature distribution in target tissue.


In some exemplary embodiments there is provided a method for applying energy to nerve tissue to alter the activity of the nerve for the purpose of achieving a beneficial biological response.


Preferred embodiments of the present invention may be used in procedures for achieving therapeutic biologic effects in tissue. Most preferably, the present invention may be used at any point and time before, during, and/or after an angioplasty procedure.


In another aspect, the invention provides a power generating apparatus for treatment of a target tissue. The power generating apparatus comprises a frequency synthesizer generating a frequency signal. A power amplifier operatively couples the frequency synthesizer to a power output. The output is coupleable to the target tissue, and a power sensor is configured to receive voltage and current feedback from the target tissue, and to output measured impedance at the target tissue. A controller couples the power sensor to the power amplifier. The controller has an input for receiving a power set point and transmits, in response to the power set point and the measured impedance at the target tissue, a modulating signal to the power amplifier such that power output from the power amplifier to the target tissue per the frequency signal is maintained within a desired range about the power set point.


Optionally, the frequency synthesizer comprises a digital frequency synthesizer such as a Direct Digital Synthesizer (DDS), and a digital-to-analog converter couples the frequency synthesizer to the power amplifier. The energy output from the apparatus to the target tissue typically comprises RF energy, but may alternatively comprise microwave energy or the like. In many embodiments, the power generating apparatus is included in a system, with the system also including an elongate catheter. The catheter may have an elongate flexible catheter body with a distal end configured for advancing into a blood vessel. A connector can be coupled to a proximal end of the body, with the connector being configured to couple to the output so that, in use, the catheter couples the output to the target tissue adjacent the distal end. The impedance of the target tissue as measured by the power generating apparatus of the system is often independent of an impedance of the power generating apparatus, the catheter body, and/or the like.


In another aspect, the invention provides a calibration module for calibrating an RF system in preparation for treatment of a target tissue. The RF system comprises a power generating apparatus including an impedance measurement circuit. The module comprises a first input for receiving a first impedance from the impedance measurement circuit of the power generating apparatus. The first impedance corresponding to a low circuit load on the power generating apparatus prior to coupling of the power generating apparatus to the target tissue. A second input similarly receives a second impedance from the impedance measurement circuit but corresponding to a high circuit load on the power generating apparatus (again prior to coupling of the power generating apparatus to the target tissue). A third input receives a similar third impedance from the impedance measurement circuit between the high load and the low load. A processor is configured to calculate system impedance using the measured impedances so as to facilitate, in response to a measure of real-time changes in overall circuit load impedance during power application to the target tissue, changes in impedance at the target tissue. The overall circuit load impedance comprising impedance of the power generating apparatus and the impedance at target tissue.


Typically, the RF system further comprises a catheter or other coupling device for coupling the power generating apparatus to the target tissue. More generally, the overall circuit of the systems described herein may, during use, include a power generating circuit, a power output target circuit, and a coupling circuit, with each of these portions of the overall system circuit contributing respective impedance portions to the overall impedance of the system. To help more accurately characterize the impedance contributions of these portions of the overall circuit, and to more accurately measure impedance at the target tissue (or other power output target), the processor can be configured to calculate another system impedance of the power generating apparatus and the catheter after coupling of the catheter to the power generating apparatus and before coupling of the catheter to the target tissue.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates one embodiment of a power generation and control apparatus for use with a balloon catheter having electrodes in a power system.



FIG. 2 schematically illustrates one embodiment of an inflatable balloon for use in the apparatus of FIG. 1.



FIG. 3A schematically illustrates a cross-sectional view of the balloon of FIG. 2.



FIG. 3B schematically illustrates one embodiment of electrodes for use in tissue analysis and selective energy treatment using the apparatus of FIG. 1.



FIG. 4 schematically illustrates one embodiment of a power generation and control circuit.



FIG. 5 schematically illustrates one embodiment of a DDS down conversion section of a peak effective power sensor block shown in FIG. 4.



FIG. 6 schematically illustrates one embodiment of the DC baseband processing section of a peak effective power sensor block shown in FIG. 4.



FIG. 7 schematically illustrates one embodiment of a PID control block shown in FIG. 4.



FIG. 8 schematically illustrates a two-port network design for sensing and controlling incident and reflected power.



FIG. 9A schematically illustrates one embodiment of the amplifier block shown in FIG. 4.



FIG. 9B illustrates the “soft current limit” relationship for the amplifier block shown in FIG. 4.



FIG. 10 is an exemplary plot of maximum and minimum measured current in a tissue treatment embodiment of the apparatus shown in FIG. 1.



FIG. 11 is an exemplary plot of maximum and minimum measured impedance in a issue treatment embodiment of the apparatus shown in FIG. 1.



FIG. 12 is an exemplary plot of maximum and minimum measured voltage in a tissue treatment embodiment of the apparatus shown in FIG. 1.



FIG. 13 is an exemplary plot of measured power at the target site and at the power generator in a tissue treatment embodiment of the apparatus shown in FIG. 1.



FIGS. 14A & B schematically illustrate a substantially uniform bulk temperature distribution in luminal tissue using empirically derived energy dosage and impedance control for an embodiment of the apparatus shown in FIG. 1.



FIGS. 15A & B schematically illustrate a substantially uniform bulk temperature distribution in luminal tissue using energy dosage derived using accumulated damage theory for an embodiment of the apparatus shown in FIG. 1.



FIG. 16 schematically illustrates a method and system for calibrating a power generating system so as facilitate accurate measurement of impedance at a target power output.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention relate to a power generating and control apparatus, often for the treatment of targeted tissue in order to achieve a therapeutic effect. Preferably, the target tissue is luminal tissue, which may further comprise diseased tissue such as that found in arterial disease.


While the disclosure focuses on the use of the technology in the vasculature, the technology would also be useful for other luminal obstructions. Other anatomical structures in which the present invention may be used are the esophagus, the oral cavity, the nasopharyngeal cavity, the auditory tube and tympanic cavity, the sinus of the brain, the arterial system, the venous system, the heart, the larynx, the trachea, the bronchus, the stomach, the duodenum, the ileum, the colon, the rectum, the bladder, the ureter, the ejaculatory duct, the vas deferens, the urethra, the uterine cavity, the vaginal canal, and the cervical canal.


Devices for heating tissue using RF, ultrasound, microwave and laser energies have been disclosed in U.S. patent application Ser. No. 11/975,474, filed on Oct. 18, 2007, entitled “Inducing Desirable Temperature Effects on Body Tissue”, U.S. patent application Ser. No. 11/975,383, filed on Oct. 18, 2007, entitled “System for Inducing Desirable Temperature Effects On Body Tissue”, U.S. patent application Ser. No. 11/122,263, filed on May 3, 2005, entitled “Imaging and Eccentric Atherosclerotic Material Laser Remodeling and/or Ablation Catheter” and U.S. application Ser. No. 12/564,268, filed on Sep. 22, 2009, entitled “Inducing Desirable Temperature Effects on Body Tissue Using Alternate Energy Sources”, the full disclosures of which are incorporated herein by reference, may be combined with the present invention.


Power Generation and Control


In many embodiments of the present invention, the power generating and control apparatus may include internal circuitry 400, control software, a user interface 102, and power generation and control enclosure 101 housing the circuitry 400 and user interface 102.


Referring to FIGS. 1 and 4, the internal circuitry 400, housed within the enclosure 101, may include a direct digital synthesizer (DDS) block 401 whose digital code output may be preferably passed through digital-to-analog converter (DAC) 402. DAC 402 converts the digital code signal from DDS block 401 to an analog voltage signal 414. Voltage signal 414 and an analog modulating voltage signal 413 preferably pass through amplifier block 403, resulting in target power output 404. Measurements of voltage and current load at the target power output 404 may be measured by voltage sensor 405 and current sensor 407, preferably the signals from which may be passed through analog-to-digital converters (ADC) 406 and 408 respectively. The digital voltage signal from ADC 406 and the digital current signal from ADC 408 are preferably received by peak effective power sensor 410, where the effective power output of the power generation and control apparatus at the power delivery target 404 may be measured in real-time. Power set point control 409 is based on software-programmed operating parameters.


In a preferred embodiment shown in FIGS. 5 and 6, the peak effective power sensor block 410 may comprise a DDS 500 used to mix voltage sense signal V (from 406) and current sense signal I (from 408) down to DC baseband signals, preferably generating a voltage output with low-pass filter 502 after passing sense signal V through rounding gate 501, and a current output with low-pass filter 504 after passing sense signal I through rounding gate 503. The voltage and current output from target power output 404 include in-phase current 507, in-phase voltage 505, and quadrature current 508, quadrature voltage 506 components. It is preferable for signals within the circuit 410 to comprise in-phase and quadrature components because blocks within the circuit 410 may then recognize the instantaneous amplitude, frequency, and phase shift between the components of a signal and between the several signals passing through the blocks of circuit 410. The digital output signals from low-pass filter 502 and low-pass filter 504 of peak effective power sensor 410 may then be transmitted to the power calculation circuits shown in FIG. 6.


Now referring to FIG. 6, voltage amplitude may be calculated by summing the squares of the in-phase voltage signal 505 and the quadrature voltage signal 506, and passing the sum through square root circuit 602. Current amplitude may be calculated by summing the squares of the in-phase current signal 507 and the quadrature current signal 508, and passing the sum through square root circuit 606. Uncorrected power may preferably be calculated by multiplying voltage amplitude and current amplitude.


The phase of the voltage signal may preferably be calculated by passing the quadrature component 506 of the voltage signal and the in-phase component 505 of the voltage signal through inverse tangent gate 603. Similarly, the phase of the current signal may preferably be calculated by passing the quadrature component 508 of the current signal and the in-phase component 507 of the current signal through inverse tangent gate 607. Cosine gate 608 preferably receives the difference output from inverse tangent gates 603 and 607 such that a power factor correction may be calculated. The peak effective power may be calculated by multiplying the uncorrected power by the output of the cosine gate 608 and rounding the result with rounding gate 609.


Although FIGS. 5 and 6 represent a most preferred embodiment, peak effective power may be calculated using other means, such as multiplying the instantaneous RF voltage and RF current waveforms together and integrating the resulting signal to obtain an average value; the means for calculating peak effective power being selected from any available means suitable for the type of power used and suitable for the components comprising the circuitry of the apparatus disclosed and described herein.


