The present disclosure relates to a power generation device used for an independent electronic apparatus or the like.
Hereinafter, a conventional power generation device will be described. The conventional power generation device includes a start-up unit, an attraction body, and a power generation unit having a cantilever shape. The power generation unit generates electricity by being vibrated. The attraction body is coupled with the start-up unit, and works with the start-up unit. Then, the start-up unit is attracted to the power generation unit by magnetic force in a state where it is positioned at a start point. The start-up unit moves in a direction perpendicular to the power generation unit in an initial state (hereinafter, simply referred to as perpendicular direction). This also makes the attraction body move in the same direction as the start-up unit. That is, the power generation unit deflects with movement of the attraction body. Then, when the start-up unit moves to an end point, attraction between the attraction body and the power generation unit is released. Then, by being separated from the attraction body, the power generation unit starts to vibrate. As to information on prior art literature relevant to the disclosure of this application, for example, PTL 1 is known.
A power generation device according to an aspect of the present disclosure includes a start-up unit that includes an attraction body and moves from a start point toward an end point, and a power generation unit that generates electricity by being vibrated, the power generation unit having a cantilever shape. Then, the attraction body attracts the power generation unit when the start-up unit moves from the start point toward the end point, the power generation unit deflects and inclines due to movement of the attraction body of the start-up unit and the power generation unit toward the end point while the power generation unit is attracted to the attraction body, the attraction body starts to vibrate by separation of the attraction body from the power generation unit, and the attraction body inclines in a direction along an inclination of the power generation unit.
Hereinafter, an exemplary embodiment of the power generation device will be described with reference to the accompanying drawings. It should be noted that components assigned the same reference numerals in the exemplary embodiment operate similarly, and therefore redundant descriptions may be omitted.
In the exemplary embodiment, terms indicating directions, such as “front”, “rear”, “width direction”, “length direction”, and the like only indicate relatively positional relationships, and the present disclosure is not limited thereto.
When attraction body 211 moves from the start point toward the end point, attraction body 211 attracts power generation unit 22 by magnetic force. When attraction body 211 moves toward the end point while attracting power generation unit 22, power generation unit 22 deflects. Deflection of power generation unit 22 leads to inclination of power generation unit 22. Then, on the way of further movement of attraction body 211 toward the end point, attraction body 211 is separated from power generation unit 22. Separation of attraction body 211 makes power generation unit 22 start to vibrate. Attraction body 211 of start-up unit 21 is configured to incline in a direction along an inclination of power generation unit 22.
The above-mentioned configuration makes attraction body 211 of start-up unit 21 incline in the direction along the inclination of power generation unit 22 depending on movement of start-up unit 21. This makes it possible to suppress reduction of a contact area between attraction body 211 and power generation unit 22 when attraction body 211 moves.
That is, power generation device 11 of the present disclosure makes it possible to reduce variation of attraction force between power generation unit 22 and attraction body 211 in a state where power generation unit 22 and attraction body 211 are attracted. At the same time, power generation device 11 enables to suppress variation of a position when power generation unit 22 and attraction body 211 are separated. This enables power generation device 11 to stable amplitude width of power generation unit 22 to stable power generation amount by power generation unit 22.
Next, a specific configuration of power generation device 11 will be described in detail with reference to
Power generation unit 22 is composed by, for example, forming a piezoelectric element film on a surface of a metal plate or the like. The metal plate (beam 222) of power generation unit 22 is formed of an elastic member. Examples of the metal plate (beam 222) used for power generation unit 22 include stainless. Power generation unit 22 has a cantilever shape, and fixed to case 23 at root 2221 (fixed end). Note that, power generation unit 22 is disposed in case 23 such that a void exists between power generation unit 22 and case 23 having a size of not less than a vibration amplitude of power generation unit 22. Spacer 231 or the like is provided between root 2221 of power generation unit 22 and an upper surface of case 23. Spacer 231 is preferably integrally formed with case 23. Note that spacer 231 may be composed by an element different from case 23. Power generation unit 22 is fixed inside case 23 via spacer 231.
