Resonators are devices and/or systems that can produce a large response for a given input when excited at a resonance frequency. Resonators are used in various applications, including acoustics, optics, photonics, electromagnetics, chemistry, particle physics, etc. For example, electromagnetic resonators can be used as antennas or as energy transmission devices. Further, resonators can concentrate a large amount of energy in a relatively small location (for example, as in the electromagnetic waves radiated by a laser).
Power-generation turbines can produce energy. That energy can be used to power a variety of structures, such as homes, offices, cars, or trains, for example. One way in which a power-generation turbine can produce energy is by combusting hydrocarbon fuel to generate heat.
In a first implementation, a system is provided. The system includes a combustor of a power-generation turbine. The combustor includes (i) a combustion zone in which combustion of fuel is configured to occur, (ii) at least one fuel inlet configured to introduce fuel into the combustion zone, and (iii) at least one fin protruding into the combustion zone and configured to guide combustion of the fuel along a flame path defined by the at least one fin. The system also includes a resonator having a resonant wavelength and configured to be electromagnetically coupled to a radio-frequency power source. The resonator includes (i) a first conductor, (ii) a second conductor, (iii) a dielectric between the first conductor and the second conductor, and (iv) an electrode configured to be electromagnetically coupled to the first conductor. The resonator is configured to provide a plasma corona proximate to the electrode when excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of the resonant wavelength. The radio-frequency power source is configured to excite the resonator with the signal, which concentrates an electric field at the electrode, provides the plasma corona proximate to the electrode in the combustion zone, and causes combustion of the fuel along the flame path.
In a second implementation, a system is provided. The system includes a combustor of a power-generation turbine. The combustor includes (i) a combustion zone in which combustion of fuel is configured to occur, (ii) at least one fuel inlet configured to introduce fuel into the combustion zone, and (iii) a plurality of fins protruding into the combustion zone so as to define a plurality of channels in the combustion zone, the plurality of fins being configured to guide combustion of the fuel along the plurality of channels defined by the plurality of fins. The system also includes a resonator having a resonant wavelength and electromagnetically coupled to the radio-frequency power source. The resonator includes (i) a first conductor, (ii) a second conductor, (iii) a dielectric between the first conductor and the second conductor, and (iv) an electrode electromagnetically coupled to the first conductor. The resonator is configured to provide a plasma corona proximate to the electrode when excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of the resonant wavelength. The radio-frequency power source is configured to excite the resonator with the signal, which concentrates an electric field at the electrode, provides the plasma corona proximate to the electrode in the combustion zone, and causes combustion of the fuel along the plurality of channels defined by the plurality of fins.
In a third implementation, a method is provided. The method includes introducing fuel through at least one fuel inlet into a combustion zone of a combustor of a power-generation turbine, the combustor including at least one fin (i) protruding into the combustion zone and (ii) configured to guide combustion of the fuel along a flame path defined by the at least one fin. The method also includes exciting a resonator with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of a resonant wavelength of the resonator, the resonator including (i) a first conductor, (ii) a second conductor, (iii) a dielectric between the first conductor and the second conductor, and (iv) an electrode electromagnetically coupled to the first conductor, the electrode having a distal end disposed within the combustion zone. Further, the method includes, in response to exciting the resonator, providing a plasma corona in the combustion zone, thereby causing combustion of the fuel. The method also includes guiding, by the at least one fin, combustion of the fuel along the flame path.
Other implementations will become apparent to those of ordinary skill in the art by reading the following detailed description, with reference where appropriate to the accompanying drawings.
Example methods, devices, and systems are presently disclosed. It should be understood that the word “example” is used in the present disclosure to mean “serving as an instance or illustration.” Any implementation or feature presently disclosed as being an “example” is not necessarily to be construed as preferred or advantageous over other implementations or features. Other implementations can be utilized, and other changes can be made, without departing from the scope of the subject matter presented in the present disclosure.
Thus, the example implementations presently disclosed are not meant to be limiting. Components presently disclosed and illustrated in the figures can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are contemplated in the present disclosure.
Further, unless context suggests otherwise, the features illustrated in each of the figures can be used in combination with one another. Thus, the figures should be generally viewed as components of one or more overall implementations, with the understanding that not all illustrated features are necessary for each implementation.
In the context of this disclosure, various terms can refer to locations where, as a result of a particular configuration, and under certain conditions of operation, a voltage component can be measured as close to non-existent. For example, “voltage short” can refer to any location where a voltage component can be close to non-existent under certain conditions. Similar terms can equally refer to this location of close-to-zero voltage (for example, “virtual short circuit,” “virtual short location,” or “voltage null”). In examples, “virtual short” can be used to indicate locations where the close-to-zero voltage is a result of a standing wave crossing zero. “Voltage null” can be used to refer to locations of close-to-zero voltage for a reason other than as result of a standing wave crossing zero (for example, voltage attenuation or cancellation). Moreover, in the context of this disclosure, each of these terms that can refer to locations of close-to-zero voltage are meant to be non-limiting.