Now referring to FIGS. 9A and 9B, amplifier block 403 may include variable gain amplifier 901, receiving voltage input 414 from DDS block 400 and modulating voltage signal 413 from PID controller 411, and power amplifier 902. Power amplifier 902 has a “soft current limit” as shown in FIG. 9B, whereby the available output voltage decreases in a tailored manner as the required output current is increased. The advantage of power amplifier 902 having a soft current limit is that the maximum output power delivered can be inherently limited by the characteristic of the current limit circuit, wherein the current limit circuit may provide a substantially constant maximum available output power across a broad range of load impedances, most preferably exceeding about a decade of load impedance. An additional advantage of the soft current limit scheme is that, when implemented using switched mode power supply technology, extremely high power amplifier efficiencies can be achieved across a broad range of load impedances, preferably exceeding about a decade of load impedance.


Control of target power output 404 may be preferably achieved through power set point control 409, and peak effective power sensor block 410 passing signals to PID controller 411 that may ultimately produce modulating voltage signal 413 passing into amplifier block 403. Power output set point control 409 may provide a software control signal based on programmed operating parameters, which in many embodiments may be set to promote remodeling of diseased tissue in a manner that avoids damage to surrounding healthy tissue. By taking real-time load measurements in-phase and in quadrature at power output 404, circuit 400 is thereby able to characterize and respond to load variations by modulating output such that output may vary within a relatively small range from set point. Power output variation about the set point may be about ±2%, however, preferred embodiments may regulate output variation in other ranges, such as, about ±5%, about ±10%, about ±15%, and about ±20% or greater.


Now referring to FIGS. 4 and 7, PID controller 411 preferably receives output signals from power output set point 409 and peak effective power output block 410. PID controller 411 may comprise hardware and or software modules which perform proportional 701 (“P”), integral 702 (“I”), and derivative 703 (“D”) calculations Kpe(t), Ki 0τe(τ)dτ, and Kdde(τ)/dt, respectively, which may be expressed in the ideal form of the equation Vm(t)=Kpe(t)+Ki 0τe(τ)dτ+Kdde(τ)/dt, where, Vm(t) represents the computed modulating voltage 413 as a function of time in response to measured power at the output 404, the peak effective power calculation 410, and power set point 409.


Wherein:


Kpe(t) represents the proportional reaction to error in the measured/calculated power to the desired power;


Ki 0τe(τ)dτ represents the integral reaction to the sum of the errors in the measured/calculated power to the desired power, where τ represents the period of time integrated over and e(t) represents the calculated power at the present time t; and,


Kdde(τ)/dt represents the derivative reaction to the rate of change in the error of the measured/calculated power to the desired power.


In the most preferred embodiment, the PID equation may be expressed in the more common “standard” or “industrial” form Vm(t)=Kp[e(t)+1/Ti 0τe(τ)dτ+Tdde(τ)/dt], where, constants Ki and Kd are replaced with Ti and Td, representing the integral and derivative time values respectively. The standard form provides the advantage of simplifying the derivation and use of constants in the control equation.


In a preferred embodiment, time interval “t” of about 160 microseconds exists between power measurements and calculations of power at the target power output 404. The output calculation of the PID control loop of 411 may be referred to as the “manipulated variable” or modulating voltage 414 that is preferably used to drive amplifier block 403 to regulate output power closely about a set point. The constants Ki, Kp, and Kd help to define how quickly circuit 400 may respond to increasing errors in output 404, or how quickly to modulate amplifier block 403 to reduce error in output at 404 as compared to set point 409. The power calculation 704 is preferably based on the quadrature 506 and in-phase 505 voltage components, and the quadrature 507 and in-phase 508 current components of the output of DDS block 401.


Now referring to FIGS. 1 and 8, the overall apparatus 100, which includes both the power generator and control apparatus of enclosure 101 and an attached accessory 100′ (which, for example, may comprise the catheter assembly 108 and connector 103 of FIG. 1), may utilize a communication schema such as that shown in FIG. 8. Although FIG. 8 depicts a preferred embodiment utilizing a two-port network 800, other numbers of communication ports may be employed depending on the desired arrangement for a given power control application. In general there are usually significant RF losses, reflections and phase shifts between voltage sensor 405, current sensor 407 and the target load (tissue) 404. These RF losses, reflections and phase shifts cause significant deviations in the actual power delivered to the load (tissue) 404 and additionally cause significant errors in the measurement of load (tissue) impedance. In a preferred embodiment, generalized 2-port reflectometry is used to compensate for all the RF losses, reflections and phase shifts in the RF path, both with respect to accurately controlling load (tissue) power and accurately measuring load (tissue) impedance. For this purpose, the two-port network 800 may comprise a series of control computations utilizing incident and reflected power waves between power generator and control apparatus of enclosure 101, attached accessory 100′, and the load at the target power output 404, preferably resulting in controlled voltage and current output 800V&I by power generator and control apparatus of enclosure 101.


Incident power waves are denoted by subscript “an”, reflected power waves are denoted by subscript “bn”, incident and reflected power at 404 are denoted by “aL” and “bL” respectively. For the purpose of clarity in the following description of the mathematic operations represented in FIG. 8, mathematic equations shall omit the descriptive element number “800” shown in FIG. 8 to simplify the meaning of the equations described.


The two-port network definition of scattering parameters in terms of incident and reflected power waves (an and bn, respectively) are defined as:










a
1

=


1
2




(



V
1



Z
o



+


I
1




Z
o




)

.





1






b
1

=


1
2




(



V
1



Z
o



-


I
1




Z
o




)

.





2






a
2

=


1
2




(



V
2



Z
o



+


I
2




Z
o




)

.





3






b
2

=


1
2




(



V
2



Z
o



-


I
2




Z
o




)

.





4







Wherein, a1 and b1 are the incident and reflected power waves at generator 101, and a2 and b2 are the incident and reflected power waves at the load (electrodes 112, for example).


The S-Parameter matrix for the two-port network along with expanded equations may be defined as:










(




b
1






b
2




)

=


(




S
11




S
12






S
21




S
22




)




(




a
1






a
2




)

.





5






b
1

=



S
11



a
1


+


S
12




a
2

.






6






b
2

=



S
12



a
1


+


S
22




a
2

.






7






The complex impedances at the generator 101, which may comprise circuit 400, and at the load 404 may be respectively defined as rho (ρ) and gamma (Γ). Rho and gamma preferably may then be defined using the incident and reflected power waves as:









ρ
=



b
1


a
1


.




8





Γ
=



a
2


b
2


.




9






The reverse transform from rho space to gamma space may now be derived using the relationships in Equations 1 through 9, as shown below:










1
Γ

=



b
2


a
2


=


S
22

+




S
12



a
1



a
2


.






10







1
Γ

-

S
22


=




S
12



a
1



a
2


.




11






1


1
Γ

-

S
22



=



a
2



S
12



a
1



.




12







a
2


a
1


=



S
12

(

1


1
Γ

-

S
22



)

.




13





ρ
=



b
1


a
1


=


S
11

+




S
12



a
2



a
1


.






14





ρ
=


S
11

+



S
12
2



(

Γ

1
-


S
22


Γ



)


.





15





ρ
=


S
11

+



S
12
2



(

Γ

1
-


S
22


Γ



)


.





16





ρ
=





S
11



(

1
-


S
22


Γ


)


+


S
12
2


Γ



1
-


S
22


Γ



.




17





ρ
=




S
11

+


(


S
12
2

-


S
11



S
22



)


Γ



1
-


S
22


Γ



.




18






Equation 18 provides the explicit form of the reverse transform from rho space to gamma space. The scattering parameters may be grouped and preferably defined as reverse transform coefficients A, B, and D in the following form:

A=S11  19.
B=S122−S11S22  20.
D=−S22  21.


Equation 18 may be simplified by substituting coefficients A, B, and D into the preferred explicit form of the reverse transform, thereby providing a preferred general form of the reverse transform:









ρ
=



A
+

B





Γ



1
+

D





Γ



.




22






Using Equation 22, and solving for gamma, the forward transform may be derived in preferred form:










ρ
+

D





Γρ


=

A
+

B






Γ
.






23







D





Γρ

-

B





Γ


=

A
-

ρ
.





24






Γ


(


D





ρ

-
B

)


=

A
-

ρ
.





25





Γ
=



A
-
ρ



D





ρ

-
B


.




26





Γ
=




(

-

A
B


)

+


1
B


ρ



1
+


(

-

D
B


)


ρ



.




27






In a similar fashion as Equations 19 through 21, forward transform coefficients A′, B′, and D′ may preferably serve to simplify the equation between gamma and rho space as shown:










A


=


(

-

A
B


)

.




28






B


=


(

1
B

)

.




29






D


=


(

-

D
B


)

.




30






Equation 12 may be simplified by substituting coefficients A′, B′, and D′ into the preferred explicit form of the forward transform, thereby providing a preferred general form of the forward transform:









Γ
=




A


+


B



ρ



1
+


D



ρ



.




31






Forward power at the load 404 may be preferably defined as the magnitude of the square of the power wave incident on load 404:

PFL=|aL|2=|b2|2  32.


Similarly, the reverse power from load 404 may be defined as the magnitude of the square of the power wave reflected by load 404:

PRL=|bL|2=|a2|2  33.


Through the relationships defined above, the power absorbed at the target power output load 404, may be defined as incident power minus reflected power through the relationships:










P
L

=


P
AL

-


P
RL

.





34






P
L

=





a
L



2

-





b
L



2

.





35






P
L

=





a
L



2




{

1
-





b
L



2





a
L



2



}

.





36







and, substituting Equations 7, 9, and 32 into Equations 34 through 36, provides the expanded form of the relationships:

PL=|aL|2{1−|Γ|2}  37.
PL=PFL{1−|Γ|2}  38.
PL=|b2|2(1−|Γ|2)  39.
PL=|S12a1+S22a2|2(1−|Γ|2)  40.


In the most preferred two-port network, incident and reflected power at port 1 may now be defined. Incident power at 800a1 may preferably be defined as the magnitude of the square of the power wave incident at 800a1:

PF1=|a1|2  41.

and, reflected power at 800b1 may preferably be defined as the magnitude of the square of the power wave reflected at 800b1:

PR1=|b1|2  42.


Power absorbed at port 1 (“P1”) may be defined, using Equations 41 and 42, as the incident power at port 1 minus the reflected power at port 1:

P1=|a1|2−|b1|2=|a1|2(1−|ρ|2)  43.

which, may also be defined as the magnitude of the absorbed voltage multiplied by the magnitude of the absorbed current multiplied by the cosine of the angle between the absorbed voltage and absorbed current:










P
1

=




V





I






cos





ϕ




=





a
1



2




(

1
-



ρ


2


)

.






44









a
1



2

=





V





I






cos





ϕ





(

1
-



ρ


2


)


.




45






Substituting Equation 9 into Equation 7 and solving for b2 may define the following relationships defined for 800b2 in FIG. 8:











b
2

-


S
22



a
2



=


S
12




a
1

.