Attraction body 211 has attraction surface 2111 opposing power generation unit 22. Attraction surface 2111 is attracted to power generation unit 22 by magnetic force. When power generation unit 22 is made of a magnetic material, attraction body 211 is preferably a magnet. In power generation device 11 according to the exemplary embodiment, power generation unit 22 includes attraction body 221. Note that power generation unit 22 preferably includes attraction body 221. Attraction body 221 has attraction surface 2211 opposing start-up unit 21 of power generation unit 22. Then, attraction surface 2211 is disposed at a position opposed to attraction surface 2111. Attraction body 221 is formed of a magnetic material. This makes attraction surface 2111 of attraction body 211 be attracted to attraction surface 2211 of attraction body 221. This configuration makes power generation unit 22 in a range where attraction body 211 is attached be less likely to be bent. Accordingly, attraction surface 2111 is attracted to attraction surface 2211 without a gap.
Note that, in the above-mentioned exemplary embodiment, although attraction body 221 is formed of a magnetic material, this is not limited thereto. Both attraction body 211 and attraction body 221 may be a magnet. However, in this case, attraction body 221 and attraction body 211 need to be disposed such that their different magnetic poles are opposed.
As another configuration, attraction body 221 may be a magnet and attraction body 211 may be formed of a magnetic material.
Note that, a direction indicated in
As illustrated in
Note that start-up unit 21 is preferably has a rod shape extending in a straight line between attraction body 211 and first rotation supporting point 212. In contrast, a distant end from attraction body 211 of start-up unit 21 may has any shape as long as it is readily operated by an operator or an operating device as appropriate. Furthermore, start-up unit 21 may include a conversion mechanism such as a cam mechanism or a crank mechanism. These structures enable to reverse moving direction of start-up unit 21. That is, these structures enables to make the start point be in a lower direction of the drawing and the end point be in an upper direction of the drawing. These structures also enables to make attraction body 211 turn around and make the distal end of start-up unit 21 moves in a straight-line manner.
The start-up unit 21 preferably further includes second rotation supporting point 213.
The above structure makes attraction body 211 turn around second rotation supporting point 213 as a supporting point to incline in a direction along an inclination of power generation unit 22 depending on movement of start-up unit 21. This makes it possible to suppress reduction of a contact area between attraction body 211 and power generation unit 22 when attraction body 211 moves. In a state where power generation unit 22 and attraction body 211 are attracted, variation of attraction force between power generation unit 22 and attraction body 211 can be reduced. This makes it possible to suppress variation of a position where power generation unit 22 is separated from attraction body 211, which stables an amplitude width of power generation unit 22, making it possible to stable power generation amount by power generation unit 22.
Furthermore, as illustrated in
The both ends of attraction body 211 are extended to holder 214. Second rotation supporting point 213 is in contact with the both ends of attraction body 211 in a state where attraction body 211 and attraction body 221 are attracted. In this state, attraction body 221 is attracted at a center of attraction body 211.
Second rotation supporting point 213 may be formed on start-up unit 21 in any manner as long as attraction body 211 can turn around. Although second rotation supporting point 213 is disposed to be in contact with attraction surface 2111 of attraction body 211, the present disclosure is not limited to the configuration. Second rotation supporting point 213 may be disposed to be in contact with a surface of attraction body 211 on a side opposite to attraction surface 2111. Furthermore, second rotation supporting point 213 may be formed on attraction body 211. However, second rotation supporting point 213 needs to be formed such that attraction body 211 can turn around along an inclination of attraction surface 2211. A void that allows attraction body 211 to rotate is provided closer to the fixed end of power generation unit 22 than to second rotation supporting point 213. Then, when attraction body 211 turns around second rotation supporting point 213 as a supporting point, attraction body 211 closer to the fixed end of power generation unit 22 than to second rotation supporting point 213 is entered in the gap.