In an effort to provide technical context for the present disclosure, the information in this section can broadly describe various components of the implementations presently disclosed. However, such information is provided solely for the benefit of the reader and, as such, does not expressly limit the claimed subject matter. Further, components shown in the figures are shown for illustrative purposes only. As such, the illustrations are not to be construed as limiting. As is understood, components can be added, removed, or rearranged without departing from the scope of this disclosure.
A resonator can be configured to excite plasma and/or electromagnetic radiation. An example of such a resonator can include a center conductor and a larger, surrounding conductor, which could be separated by a dielectric insulator such as a ceramic material. A resonator configured in this manner can be used as an alternative to other types of igniters in a power-generation turbine.
Using a resonator configured in this manner in a power-generation turbine may be advantageous in a variety of ways. For example, a resonator configured in this manner can be controlled so as to provide a plasma corona in a combustion chamber of a power-generation turbine. The plasma corona can be physically larger (for example, in length, width, radius, and/or overall volumetric extent) than a typical spark from a gap spark plug. The larger ignition area/volume could allow a more lean fuel mixture (also known as lower fuel-to-air ratio) to be burned within a combustion zone of the combustor, as compared with ignition using a gap spark plug. In addition, by using the plasma corona to ignite a fuel mixture within the combustor, stoichiometric ratio fuels may be combusted more fully, as compared with ignition using a gap spark plug. Combusting stoichiometric ratio fuels more fully can, in turn, create fewer regulated pollutants (for example, creating less NOx to be expelled as exhaust), leave less unspent fuel, and/or provide an increased power output.
However, even with the above benefits of using a resonator as an ignition source in a power-generation turbine combustor, there is still room for improvement. For instance, various operating characteristics of the power-generation turbine, including fuel efficiency, output power levels, and emissions, may be improved by providing more efficient and thorough combustion of fuel in the combustor.
When fuel is ignited and combusted in a combustor of a power-generation turbine, combustion may propagate along a flame path that leaves some unspent fuel in the combustor. For instance, combustion may propagate along an approximately straight path from one end of the combustor to the other end of the combustor. In such a scenario, the flame path may be so short that there is not enough time for the flame to completely combust all of the fuel before the fuel and the flame exit the combustor portion of the generator and enter the turbine portion of the generator. However, by guiding the flame path, an overall length of the flame path may be increased so that it takes longer for the flame and the fuel to propagate through the combustor, thereby allowing more fuel to combust in the combustor before it reaches the turbine.
Accordingly, example systems and methods disclosed herein may help address this issue by providing combustors that include various types of fins that protrude into the combustion zone of the combustor in order to guide combustion of fuel along various elongated flame paths, such as flame paths that deviate from a straight path along the length of the combustor. Further, example combustors are disclosed that include multiple resonators for providing multiple ignition points in the fuel. By providing multiple ignition points, the fuel may combust concurrently along multiple flame paths that, when considered together, amount to a longer overall flame path for the combustion. These example systems and methods are described in further detail below with reference to the accompanying figures.
Igniters can be used to ignite a mixture of air and fuel (for example, within a combustion chamber of an internal combustion engine 101, such as that illustrated in cross-section in
While gap spark igniters are described above, other types of igniters can generally include glow plugs (for example, in diesel-fueled internal combustion engines), open flame sources (for example, cigarette lighters, friction spark devices, etc.), and other heat sources.
A variety of fuels (for example, hydrocarbon fuels) can be combusted to yield energy within an internal combustion engine, within a power-generation turbine, within a jet engine, or within various other applications. For example, kerosene (also known as paraffin or lamp oil), gasoline (also known as petrol), fractional distillates of petroleum fuel oil (for example, diesel fuel), crude oil, Fischer-Tropsch synthesized paraffinic kerosene, natural gas, and coal are all hydrocarbon fuels that, when combusted, liberate energy stored within chemical bonds of the fuel. Jet fuel, specifically, can be classified by its “jet propellant” (JP) number. The “jet propellant” (JP) number can correspond to a classification system utilized by the United States military. For example, JP-1 can be a pure kerosene fuel, JP-4 can be a 50% kerosene and 50% gasoline blend, JP-9 can be another kerosene-based fuel, JP-9 can be a gas turbine fuel (for example, including tetrahydrodimethylcyclopentadiene) specifically used in missile applications, and JP-10 can be a fuel similar to JP-9 that includes endo-tetrahydrodicyclopentadiene, exo-tetrahydrodicyclopentadiene, and adamantane. Other forms of j et fuel include zip fuel (for example, high-energy fuel that contains boron), SYNTROLEUM® FT-fuel, other kerosene-type fuels (for example, Jet A fuel and Jet A-1 fuel), and naphtha-type fuels (for example, Jet B fuel). It is understood that other fuels can be combusted as well. Further, the fuel type used can depend upon the application. For example, jet engines, internal combustion engines, and power-generation turbines may each burn different types of fuels.