46







b
2



(

1
-


S
22




a
2


b
2




)


=


S
12




a
1

.





47







b
2



(

1
-


S
22


Γ


)


=


S
12




a
1

.





48






b
2

=




S
12



a
1



(

1
-


S
22


Γ


)


.




49






The power at load 404 in FIG. 8 may now be defined by substituting Equation 49 into Equation 39 and expanding the numerator by substituting Equation 45 into Equation 51:










P
L

=







S
12



a
1



(

1
-


S
22


Γ


)




2




(

1
-



Γ


2


)

.





50






P
L

=







S
12



2






a
1



2






(

1
-


S
22


Γ


)



2





(

1
-



Γ


2


)

.





51






P
L

=







S
12



2




V





I






cos





ϕ





(

1
-



Γ


2


)




(

1
-



ρ


2


)






(

1
-


S
22


Γ


)



2



.




52






In a preferred embodiment of the present invention, measurement of known impedances in circuit 400 of FIG. 4 may be made in order to define the transform coefficients A, B, D and A′, B′, D′, as can be understood with reference to FIG. 16. Most preferably, three measurements are taken at known circuit loads 404, most preferably, impedance ZρO is taken at load of about 1000Ω, impedance ZρS is taken at a load of about 50Ω, and impedance ZρL is taken at a load of about 150Ω, where the complex voltage and current measurements (800V&I of FIG. 8) at power generator and control apparatus 101 are used to calculate impedances ZρO, ZρS, and ZρL using Equation 53 where SYSTEMIMPEDANANCE is assigned the value 150Ω. However, known circuit loads and assigned SYSTEMIMPEDANCE to compute ZρO, ZρS, and ZρL may be performed at other values ranging between about zero Ohms and about infinite Ohms. As shown in FIG. 16, such a calibration method may begin 1601 prior to coupling of the power generation components to the target tissue, and ideally before coupling of attachment 100′ to the power generation circuit 400 of enclosure 101. Three differing loads are applied with impedances being taken 1602, 1603, and 1604 at each load. These measurements are taken with the components of circuit 400, and are input into a hardware and/or software module for the system characterization calculations described herein.










Z

ρ





N


=



(



V
N


I
N


-

SYSTEM
IMPEDANCE


)


(



V
N


I
N


+

SYSTEM
IMPEDANCE


)


.




53






Solving Equation 53 may preferably involve a preliminary set of impedance measurements most preferably using network analysis, most preferably vector network analysis, to preferably provide impedances ZΓO, ZΓS, and ZΓL at the respective loads of about 1000Ω, about 50Ω, and about 150Ω. The six preferred impedance measurements ZΓO, ZΓS, ZΓL ZρO, ZρS, and ZρL may then preferably be used to calculate the transform coefficients A′, B′, D′:










D


=





(


Z

Γ





S


-

Z

Γ





O



)

*

(


Z

ρ





O


-

Z

ρ





L



)


-


(


Z

Γ





O


-

Z

Γ





L



)

*

(


Z

ρ





S


-

Z

ρ





O



)









(



Z

Γ





O


*

Z

ρ





O



-


Z

Γ





S


*

Z

ρ





S




)

*

(


Z

ρ





O


-

Z

ρ





L



)


-







(



Z

Γ





L


*

Z

ρ





L



-


Z

Γ





O


*

Z

ρ





O




)

*

(


Z

ρ





S


-

Z

ρ





O



)






.




54






B


=




Z

Γ





O


-

Z

Γ





L


-

D
*

(



Z

Γ





L


*

Z

ρ





L



-


Z

Γ





O


*

Z

ρ





O




)




(


Z

ρ





O


-

Z

ρ





L



)


.




55






A


=


Z

Γ





S


-

B
*

Z

ρ





S



+

D
*


(


Z

Γ





S


*

Z

ρ





S



)

.






56






The value of the coefficients preferably defined by Equations 54 through 56 may now be preferably used to calculate actual load impedances at target power output 404 of FIG. 4 using Equation 31, and the actual power applied at target power output 404 using Equation 52, thereby preferably providing a calculated modulating output voltage 413 from PID controller 411 such that output at 404 is accurately regulated about a set point based on real-time changes in load, and power delivery is maintained within a range as described herein.


In preferred embodiments actual power output at the power delivery point is most preferably based on measured complex impedance angle of applied load at output 404. Wherein, the load most preferably denotes tissue and the complex impedance angle preferably denotes the health or disease of tissue and/or the change in tissue state through the course of the use of apparatus 100. Furthermore, because impedance is a function of capacitance and resistance, real-time tissue capacitance and real-time tissue resistance may also be known based on measured data through the relationship between impedance, capacitance, and resistance:









Z
=


(

SYSTEM
IMPEDANCE

)

*



(

1
+
Γ

)


(

1
-
Γ

)


.





57






Recalling that impedance may have real and imaginary components, the relationship in Equation 57 may be further expressed and developed as follows:









Z
=


1

(


1
R

+







C


)


.




58





Z
=


1

(


1
R

+







C


)


*



(

1
-







CR


)


(

1
-







CR


)


.





59





Z
=



R
-








CR
2




(

1
+


ω
2



C
2



R
2



)


.




60






Z
real

=


R

(

1
+


ω
2



C
2



R
2



)


.




61






Z
imaginary

=




-








CR
2



(

1
+


ω
2



C
2



R
2



)


.




62







where ω denotes the natural frequency of the circuit, C denotes real-time tissue capacitance as measured at the load, and R denotes real-time tissue resistance as measured at the load.


Solving Equation 61 for C2 and substituting Equation 63 into Equation 62, and solving Equation 64 for C:










C
2

=



R
-

Z
Real



(


ω
2



R
2



Z
Real


)


.




63






Z
Imaginary

=




-








CR
2



(

1
+


ω
2



R
2

*


(

R
-

Z
Real


)


(


ω
2



R
2



Z
Real


)




)


.




64





C
=



-

Z
Imaginary




Z
Real


ω





R


.




65






By solving Equation 65 for ω2C2R2 and substituting into Equation 61, the simplified relationship may be obtained:










Z
real

=


R

(

1
+


Z
Imaginary


Z
Real



)


.




66






Now, the real-time tissue resistance may be determined through the known value of impedance Z from Equation 57 by simplifying Equation 66 and solving for R:









R
=


Z
Real

*


(

1
+


(


Z
Imaginary


Z
Real


)

2


)

.





67







and real-time tissue capacitance may be determined by substituting Equation 67 into Equation 65 and solving for C:









C
=



-

Z
Imaginary




Z
Real
2



ω


(

1
+


(


Z
Imaginary


Z
Real


)

2


)




.




68






In the most preferred embodiments of the system or overall apparatus 100 of FIG. 1 may include circuit 400 of FIG. 4 and coupling apparatus or accessory 100′, which may together be employed in the characterization and selective treatment of tissue to promote a therapeutic response. The characterization and selective treatment of tissue based on impedance, imaging modalities, and energy modalities are described by U.S. Pat. No. 7,291,146 to Steinke, et al., issued on Nov. 6, 2007, entitled “Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material”, and the above referenced U.S. application Ser. Nos. 11/392,231, 11/975,651, 11/617,519, 11/975,474, 11/975,383, 12/564,268, the full disclosures of which are incorporated herein by reference. In the most preferred embodiments, power output is RF energy, however, ultrasound, laser, microwave, and the like as disclosed and described in the preceding references, are also within the scope of the present invention.


Now referring to FIG. 4, in some embodiments DDS block 401, power output set point control 409, and peak effective power sensor block 410 comprise a field programmable gate array without an embedded processor. In other embodiments where a field programmable gate array comprises an internal processor, DDS block 401, power output set point control 409, peak effective power sensor block 410, and PID controller may be comprised within the field programmable gate array.


In some embodiments, generator and control apparatus 101 may include a processor or be coupled to a processor to control or record treatment. The processor will typically comprise computer hardware and/or software, often including one or more programmable processor units running machine readable program instructions or code for implementing some, or all of, one or more of the embodiments and methods described herein. The code will often be embodied in a tangible media such as a memory (optionally a read only memory, a random access memory, a non-volatile memory, or the like) and/or a recording media (such as a floppy disk, a hard drive, a CD, a DVD, a non-volatile solid-state memory card, or the like). The code and/or associated data and signals may also be transmitted to or from the processor via a network connection (such as a wireless network, an ethernet, an internet, an intranet, or the like), and some or all of the code may also be transmitted between components of a catheter system and within the processor via one or more bus, and appropriate standard or proprietary communications cards, connectors, cables, and the like will often be included in the processor. The processor may often be configured to perform the calculations and signal transmission steps described herein at least in part by programming the processor with the software code, which may be written as a single program, a series of separate subroutines or related programs, or the like. The processor may comprise standard or proprietary digital and/or analog signal processing hardware, software, and/or firmware, and may preferably have sufficient processing power to perform the calculations described herein during treatment of the patient, the processor optionally comprising a personal computer, a notebook computer, a tablet computer, a proprietary processing unit, or a combination thereof. Standard or proprietary input devices (such as a mouse, keyboard, touchscreen, joystick, etc.) and output devices (such as a printer, speakers, display, etc.) associated with modern computer systems may also be included, and processors having a plurality of processing units (or even separate computers) may be employed in a wide range of centralized or distributed data processing architectures.


In the most preferred embodiments control software for apparatus 100 may use a client-server schema to further enhance system ease of use, flexibility, and reliability. “Clients” are the system control logic; “servers” are the control hardware. A communications manager delivers changes in system conditions to subscribing clients and servers. Clients “know” what the present system condition is, and what command or decision to perform based on a specific change in condition. Servers perform the system function based on client commands. Because the communications manager is a centralized information manager, new system hardware preferably may not require changes to prior existing client-server relationships; new system hardware and its related control logic may then merely become an additional “subscriber” to information managed through the communications manager. This control schema preferably provides the benefit of having a robust central operating program with base routines that are fixed; preferably no change to base routines may be necessary in order to operate new circuit components designed to operate with the system.


Accessories for Tissue Treatment


In some embodiments, the overall system or apparatus 100 of FIG. 1 may, along with the power generation apparatus, further include attached accessories, which most preferably may include an intraluminal catheter 108 having an energy delivery surface comprised therein.


In many embodiments, an energy delivery surface may preferably comprise a plurality of spaced electrodes 112. The power generating apparatus 101 as shown in FIG. 1 is operatively coupled to the plurality of electrodes by connector 103 so as to preferably allow the selective energizing of selected electrodes.


In many embodiments, the energy delivery surface comprises a plurality of electrodes 112 disposed about an expandable balloon 200, as shown in FIG. 3A, so as to define a plurality of remodeling zones in the target tissue when the balloon is expanded to come in contact with tissue such as that of a lumen.