Next, another structure of second rotation supporting point 213 will be described. In the above-mentioned structure of holder 214 illustrated in
Case 23 preferably further includes separation portion 232 as illustrated in
Next, operation of power generation by power generation device 11 will be described with reference to
First, with reference to
Next, operation by second rotation supporting point 213 will be described with reference to
By the above configuration, also in start-up unit 31 that moves in a straight manner, attraction body 211 inclines in a direction along an inclination of attraction body 221 depending on movement of attraction body 31. This makes it possible to suppress reduction of a contact area between attraction body 211 and attraction body 221 when the start-up unit 31 is moved. This makes it possible to reduce variation of attraction force between attraction body 221 and attraction body 211 in a state where attraction body 221 and attraction body 211 are attracted. This makes it possible to suppress variation of a position where attraction body 221 is separated from attraction body 211, which stables amplitude width of power generation unit 22, making it possible to stable power generation amount by power generation unit 22.
Yoke 414 further includes bent portion 4141 bent in an L character shape and extended. Then, a part of bent portion 4141 is disposed to oppose a surface (side surface 2212) of attraction body 221 on a distal end side of power generation unit 22. This configuration improves attraction force between attraction body 221 and attraction body 211.
Note that the present disclosure is not limited to above-mentioned exemplary embodiment, and various modifications are possible, and it goes without saying that they are also included in the scope of the present disclosure.
Also, terms indicating directions such as “width direction”, “length direction”, and the like are used for easy understanding of the exemplary embodiment, and only illustrate relative positional relationships.
Power generation device of the present disclosure includes start-up unit 21 that includes attraction body 211 and moves from the start point toward the end point, and power generation unit 22 that generates electricity by being vibrated and has a cantilever shape. When start-up unit 21 moves from the start point toward the end point, attraction body 211 attracts power generation unit 22 (attraction body 221). Power generation unit 22 deflects and inclines due to movement of attraction body 211 of start-up unit 21 and power generation unit 22 (attraction body 221) toward the end point while the power generation unit is attracted to the attraction body. Attraction body 221 starts to vibrate by separation of attraction body 211 from power generation unit 22 (attraction body 221). Attraction body 211 inclines in a direction along an inclination of power generation unit 22 (attraction body 221).
Note that, members of attraction body 221 and beam 222 of power generation unit 22 of the above-mentioned exemplary embodiment are different members, but they are not necessarily be formed of different members.
Furthermore, in the power generation device of the present disclosure, start-up unit 21 may has first rotation supporting point 212 disposed closer to the fixed end of power generation unit 22 than attraction body 211. Attraction body 211 of start-up unit 21 inclines in the direction along the inclination of power generation unit 22 (attraction body 221) due to turning of start-up unit 21 around first rotation supporting point 212 as a center when start-up unit 21 moves from the start point toward the end point.
Furthermore, in the power generation device of the present disclosure, a configuration may be employed in which start-up unit 21 has second rotation supporting point 213, and attraction body 211 turns around second rotation supporting point 213 as a center.
Note that second rotation supporting point 213 may be a projection provided on start-up unit 21 or a distal end of a step portion provided on start-up unit 21.
Then, attraction body 211 has attraction surface 2111 opposing power generation unit 22, second rotation supporting point 213 is provided on start-up unit 21, and second rotation supporting point 213 is in contact with attraction surface 2111.
As described above, the power generation device according to the present disclosure has an advantageous effect that it can stable power generation amount of the power generation unit, and is useful for use in an independent electronic apparatus or the like.
11, 12, 13 power generation device
21, 31, 41 start-up unit
22 power generation unit
23 case
211, 221 attraction body
212 first rotation supporting point
213 second rotation supporting point
214 holder
222 beam
231 spacer
232 separation portion
414 yoke
2111, 2211 attraction surface
2112 surface
2212 side surface
2221 root
2321 distal end
4141 bent portion
Number | Date | Country | Kind |
---|---|---|---|
2016-234665 | Dec 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/035090 | 9/28/2017 | WO | 00 |