Now referring to FIGS. 1 and 2, one exemplary embodiment of a catheter system inducing desirable temperature effects on tissue is shown. The catheter system includes a balloon catheter 108 having a catheter body 109 with a proximal end 107 and a distal end 111. Catheter body 109 is flexible and defines a catheter axis 113, and may include one or more lumens, such as a guidewire lumen 206 and an inflation lumen 201. Still further lumens may be provided if desired for other treatments or applications, such as perfusion, fluid delivery, imaging, or the like. Catheter 108 includes an inflatable balloon 200 adjacent distal end 111 and a housing 106 adjacent proximal end 107. Housing 106 includes a first connector 104 in communication with guidewire lumen 206 and a second connector 105 in fluid communication with inflation lumen 201. Inflation lumen 201 extends between balloon 200 and second connector 105. Both first and second connectors 104 and 105 may optionally comprise a standard connector, such as a LUER-LOC™ connector. A distal tip may include an integral tip valve to allow passage of guidewires, and the like.


The housing 106 may also accommodate an electrical connector 103, which may preferably include a plurality of electrical connections, each electrically coupled to electrodes 112 via conductors 203. This arrangement preferably allows the electrodes 112 to be easily energized, the electrodes often being energized by an enclosed controller and power source 101, which may preferably produce energy in the form of monopolar or bipolar RF energy, microwave energy, ultrasound energy, or other such suitable forms of energy. In one such embodiment, the electrical connector 103 is coupled to circuit 400 of FIG. 4 that in its most preferable form may produce RF energy in a manner that may allow energy to be selectively directed to electrodes 112 as shown in FIG. 3B. When monopolar RF energy is employed, patient ground may, for example, be provided by an external electrode or an electrode on catheter body 109.


Now referring to FIGS. 3B and 1, the electrodes 112 are preferably coupled with the surrounding tissue 300, such that energy may be transmitted between the electrodes 112A, 112B, 112C, 112D and the tissue 300 so as to preferably initiate a biological response. The balloon 200 will typically comprise distal end 111 of a balloon catheter 108, and the energy delivery surfaces, such as electrodes 112, on the balloon 200 will generally be energized using an energy source coupled to proximal end 107 of catheter 108. An energy conduit 203 may extend along a catheter body 109 between the proximal end 107 and balloon 200, with the energy conduit 203 often comprising an electrical conductor for applying RF energy or the like, a light conductor such as a fiber optic filament running along a lumen in the catheter body so as to conduct laser or other light energies, or the like.


As shown in FIG. 3B, electrodes 112 may preferably be positioned circumferentially around balloon 200. Energy 301, most preferably RF energy, may in the most preferred embodiment be directed to adjacent pairs of electrodes 112A and 112C, or 112A and 112D, or any combination of electrodes 112A-112D, treating both the healthy portion of tissue 303 and diseased portion of tissue 302 within the surrounding tissue 300. This arrangement preferably creates an energy path 301 that may deliver energy or heat (“tissue remodeling energy”) in particular treatment zones or segments to the tissue 300 between the electrode pairs 112A-112D (“remodeling zones”) having a volume between the electrode pairs 112A-112D at a specific depth. Using different combinations of electrode pairs 112A-112D may reduce or eliminate gaps between the remodeling zones by using overlapping pairs. Using electrode pairs 112A-112D with bipolar energy preferably may thereby provide improved performance compared to a monopolar approach. Diseased tissue 302 is known to have higher electrical resistivity than healthy tissue 303. By using pairs of electrodes 112 in a bipolar system, such as 112A and 112B, tissue remodeling energy may preferably pass through healthy tissue 303, diseased tissue 302, or a combination thereof such that remodeling zones may be created. Any number of electrodes 112 may be used in different patterns or arrays to create any number of remodeling zones. Power generator and control apparatus 101 may apply constant power, constant voltage, constant current, or modulate to produce a constant temperature, whichever has the most advantage for the type of tissue and the desired therapeutic response.


Balloon 200 is illustrated in more detail in FIG. 2. Balloon 200 generally includes a proximal portion 202 coupled to inflation lumen 201 and a distal portion 205 coupled to guidewire lumen 206. Balloon 200 expands radially when inflated with a fluid or a gas. In some embodiments, balloon 200 may be a low-pressure balloon pressurized to contact the tissue 300. In other embodiments, balloon 200 may an angioplasty balloon capable of higher pressure to both heat the tissue 300 and expand the tissue 300 lumen. Balloon 200 may comprise a compliant or non-compliant balloon having folds to facilitate reconfiguring the balloon from a radially expanded, inflated configuration to a low profile configuration, particularly for removal after use.


Electrodes 112 are mounted on a surface of balloon 200, with associated conductors 203 extending proximally from the electrodes 112. Electrodes 112 may be arranged in many different patterns or arrays on balloon 200. The system may be used for monopolar or bipolar application of energy. For delivery of monopolar energy, a ground electrode may be used either on the catheter 108 shaft or on the patient's skin, such as a ground electrode pad. For delivery of bipolar energy, adjacent electrodes 112 may be axially offset to allow bipolar energy to be directed between adjacent circumferential (axially offset) electrodes 112. In other embodiments, electrodes 112 may be arranged in bands around balloon 200 to allow bipolar energy to be directed between adjacent distal and proximal electrodes 112.


Tissue Sensing and Selective Delivery of Therapeutic Energy Dosage


In many embodiments electrodes 112 may be energized to assess and then selectively treat targeted tissue 300, 302, 303 to preferably achieve a therapeutic result. For example, tissue signature may be used to identify tissue treatment regions with the use of impedance measurements. Impedance measurements utilizing circumferentially spaced electrodes 112 within a lumen, such as those shown in FIG. 3B, may be used to analyze tissue 300, 302, 303. Impedance measurements between pairs of adjacent electrodes 112 (and/or between pairs of separated electrodes 112A-112D) may differ when the current path passes through diseased tissue 302, and when it passes through healthy tissues 303 of a luminal wall for example. Hence, impedance measurements between the electrodes 112 on either side of diseased tissue 302 may indicate a lesion, while measurements between other pairs of adjacent electrodes 112 may indicate healthy tissue 303. Other characterization, such as intravascular ultrasound, optical coherence tomography, or the like may be used to identify regions to be treated either in conjunction with, or as an alternate to, impedance measurements. In some instances, it may be desirable to obtain baseline measurements of the tissues 300, 302, 303 to be treated preferably to help differentiate adjacent tissues, as the tissue signatures and/or signature profiles may differ from person to person. Additionally, the tissue signatures and/or signature profile curves may be normalized to facilitate identification of the relevant slopes, offsets, and the like between different tissues. Any of the techniques disclosed in U.S. Patent Application No. 60/852,787, filed on Oct. 18, 2006, entitled “Tuned RF Energy and Electrical Tissue Characterization For Selective Treatment Of Target Tissues”, U.S. Provisional Application No. 60/921,973, filed on Apr. 4, 2007, entitled “Tuned RF Energy and Electrical Tissue Characterization For Selective Treatment Of Target Tissues”, the full disclosures of which are incorporated herein by reference, may be combined with the present invention.


The power generator and control apparatus 101 may be employed to selectively energize the electrodes 112 in a range of power from about 0.001 Watts to about 50 Watts, a preferred exemplary range of about 0.25 to 5 Watts average power for about 1 to about 180 seconds, or with about 4 to about 45 Joules. Higher energy treatments are done at lower powers and longer durations, such as about 0.5 Watts for about 90 seconds or about 0.25 Watts for about 180 seconds. Most treatments in the 2 to 4 Watt range are performed in about 1 to about 4 seconds. If using a wider electrode 112 spacing, it would be preferable to scale up the average power and duration of the treatment, in which case the average power could be higher than about 5 Watts, and the total energy could exceed about 45 Joules. Likewise, if using a shorter or smaller electrode pair 112A-112D, it would be preferable to scale the average power down, and the total energy could be less than about 4 Joules. The power and duration are calibrated to be less than enough to cause severe damage, and most preferably, particularly less than enough to ablate diseased tissue within a blood vessel.


Suitable power ranges for providing the desired heating of the target tissue, and/or for limiting of heating to collateral tissues, may depend at least in part on the time for which energy is applied, on the electrode 112 (or other energy transmitting surface) geometry, and the like. First, when applying the treatments described herein to tissues with electrodes, there may be a preferred load impedance range for the tissues within the circuit so as to avoid having to apply voltages and/or currents that are outside desirable ranges, particularly when applying powers within ranges described herein. Suitable load impedance ranges would generally be within a range from about 20 Ohms to about 4500 Ohms, more typically being in a range from about 40 Ohms to about 2250 Ohms, and preferably being in a range from about 50 to about 1000 Ohms.


The load impedance of the tissue within the circuit may depend on the characteristics of the tissue, and also for example on the geometry of electrodes that engage the tissue, as the electrode geometries and polarity influence the geometry of the tissue effectively included within the circuit. The tissue to which energy is directed may have a specific conductivity in a range from about 0.2 Siemens per meter to about 0.5 Siemens per meter. Different types of diseased tissues may have specific conductivities in different ranges, with some types of diseased tissues having specific conductivities in a range from about 0.2 Siemens per meter to about 0.35 Siemens per meter, while others fall within a range from about 0.35 Siemens per to about 0.5 Siemens per meter.


Desired power, energy, and time of the treatment are likewise inter-related, and may also be at least related with electrode 112 geometry. Speaking very generally, lower power treatments applied for long times tends to result in treatments with relatively higher total energies, while higher power treatments for shorter times tends to result in lower energy treatments. More specifically, at relatively low average power (1 W or less) the total energy delivery per treatment may range from about 8 to about 45 Joules. At higher power (more than 1 W), the total energy delivery per treatment may range from about 4 to about 15 Joules. If the electrode spacing were doubled, power may increase by four times. The power transmitted into the tissue can be calibrated and scaled to the particular electrode configuration, often in order to keep the power and energy density in a desirable range. Exemplary power ranges may be, for example, from about 1 to about 5 Watts. The duration for the lower power settings typically varies from about 1 to about 8 seconds. Very low power settings of less than about 1 Watt are also possible, using durations much longer than about 10 seconds.


It is also possible to scale the power settings significantly by varying the electrode 112 configuration. If, for instance, the inner edge-to-edge spacing of the electrodes 112 is increased, roughly 4 times the power may be applied because the volume of tissue becomes roughly 4 times larger. As such, electrode configurations different from the exemplary embodiments described herein could be used within a power range of about 4 to about 20 Watts. Shortening the electrodes 112, and thus shortening and reducing the volume of the remodeling zones, would also affect the magnitude of the power that is appropriate to apply to the tissue volume.


In order to quantify this complex set of relationships, and bound the space within which the exemplary apparatus can operate, an empirical relationship between safe values of several of these parameters may be generated and provided graphically, in table form, or by a mathematical relationships. An exemplary equation describing a particularly advantageous relationship is:

power=bx2Lt−0.59

where b is a parameter in the range of 0.2 to 0.6, x is the inner edge-to-edge spacing of the electrodes 112 in millimeters, L is the length of the electrodes 112 in millimeters (and also the approximate length of the remodeling zone), the power is in Watts, and t is time in seconds. b has units of (Watts/mm3)*(seconds0.59). Exemplary treatments in the range described by this equation include treatments such as 4 Watts for 2 seconds, 3 Watts for 3 seconds, 2 Watts for 4 seconds, and 1 Watt for 12 seconds.


Calibration of circuit 400 may be performed by taking three measurements at known circuit loads 404, most preferably, impedance ZρO is taken at load of about 1000Ω, impedance ZρS is taken at a load of about 50Ω, and impedance ZρL is taken at a load of about 150Ω, where the complex voltage and current measurements (800V&I of FIG. 8) at power generator and control apparatus 101 are used to calculate impedances ZρO, ZρS, and ZρL. The preferred method of calibration may allow for accurate real-time measurement of impedance before and during treatment of tissue such that impedance may provide a means for tissue characterization and treatment control as disclosed and described herein.


Calibration of apparatus 100 may further comprise the step of identifying an accessory attached to the apparatus by repeating calibration to ascertain the type of attached accessory based on its impedance characteristics. For example, in FIG. 1 where the attached accessory comprises catheter 108 further comprised of electrodes 112, the number of electrodes 112 present may be determined by multiplexed sensing of the number of electrode circuits (such as electrodes 112 and conductors 203 as shown in FIG. 2) within the catheter 108 operably attached by connector 103 to power generator and control apparatus 102. Referring once again to FIGS. 1, 4, 8, and 16, after calibration of power generator circuit 400 without accessory 100′ (typically catheter 108), the catheter can be attached to the power generator circuit 1603 and three impedance measurements can again be taken of the overall apparatus 100.


A number of advantages may be gained by preferably automatically reperforming calibration. For example, by having an entire apparatus assembly 100 calibrated, rather than a single subcomponent such as the various elements of circuit 400, the impedance measurements taken at load 404 may remain an accurate indicator for tissue characterization and power control irrespective of the attached accessory. Further, the sensed configuration of an attached accessory may correspond to a programmed treatment routine such that the dependencies of assorted configurations of electrodes 112 may correspond to the preferred duration and energy delivery parameters disclosed and described herein. Even further, preprogrammed recognition of attached accessories prevents the improper use of an accessory or the use of an incompatible attachment. Even further, the ability to detect the type of attached accessory may allow for a robust and simple accessory identification method that avoids complications associated with other identification methods such as radio frequency identification that may degrade during sterilization or interfere with the operation of other equipment. Moreover, a self-identification method may reduce or eliminate the need for user commands thereby improving ease of use and minimizing issues such as language barriers between user and apparatus. Additionally, the use of a graphical user interface 102 may be used as a further means to eliminate or reduce language dependencies and increase ease of use.


In many embodiments the power generation and control apparatus 101 may be programmed to operate within a range of impedance values measured at the power delivery target 404 such that above or below set limits the system may automatically shut down. For example, the apparatus 101 may be programmed to operate over a range of load impedance from about 5 Ohms to about 1000 Ohms, having a most preferred range of about 50 Ohms to about 500 Ohms, wherein the low end of the range may be suggestive of tissue that may be healthy or responsive to tissue, and the high end of the range may be suggestive of poor electrical contact or destruction of tissue. The programmed impedance limits may provide the advantage of a further safeguard in avoiding uncontrolled application of energy to locations in excess of desired dosage.



FIGS. 10-13 respectively show current, impedance, voltage, phase angle, and electrode power response in a typical tissue treatment employing gentle heating as controlled and delivered by the apparatus assembly of FIG. 1. In FIG. 13, the measured power at the target is shown in comparison to the power output at the generator.


Embodiments of the vascular treatment devices, systems, and methods described herein may be used to treat atherosclerotic disease by gentle heating in combination with gentle or standard dilation. For example, an angioplasty balloon catheter structure 108 having electrodes 112 disposed thereon might apply electrical potentials to the vessel wall before, during, and/or after dilation, optionally in combination with dilation pressures which are at or significantly lower than standard, unheated angioplasty dilation pressures. Where balloon 200 inflation pressures of about 10 to about 16 atmospheres may, for example, be appropriate for standard angioplasty dilation of a particular lesion, modified dilation treatments combined with appropriate electrical potentials, through flexible circuit electrodes 112, 203 on balloon 200, electrodes 112 deposited directly on the balloon structure 200, or the like, described herein may employ from about 10 to about 16 atmospheres or may be effected with pressures of about 6 atmospheres or less, and possibly as low as about 1 to about 2 atmospheres. Such moderate dilations pressures may, or may not, be combined with one or more aspects of the tissue characterization, tuned energy, eccentric treatments, and other treatment aspects described herein for treatment of diseases of the vasculature.


In many embodiments, gentle heating energy added before, during, and/or after dilation of a blood vessel may increase dilation effectiveness while lowering complications. In some embodiments, such controlled heating with balloon 200 may exhibit a reduction in recoil, providing at least some of the benefits of a stent-like expansion without the disadvantages of an implant. Benefits of the heating may be enhanced, and/or complications inhibited, by limiting heating of the vessel adventitial layer below a deleterious response threshold. In many cases, such heating of the vessel intima and/or media may be provided using heating times of less than about 10 seconds, often being less than about 3 (or even 2) seconds. In other cases, very low power may be used for longer durations. Efficient coupling of the energy 301 to the target tissue 300, 302, 303 by matching the driving potential of the circuit to the target tissue phase angle may enhance desirable heating efficiency, effectively maximizing the area under the electrical power curve. The matching of the phase angle need not be absolute, and while complete phase matching to a characterized target tissue may have benefits, alternative systems may pre-set appropriate potentials to substantially match typical target tissues; though the actual phase angles may not be matched precisely, heating localization within the target tissues may be significantly better than using a standard power form.


Remodeling may involve the application of energy, most preferably in the form of RF, but also microwave and/or ultrasound energy to electrodes 112, and the like. This energy will be controlled so as to limit a temperature of target and/or collateral tissues, for example, limiting the heating of a fibrous cap of a vulnerable plaque or the intimal layer of an artery structure.


In some embodiments, the surface tissue temperature range is from about 50° C. to about 90° C. For gentle heating, the tissue surface temperature may range from about 50° C. to about 65° C., while for more aggressive heating, the surface tissue temperature may range from about 65° C. to about 90° C. Limiting heating of a lipid-rich pool of a vulnerable plaque sufficiently to induce melting of the lipid pool while inhibiting heating of other tissues, such as an intimal layer or fibrous cap, to less than a tissue surface temperature in a range from about 50° C. to about 65° C., such that the bulk tissue temperature remains mostly below about 50° C. to about 55° C. may inhibit an immune response that might otherwise lead to restenosis, or the like. Relatively mild surface temperatures between about 50° C. and about 65° C. may be sufficient to denature and break protein bonds during treatment, immediately after treatment, and/or more than one hour, more than one day, more than one week, or even more than one month after the treatment through a healing response of the tissue to the treatment so as to provide a bigger vessel lumen and improved blood flow.


While the methods and devices described herein are not selective in tissue treatment of the blood vessels, the apparatus 100 can be used for treatment of both concentric and eccentric atherosclerosis, because atherosclerosis may be eccentric relative to an axis of the blood vessel over 50% of the time, and possibly in as much as (or even more than) 75% of cases.


Hence, remodeling of atherosclerotic materials may comprise shrinkage, melting, and the like, of atherosclerotic and other plaques. Atherosclerotic material within the layers of an artery may be denatured, melted and/or the treatment may involve a shrinking of atherosclerotic materials and/or delivery of bioactives within the artery layers so as to improve blood flow. The invention may also provide particular advantages for treatment of vulnerable plaques or blood vessels in which vulnerable plaque is a concern, which may comprise eccentric lesions. The invention will also find applications for mild heating of the cap structure to induce thickening of the cap and make the plaque less vulnerable to rupture, and/or heating of the lipid-rich pool of the vulnerable plaque so as to remodel, denature, melt, shrink, and/or redistribute the lipid-rich pool.


Controlled Application of Energy to Achieve Substantially Uniform Bulk Temperature


Now referring to FIGS. 14A-15B, the controlled delivery of energy as a dosage may preferably be used to obtain a substantially uniform temperature distribution in bulk tissue by the selective distributed delivery of energy. Most preferably, tissue may be heated within a range of about 50° C. to about 70° C. to achieve a temperature preferably high enough to denature proteins and promote a healing response while avoiding tissue damage that may be caused at higher temperatures. Regulation of tissue temperature may be accomplished through direct temperature measurement using means such as a thermocouple, thermister, and the like. However, it may be advantageous to simplify the apparatus and to preferably avoid potential increases in device profile caused by the inclusion of wires or other sensing hardware into an intraluminal device. Because the present invention possesses the capability to deliver precise energy dosage and the capability to measure real-time changes in impedance at the point of power delivery, a uniform temperature distribution may be also achieved through these means.


In one preferred embodiment, tissue impedance may be used to infer tissue temperature conditions. The change in impedance as a function of time, or the derivative of the impedance slope (dz/dt), may be used to sense change in tissue temperature. Specifically, increase in impedance suggests tissue cooling given that tissue conductance is reduced as tissue cools. Conversely, decrease in impedance suggests tissue heating given that tissue conductance increases as tissue heats. Therefore, substantially constant tissue impedance, or dz/dt about equal to zero, may be used as a means to obtain a generally uniform temperature distribution through the sensing of impedance at the point of power delivery.


A distributed delivery of energy may be preferably employed to further aid in obtaining uniformity in bulk temperature. For example, electrodes 112A-L may be distributed about the circumference of a balloon. Electrodes 112A-L may be powered in a bipolar mode wherein alternate electrode pairs are powered such that in a first sequential application of energy every other electrode pair is powered at a discrete energy level for a discrete period of time. In a second sequential application of energy the electrode pairs not fired in the first sequential application of energy are powered. The configuration and ordering of power to electrode pairs to accomplish a particular temperature, for example 50° C., or 60° C., or 70° C., may be determined empirically. The duration of energy delivery in the form of sequential dosage to preferably maintain a substantially uniform temperature in the bulk tissue may then be controlled through tissue impedance measurement.


Although any variety of time for power, time between power, space between electrodes powered, and total energy delivered may be employed based on the specific nature of tissue to be heated, one preferred embodiment shown in FIG. 14A shows a substantially uniform temperature distribution by sequentially powering every other electrode pair for about 1.5 seconds at about 4 Watts, followed by sequentially powering the previously unpowered electrodes for about 1 second at about 4 Watts. The benefit of spaced sequential firing is that tissue may naturally heat, hold, and begin to cool such that high concentrations of heat are preferably avoided as compared to applying power without selective distribution. Once the initial power dosage is delivered, additional power may be applied as regulated trough tissue impedance measurement. In an alternate exemplary embodiment shown in FIG. 14B, power is delivered in the same sequential manner as described for FIG. 14A, however, the second sequential application of power follows a pause of about 30 seconds and the duration of the second sequential application of power may be increased to about 1.5 seconds.


In another exemplary embodiment, shown in FIGS. 15A-B, the use of accumulated damage theory, such as that described by the Arrhenius equation, may be employed to numerically predict energy dosage such that accumulated tissue temperature effects may be used to build a power dosage routine. A first sequential power delivery between every other electrode pair at about 4 Watts for about 5 seconds may be followed by a second sequential power delivery to the previously unpowered electrode pairs wherein the power level and time duration for each electrode pair in the second sequence may vary by position such that the accumulated heating and cooling of tissue preferably is accounted for such that a substantially uniform temperature distribution may be achieved. For example, the ordered second energizing sequence of electrode pairs may be about 4 Watts for about 0.45 seconds for the first electrode pair in the sequence, about 2.6 Watts for about 0.65 seconds for the second electrode pair in the sequence, about 1.8 Watts for about 1.15 seconds at the third pair, about 1.5 Watts for about 1.65 seconds at the fourth pair, about 1.3 Watts for about 3.15 seconds at the fifth pair, and about 1.1 Watts for about 5 seconds. In this example, the accumulated effect would preferably result in a tissue temperature of about 60° C. using a balloon with 12 electrodes distributed about the outer circumference of the balloon.


The use of accumulated damage theory may be tailored to specific types of tissue based on characterized tissue response curves such that power dosage routines may be developed specifically for accomplishing a certain temperature in a certain tissue type.


Additionally, whether using a damage accumulation model, or tissue impedance measurement to maintain bulk tissue temperature at a substantially uniform distribution, the energy dosage may vary, in part, based on electrode configuration as previously described herein.


Application of Energy to Modify Nerve Activity


In yet another exemplary embodiment of the present invention, the ability to deliver energy in a targeted dosage may be used for nerve tissue in order to achieve beneficial biologic responses. For example, chronic pain, urologic dysfunction, hypertension, and a wide variety of other persistent conditions are known to be affected through the operation of nervous tissue. For example, it is known that chronic hypertension that may not be responsive to medication may be improved or eliminated by disabling excessive nerve activity proximate to the renal arteries. It is also known that nervous tissue does not naturally possess regenerative characteristics. Therefore it may be possible to beneficially affect excessive nerve activity by disrupting the conductive pathway of the nervous tissue. When disrupting nerve conductive pathways, it is particularly advantageous to avoid damage to neighboring nerves or organ tissue. The ability to direct and control energy dosage is well-suited to the treatment of nerve tissue. Whether in a heating or ablating energy dosage, the precise control of energy delivery as described and disclosed herein may be directed to the nerve tissue. Moreover, directed application of energy may suffice to target a nerve without the need be in exact contact as would be required when using a typical ablation probe. For example, eccentric heating may be applied at a temperature high enough to denature nerve tissue without causing ablation and without requiring the piercing of luminal tissue. However, it may also be preferable to configure the energy delivery surface of the present invention to pierce tissue and deliver ablating energy similar to an ablation probe with the exact energy dosage being controlled by the power control and generation apparatus 101.


Referring again to the example of renal hypertension involving the reduction of excessive nerve activity, FIG. 3B may be used to describe a non-piercing, non-ablating way to direct energy to affect nerve activity. Nerve tissue may be located in some location in tissue 300, 302, 303 surrounding the lumen of the renal artery. Electrodes 112 on balloon 200 may be powered to deliver energy 301 in the known direction of a nerve to be affected, the depth of energy penetration being a function of energy dosage. Moreover, empirical analysis may be used to determine the impedance characteristics of nervous tissue such that apparatus 101 may be used to first characterize and then treat tissue in a targeted manner as disclosed and described herein. The delivery and regulation of energy may further involve accumulated damage modeling as well.


While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modification, adaptations, and changes may be employed.

Claims
  • 1. A power generating apparatus for treatment of tissue having a circuit comprising: a direct digital synthesizer (DDS) operatively coupled to a power amplifier;a power output set point controller providing a signal;a peak effective power sensor receiving voltage and current feedback measured during delivery of power from the circuit to a power delivery target, the peak effective power sensor providing a signal based on the feedback; anda PID controller, operatively coupled to receive the signals from the power output set point controller and the peak effective power sensor, and operatively coupled to direct a modulating voltage signal to the power amplifier such that output of power from the circuit is maintained within a range about a power output set point in response to the signal from the peak effective power sensor, wherein the output of power from the circuit is continuously maintained during a treatment period,wherein the power amplifier is comprised of a variable gain amplifier and a linear power amplifier operatively coupled in series.
  • 2. The power generating apparatus of claim 1 wherein a digital-to-analog converter is coupled between the DDS and power amplifier.
  • 3. The power generating apparatus of claim 1 wherein energy output is RF energy.
  • 4. The power generating apparatus of claim 1 wherein the power delivery target is comprised of tissue.
  • 5. The power generating apparatus of claim 1 wherein the DDS, power output set point controller, and peak effective power sensor comprise a field programmable gate array.
  • 6. The power generating apparatus of claim 1 wherein the power amplifier is comprised of a linear power amplifier whose maximum output voltage is controlled by the current flowing in the power amplifier.
  • 7. The power generating apparatus of claim 6 wherein output voltage from the linear power amplifier to the power delivery target during use comprises RF output voltage having a maximum available output limit over a range of load impedances of about 50 Ohm to about 500 Ohms.
  • 8. The power generating apparatus of claim 6 wherein the maximum output voltage from the linear power amplifier limits the power dissipation within the power amplifier.
  • 9. The power generating apparatus of claim 6 wherein the linear power amplifier controls the maximum output voltage using switched mode technology.
  • 10. The power generating apparatus of claim 1 wherein the modulating voltage signal from the PID controller is received by the variable gain amplifier.
  • 11. The power generating apparatus of claim 1 wherein the peak effective power sensor comprises a DDS, a current circuit further comprising square root and inverse tangent gates in parallel, and a voltage circuit further comprising square root and inverse tangent gates in parallel.
  • 12. The power generating apparatus of claim 11 wherein the DDS of the peak effective power sensor has a voltage output with a low-pass filter, and a current output with a low-pass filter.
  • 13. The power generating apparatus of claim 11 wherein output of the inverse tangent gates for the current circuit and the voltage circuit are operatively coupled to pass through a cosine gate.
  • 14. The power generating apparatus of claim 1 wherein the voltage and current feedback from the power delivery target to the peak effective power sensor each comprise in-phase and quadrature signal components.
  • 15. The power generating apparatus of claim 1 wherein the signal from the peak effective power sensor represents the effective power output of the circuit at the power delivery target.
  • 16. The power generating apparatus of claim 1 wherein the power output set point is about 0.001 Watts to about 50 Watts.
  • 17. The power generating apparatus of claim 1 wherein the power output modulates about the set point by a maximum of about ±20%.
  • 18. The power generating apparatus of claim 1 wherein the power output modulates about the set point by a maximum of about ±10%.
  • 19. The power generating apparatus of claim 1 wherein the power output modulates about the set point by a maximum of about ±5%.
  • 20. The power generating apparatus of claim 1 wherein the power output modulates about the set point by a maximum of about ±2%.
  • 21. A power generating apparatus for treatment of tissue comprising: a DDS operatively coupled to a RF power amplifier;a RF power output set point controller providing a signal;a peak effective RF power sensor receiving voltage and current feedback measured at a RF power delivery target during RF power delivery to the power delivery target, the peak effective RF power sensor providing a signal based on the feedback; anda controller, operatively coupled to receive the signals from the RF power output set point controller and the peak effective RF power sensor, and operatively coupled to direct a modulating voltage signal to the RF power amplifier such that the output of RF power from the circuit is maintained within a range about the RF power output set point in response to the signal provided by the peak effective RF power sensor, wherein the output of RF power from the circuit is continuously maintained during a treatment period,wherein the power amplifier is comprised of a variable gain amplifier and a linear power amplifier operatively coupled in series.
  • 22. A power generating and control apparatus for eccentric remodeling treatment of tissue about a lumen, the apparatus comprising: a DDS operatively coupled to a RF power amplifier;a RF power output set point controller providing a signal;a peak effective RF power sensor receiving voltage and current feedback measured at the tissue during RF power delivery about the circumference of the lumen, the peak effective RF power sensor providing a signal based on the feedback; anda controller, operatively coupled to receive the signals from the RF power output set point controller and the peak effective RF power sensor, and operatively coupled to direct a modulating voltage signal to the RF power amplifier such that the output of RF power from the circuit is maintained within a therapeutic tissue remodeling range about the RF power output set point in response to the signal provided by the peak effective RF power sensor, wherein the output of RF power from the circuit is continuously maintained during a treatment period,wherein the power amplifier is comprised of a variable gain amplifier and a linear power amplifier operatively coupled in series.
  • 23. A power generating apparatus for treatment of a target tissue, the power generating apparatus comprising: a frequency synthesizer generating a frequency signal;a power amplifier operatively coupling the frequency synthesizer to a power output, the output coupleable to the target tissue;a power sensor configured to receive voltage and current feedback from the target tissue during power output delivery to the target tissue and to output a signal based on the voltage and current feedback; anda controller coupling the power sensor to the power amplifier, the controller having an input for receiving a power set point and transmitting, in response to the power set point and the signal from the power sensor, a modulating signal to the power amplifier such that power output from the power amplifier to the target tissue per the frequency signal is maintained within a range about the power set point, wherein the output of power from the power amplifier is continuously maintained during a treatment period,wherein the power amplifier is comprised of a variable gain amplifier and a linear power amplifier operatively coupled in series.
  • 24. The power generating apparatus of claim 23 wherein the frequency synthesizer comprises a digital frequency synthesizer, and wherein a digital-to-analog converter couples the frequency synthesizer to the power amplifier.
  • 25. The power generating apparatus of claim 23 wherein energy output to the target comprises RF energy.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 61/342,191 filed Apr. 9, 2010; the full disclosure of which is incorporated herein by reference in its entirety for all purposes. The subject matter of this application is related to that of U.S. patent application Ser. No. 11/392,231, filed on Mar. 28, 2006, entitled “Tuned RF Energy for Selective Treatment of Atheroma and Other Target Tissues and/or Structures”; U.S. patent application Ser. No. 10/938,138, filed on Sep. 10, 2004, entitled “Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material”; U.S. Provisional Application No. 60/852,787, filed on Oct. 18, 2006, entitled “Tuned RF Energy and Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; U.S. Provisional Application No. 60/921,973, filed on Apr. 4, 2007, entitled “Tuned RF Energy and Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; U.S. patent application Ser. No. 11/975,651, filed on Oct. 18, 2007, entitled “Tuned RF Energy and Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; U.S. patent application Ser. No. 12/617,519, filed on Nov. 12, 2009, entitled “Selective Accumulation of Energy With or Without Knowledge of Tissue Topography”; U.S. patent application Ser. No. 11/975,474, filed on Oct. 18, 2007, entitled “Inducing Desirable Temperature Effects on Body Tissue”; U.S. patent application Ser. No. 11/975,383, filed on Oct. 18, 2007, entitled “System for Inducing Desirable Temperature Effects On Body Tissue”; U.S. patent application Ser. No. 12/616,720, filed on Nov. 13, 2009, entitled “Selective Drug Delivery in a Lumen”; U.S. application Ser. No. 12/564,268, filed on Sep. 22, 2009, entitled “Inducing Desirable Temperature Effects on Body Tissue Using Alternate Energy Sources”; and U.S. Provisional Application 61/177,744, filed on May 13, 2009, entitled “Directional Delivery of Energy and Bioactives”, the full disclosures of which are incorporated herein by reference.

US Referenced Citations (1558)
Number Name Date Kind
164184 Kiddee Jun 1875 A
1167014 O'Brien Jan 1914 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin-Uddin Nov 1970 A
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4416277 Newton et al. Nov 1983 A
4483341 Witteles et al. Nov 1984 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4907589 Cosman Mar 1990 A
4920979 Bullara May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lenno et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke Oct 1991 A
5071424 Reger Dec 1991 A
5074871 Groshong Dec 1991 A
5098429 Sterzer Mar 1992 A
5098431 Rydell Mar 1992 A
5102402 Dror et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156151 Imran Oct 1992 A
5156610 Reger Oct 1992 A
5158564 Schnepp-Pesch et al. Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong Jan 1993 A
5190540 Lee Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5254098 Ulrich et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern Jan 1994 A
5282484 Reger Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers Oct 1997 A
RE35656 Feinberg Nov 1997 E
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy-Chutorian et al. Jul 1998 A
5792105 Lin et al. Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836943 Miller, III Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5869127 Zhong Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells, III et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky Mar 2000 A
6033357 Ciezki et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6033399 Gines Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 LaFontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083159 Driscoll et al. Jul 2000 A
6086581 Reynolds et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142991 Schatzberger Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6458121 Rosenstock et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605061 Vantassel et al. Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6958075 Mon et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6962587 Johnson et al. Nov 2005 B2
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7008667 Chudzik et al. Mar 2006 B2
7011508 Lum Mar 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20010051774 Littrup et al. Dec 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062123 McClurken et al. May 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020072686 Hoey et al. Jun 2002 A1
20020077592 Barry Jun 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020091381 Edwards Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107511 Collins et al. Aug 2002 A1
20020107536 Hussein Aug 2002 A1
20020143324 Edwards Oct 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030028114 Casscells, III et al. Feb 2003 A1
20030050635 Truckai et al. Mar 2003 A1
20030060857 Perrson et al. Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030069619 Fenn et al. Apr 2003 A1
20030088189 Tu et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030114791 Rosenthal et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030220639 Chapelon et al. Nov 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030229384 Mon Dec 2003 A1
20040000633 Arnold et al. Jan 2004 A1
20040006359 Laguna Jan 2004 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040062852 Schroeder et al. Apr 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040064093 Hektner et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040111016 Casscells, III et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040122421 Wood Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040181165 Hoey et al. Sep 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040186468 Edwards Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040243199 Mon et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050010208 Winston et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050090820 Cornelius et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050203434 Kassab Sep 2005 A1
20050203498 Mon et al. Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050283195 Pastore et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw et al. Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060079882 Swoyer et al. Apr 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060149166 Zvuloni Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060184060 Belalcazar et al. Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060246143 Ege Nov 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060280858 Kokish Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060293649 Lorang et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070078498 Rezai et al. Apr 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070197891 Shachar et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090012514 Moonen et al. Jan 2009 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090074828 Alexis et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100125239 Perry et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249702 Magana et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118598 Gertner May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178403 Weng et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110307034 Hastings et al. Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramaniam et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
Foreign Referenced Citations (168)
Number Date Country
2384866 May 2001 CA
101583323 Nov 2009 CN
102271607 Dec 2011 CN
10038737 Feb 2002 DE
102005041601 Apr 2007 DE
102008048616 Apr 2010 DE
558297 Sep 1993 EP
647435 Apr 1995 EP
634910 Aug 1997 EP
868884 Oct 1998 EP
1005838 Jun 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1064886 Jan 2001 EP
1180004 Feb 2002 EP
1181895 Feb 2002 EP
1297795 Jun 2002 EP
1264613 Dec 2002 EP
1286625 Mar 2003 EP
1332724 Aug 2003 EP
1335677 Aug 2003 EP
866675 Oct 2003 EP
1433448 Jun 2004 EP
1442719 Aug 2004 EP
1547537 Jun 2005 EP
1634542 Mar 2006 EP
1698296 Jun 2006 EP
1709922 Oct 2006 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1946712 Jul 2008 EP
1961394 Aug 2008 EP
1715798 Apr 2009 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2092957 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2241279 Oct 2010 EP
2092957 Jan 2011 EP
2329859 Jun 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2313062 Nov 1997 GB
2453601 Apr 2009 GB
2456301 Jul 2009 GB
0779991 Mar 1995 JP
1995-213621 Aug 1995 JP
1995-313603 Dec 1995 JP
2001008944 Jan 2001 JP
2003-510126 Mar 2003 JP
WO 9103207 Mar 1991 WO
WO 9117731 Nov 1991 WO
WO 9222239 Dec 1992 WO
WO 9320747 Oct 1993 WO
WO 9320770 Oct 1993 WO
WO 9418896 Sep 1994 WO
WO 9428809 Dec 1994 WO
WO 9501751 Jan 1995 WO
WO 9531142 Nov 1995 WO
WO 9634559 Nov 1996 WO
9639086 Dec 1996 WO
WO 9703604 Feb 1997 WO
WO 9717104 May 1997 WO
WO 9720510 Jun 1997 WO
WO 9732532 Sep 1997 WO
WO 9740760 Nov 1997 WO
WO 9745156 Dec 1997 WO
WO 9818393 May 1998 WO
WO 9829030 Jul 1998 WO
WO 9834565 Aug 1998 WO
WO 9835638 Aug 1998 WO
WO 9840023 Sep 1998 WO
9858588 Dec 1998 WO
9900060 Jan 1999 WO
WO 9900060 Jan 1999 WO
WO 9916370 Apr 1999 WO
WO 9921608 May 1999 WO
WO 9934741 Jul 1999 WO
WO 9944522 Sep 1999 WO
WO 0001313 Jan 2000 WO
WO 0010475 Mar 2000 WO
0047118 Aug 2000 WO
WO 0051513 Sep 2000 WO
WO 0059394 Oct 2000 WO
WO 0062727 Oct 2000 WO
WO 0064387 Nov 2000 WO
WO 0069376 Nov 2000 WO
WO 0072909 Dec 2000 WO
WO 0122897 Apr 2001 WO
WO 0137746 May 2001 WO
WO 0187172 May 2001 WO
WO 0174255 Oct 2001 WO
WO 0187154 Nov 2001 WO
WO 0195820 Dec 2001 WO
WO 0215807 Feb 2002 WO
WO 0228475 Apr 2002 WO
WO 0239915 May 2002 WO
WO 02058549 Aug 2002 WO
WO 02080766 Oct 2002 WO
WO 02087679 Nov 2002 WO
WO 02089686 Nov 2002 WO
03026525 Apr 2003 WO
WO 03077781 Sep 2003 WO
WO 2004047659 Jun 2004 WO
WO 2004049976 Jun 2004 WO
WO 2004064606 Aug 2004 WO
WO 2004069300 Aug 2004 WO
WO 2004076146 Sep 2004 WO
2004100813 Nov 2004 WO
WO 2004098694 Nov 2004 WO
2004110258 Dec 2004 WO
WO 2004105807 Dec 2004 WO
WO 2005007000 Jan 2005 WO
WO 2005037070 Apr 2005 WO
WO 2005041748 May 2005 WO
WO 2005074829 Aug 2005 WO
WO 2006041881 Apr 2006 WO
2006105121 Oct 2006 WO
WO 2006105121 Oct 2006 WO
WO 2006116198 Nov 2006 WO
WO 2007011634 Jan 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007047870 Apr 2007 WO
WO 2007113865 Oct 2007 WO
WO 2007135431 Nov 2007 WO
WO 2007146215 Dec 2007 WO
2008014465 Jan 2008 WO
WO 2008003058 Jan 2008 WO
WO 2008009972 Jan 2008 WO
WO 2008010150 Jan 2008 WO
WO 2008036281 Mar 2008 WO
WO 2008049084 Apr 2008 WO
WO 2008061152 May 2008 WO
WO 2008102363 Aug 2008 WO
WO 2009036471 Mar 2009 WO
WO 2009082635 Jul 2009 WO
WO 2009088678 Jul 2009 WO
WO 2009113064 Sep 2009 WO
2009121017 Oct 2009 WO
WO 2009121017 Oct 2009 WO
WO 2009137819 Nov 2009 WO
WO 2010042653 Apr 2010 WO
WO 2010048007 Apr 2010 WO
WO 2010056771 May 2010 WO
WO 2010057043 May 2010 WO
2010067360 Jun 2010 WO
WO 2010070766 Jun 2010 WO
2010102310 Sep 2010 WO
WO 2010099207 Sep 2010 WO
WO 2010120944 Oct 2010 WO
WO 2010134503 Nov 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
WO 2011055143 May 2011 WO
WO 2011060339 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
WO 2011126580 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (152)
Entry
US 8,398,630, 03/2013, Demarais et al. (withdrawn)
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18.
Zhou et al., “Mechanism Research of Ciyoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg” Phys Med Biol 1993, 38 1-12 (abstract).
Cardiovascular Technologies, Inc., “Heated Balloon Device Technology” [Presentation], 2007-2008, 11 pages total. Retrieved from: <<http://www.cvtechinc.com/pr/presoCVT—Heated—Balloon—Tech.pdf>>.
Carrington, “Future of CVI: It's All About the Plaque.” Diagnostic Imaging Special Edition Forum [online] [retrieved on Sep. 3, 2003] Retreived from the Internet:,http://dimag.com/specialedition/cardiacimg.shtml> 5 pages total.
Cimino, “Preventing Plaque Attack”, [online] [retrieved on Sep. 3, 2003] Retrieved from the Internet: <http://Masshightech.com/displayarticledetail.ap?art—id=52283&cat—id=10>, 3 pages total.
Dahm et al, “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate”, Am J Cardiol, 2002; 90(1): 68-70.
De Korte C L. et al., “Characterization of Placque Components with Intravascular Ultrasound Elastography in Human Femoral and Coronary Arterties In Vitro,” Circulation 2000;102:617-623.
Durney C., et al., Radiofrequency Radiation Dosimetry Handbook (with table of contents), Oct. 1986, 4th ed., 7 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/handbook/home.htm.
Fournier-Desseux et al. “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography”, Physiol. Meas. (2005) 26:337-349.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction”, Abstract #2925, AHA (2002), 1 page total.
Fujita, “Sarpogrelate, An Antagonist of 5-HT2a Receptor Treatment Reduces Restenosis After Coronary Stenting”, Abstract #2927, AHA (2002), 1 page total.
Gabriel C, et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies (with table of contents), Jun. 1996, 17 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/Report/Report.html.
Gabriel C, et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Appendi04-10-2009 A, Jun. 1996, 21 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/Appendi04-10-2009.A/Appendi04-10-2009.A.html.
Gabriel C, et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Appendi04-10-2009 C, Jun. 1996, 6 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/Appendi04-10-2009.C/Appendi04-10-2009.C.html.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty”, Journal of Quantum Electronics, vol. 26, No. 12, (Dec. 1990), pp. 2289-2296.
Intraluminal, Product description [online] [retrieved on Sep. 3, 2003] Retrieved from the Internet: http://www.intraluminal.com/products/inde04-10-2009 .html> 1 page total.
Kaplan et al., “Healing after arterial dilatation with radiofrequency thermal and nonthermal balloon angioplasty systems,” J Invest Surg. Jan.-Feb. 1993;6(1):33-52.
Kolata, “New Studies Question Value of Opening Arteries”, New York Times [online] [retrieved on Jan. 25, 2005]. Retrieved from the Internet: <http://nytimes.com/2004/03/21/health/21HEAR.html?ei=5070&en=641bc03214e&e04-10-2009 =11067>, 5 pages total.
Konings M K, et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, vol. 51, No. 4, Apr. 2004.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes”, J Refract Surg, vol. 14, (Sep./Oct. 1998), pp. 541-548.
LightLab Imaging Technology, “Advantages of OCT”, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http:www.lightlabimaging.com/advantage.html> 2 pages total.
LightLab Imaging Technology, “Image Gallery”, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http:lightlabimaging.com/gallery/cvpstill.html> 4 pages total.
LightLab Imaging Technology, “LightLab Imaging Starts US Cardiology Clinical Investigations”, LightLab Company Press Release, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http://www.lighlabimaging.com/press/cardtrails.html> 2 pages total.
LightLab Imaging Technology, “LightLab Sees Bright Prospects for Cardiac Application of OCT Technology” The Graysheet Medical Devices Diagnostics & Instrumentation, vol. 27, No. 35, (Aug. 27, 2001) [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http://www.lighlabimaging.com/press/graysheet.html> 1 page total.
LightLab Imaging Technology, “What is OCT?”, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http:lightlabimaging.com/oct.html.> 2 pages total.
LightLab Imaging Technology, “Why use OCT?”, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http:lightlabimaging.com/whyoct.html> 2 pages total.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results”, Abstract #2929, AHA (2002), 1 page total.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients”, Abstract #2928, AHA (2002), 1 page total.
MIT TechTalk, “Laser Catheter to Aid Coronary Surgery”, Jan. 9, 1991 [online] [retrieved on Feb. 7, 2005]. Retrieved from the Internet : <http://web.mit.edu/newsoffice/tt/1991/jan09/24037.html> 4 pages total.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization”, N. Engl J Med, vol. 346, No. 23, (Jun. 6, 2002), pp. 1773-1779.
Müller et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation”, CardioVas. Intervent. Radiol., (1993) 16: 303-307.
Nair A, et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51 No. 4, Apr. 2004.
Popma et al., “Chapter 38—Percutaneous Coronary and Valvular Intervention”, Heart Disease: A Textbook of Cardiovascular Medicine, 6th ed., (2001) W.B> Saunders Company, pp. 1364-1405.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition with Raman Spectroscopy,” Circulation 97:878-885 (1998).
Scheller et al., “Potential Solutions to the Current Problem: Coated Balloon,” EuroIntervention, Aug. 4, 2008; Suppl C: C63-66.
Scheller, “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries”, Abstract #2227, AHA (2002), 2 pages total.
Shaffer, “Scientific Basis of Laser Energy”, Clin Sports Med 2002; 21(4):585-598.
Shmatukha A V, et al., “MRI temperature mapping during thermal balloon angioplasty,” Phys Med Biol 51, (2006) N163-N171.
Slager et al., “Vaporization of Atherosclerotic Placques by Spark Erosion,” J Am Coll Cardiol, vol. 5 (Jun. 1985) pp. 1382-1386.
Stiles et al., “Simulated Charactization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, (Jul. 2003), 5(4):916-921.
Süselbeck et al. “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance system”, Basic Res Cardiol (2005) 100:446-452.
Suselbeck T, et al., “In vivo intravascular electrical impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol 100:28-34 (2005).
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis During Angioplasty of the Leg,” N Engl J Med, Feb. 14, 2008; 358(7): 689-699; retrieved from the Internet: <<http://content.nejm.org/cgi/reprint/358/7/689.pdf>>.
Van Den Berg, “Light Echoes Image the Human Body”, OLE, Oct. 2001, pp. 35-37.
Volcano Therapeutics, “Product—Functional Measurement”, [online] [retrieved on Sep. 3, 2003]. Retrieved from the Internet: <http://www.volcanotherapeutics.com/pages/products/functional—measurement-us.html> 2 pages total.
Examiner's Report of Canadian Patent Application No. 2,539,026, mailed Feb. 6, 2012, 4 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, mailed Jan. 16, 2009, 8 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, mailed Mar. 28, 2008, 7 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, mailed Aug. 31, 2007, 8 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, mailed Jul. 31, 2009, 5 pages total.
Supplementary Partial European Search Report of Application No. 04816863.7, mailed May 8, 2009, 7 pages total.
Office Action issued in European Application No. 04816863.7, mailed Jun. 4, 2010, 5 pages total.
Office Action issued in European Application No. 04816863.7, mailed Dec. 5, 2011, 4 pages total.
Office Action issued in European Application No. 04816863.7, mailed Jan. 22, 2010, 6 pages total.
Formal Inquiry issued in Japanese Patent Application No. 2006-526351, mailed Jan. 17, 2012, 5 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2006-526351, mailed Apr. 27, 2010, 6 pages total.
Final Decision of Rejection issued in Japanese Patent Application No. 2006-526351, mailed Jan. 18, 2011, 4 pages total.
European Search Report and Search Opinion of EP Patent Application No. 12151957.3, mailed Apr. 16, 2012, 8 pages total.
Office Action issued in Chinese Patent Application No. 200680016424.0, mailed Apr. 13, 2010, 10 pages total.
European Search Report and Search Opinion of EP Patent Application No. 06748830.4, mailed Nov. 16, 2009, 12 pages total.
Partial European Search Report of EP Patent Application No. 11191822.3, mailed Mar. 19, 2012, 7 pages total.
Office Action issued in Chinese Patent Application No. 20111031923.X, mailed Nov. 17, 2011, 16 pages total.
Office Action issued in Chinese Patent Application No. 20111031923.X, mailed May 22, 2012, 10 pages total.
Examiner's First Report of Australian Patent Application No. 2007310988, mailed May 23, 2012, 4 pages total.
European Search Report and Search Opinion of EP Patent Application No. 07844421.3, mailed Jan. 4, 2010, 15 pages total.
European Search Report and Search Opinion of EP Patent Application No. 12155447.1, mailed May 10, 2012, 6 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2009/064027, mailed Jan. 19, 2010, 9 pages total.
European Search Report and Search Opinion of EP Patent Application No. 07844417.1, mailed Nov. 5, 2009.
European Search Report and Search Opinion of EP Patent Application No. 12154120.5, mailed May 8, 2012, 8 pages total.
European Search Report and Search Opinion of EP Patent Application No. 07844424.7, mailed Nov. 11, 2009, 11 pages total.
Partial European Search Report of EP Patent Application No. 12154069.4, mailed May 10, 2012, 5 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2009/064465, mailed Jan. 13, 2010, 13 pages total.
International Search Report of PCT Application No. PCT/US09/57728, mailed Nov. 30, 2009, 10 pages total.
International Search Report and Written Opinion of PCT/US2010/034789, mailed Jul. 9, 2010, 13 pages total.
International Search Report and Written Opinion of PCT/US2011/00661, mailed Nov. 18, 2011, 14 pages total.
Brown et al., “Observations on the shrink temperature of collagen and its variations with age and disease,” Ann Rheum Dis, Jun. 1, 1958, 17(2):196-208.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2009-533544, mailed Jun. 19, 2012, 3 pages total.
Summons to Attend Oral Proceedings of EP Patent Application No. 07844424.7, mailed Jul. 5, 2012, 7 pages total.
European Search Report and Search Opinion of EP Patent Application No. 11191822.3, mailed Jun. 13, 2012, 13 pages total.
Office Action issued in European Application No. 07844421.3, mailed Aug. 23, 2012, 5 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2009-533546, mailed Jun. 19, 2012, 6 pages total.
Extended European Search Report and Search Opinion of EP Patent Application No. 12154069.4, mailed Sep. 17, 2012, 13 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2006-526351, mailed Sep. 18, 2012, 20 pages total.
Office Action issued in Chinese Patent Application No. 201110031923.X, mailed on Sep. 6, 2012, 11 pages total.
Office Action issued in Australian Patent Application No. 2010248955, mailed Sep. 13, 2012, 4 pages total.
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6, 1999 (see above).
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” Eurolntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
Related Publications (1)
Number Date Country
20120095461 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
61342191 Apr 2010 US