When fuel (for example, hydrocarbon fuel) interacts with electromagnetic radiation, the fuel can change chemical composition. For example, when hydrocarbon fuel interacts with (for example, is irradiated by) microwaves, some of the hydrogen atoms can be ionized and/or one or more hydrogen atoms can be liberated from a hydrocarbon chain. The processes of liberating hydrogen within fuel, ionizing hydrogen within fuel, or otherwise changing the chemical composition of fuel are collectively referred to in the present disclosure as “reforming” the fuel. Reforming the fuel can include exciting the hydrocarbon fuel at one or more of its natural resonant frequencies (for example, acoustic and/or electromagnetic resonant frequencies) to break one or more of the carbon-hydrogen (or other) bonds within the hydrocarbon chain. When hydrogen within a hydrocarbon fuel becomes ionized and/or is liberated from the hydrocarbon chain, the resulting hydrocarbon fuel can require less energy to burn. Thus, a leaner fuel/air mixture that includes reformed fuel can achieve the same output power (for example, within a combustion chamber of a jet engine or a power-generation turbine) as compared to a more rich fuel/air mixture that includes non-reformed fuel, since the reformed fuel can combust more quickly and thoroughly. Analogously, when comparing equal fuel-to-air ratios, less input energy can be required to combust a mixture that includes reformed fuel when compared to a mixture that includes non-reformed fuel.
In addition to reforming fuels, electromagnetic radiation can alter an energy state of fuel and/or of a fuel mixture. In an example implementation, altering the energy state of fuel can include exciting electrons within the valence band of the hydrocarbon chain to higher energy levels. In such scenarios, raising the energy state can also include reorienting polar molecules (for example, water and/or polar hydrocarbon chains) within a fuel/air mixture due to electromagnetic fields applying a torque on polar molecules. Reorienting polar molecules can result in molecular motion, thereby increasing an effective temperature and/or kinetic energy of the molecule, which raises the energy state of fuel. By raising the energy state of fuel, the activation energy for combustion of the fuel can be reduced. When the activation energy for combustion is reduced, the energy supplied by the ignition source can also be decreased, thereby conserving energy during ignition.
Presently disclosed are ignition systems with resonators (for example, QWCCR structures) that use both RF power and DC power. The presently disclosed RF ignition systems provide an alternative to other types of igniters. For example, the QWCCR structure can be used as an igniter (for example, in place of an automotive gap spark plug) in the internal combustion engine 101. Such RF ignition systems can excite plasma (for example, within a corona). If an igniter is configured as one of the RF ignition systems presently disclosed, then more efficient, leaner, cleaner combustion can be achieved. Such increased combustion efficiency can be achieved at decreased air pressures and temperatures when compared with a gap spark igniter (for example, if the RF ignition system is used in a jet engine). Further, such increased combustion efficiency can be achieved at higher air pressures and temperatures when compared with a gap spark igniter. It is understood throughout this disclosure that where reference is made to “RF” or to microwaves, in alternate implementations, other wavelengths of electromagnetic waves outside of the RF range can be used alternatively or in addition to RF electromagnetic waves.
As described above, RF ignition systems can excite plasma. Plasma is one of the four fundamental states of matter (in addition to solid, liquid, and gas). Further, plasmas are mixtures of positively charged gas ions and negatively charged electrons. Because plasmas are mixtures of charged particles, plasmas have associated intrinsic electric fields. In addition, when the charged particles in the mixture move, plasmas also produce magnetic fields (for example, according to Ampere's law). Given the electromagnetic nature of plasmas, plasmas interact with, and can be manipulated by, external electric and magnetic fields. For example, placing a ferromagnetic material (for example, iron, cobalt, nickel, neodymium, samarium-cobalt, etc.) near a plasma can cause the plasma to be attracted to or repelled from the ferromagnetic material (for example, causing the plasma to move).
Plasmas can be formed in a variety of ways. One way of forming a plasma can include heating gases to a sufficiently high temperature (for example, depending on ambient pressure). Additionally or alternatively, forming a plasma can include exposing gases to a sufficiently strong electromagnetic field. Lightning is an environmental phenomenon involving plasma. One application of plasma can include neon signs. Further, because plasma is responsive to applied electromagnetic fields, plasma can be directed according to specific patterns. Hence, plasmas can also be used in technologies such as plasma televisions or plasma etching.
Plasmas can be characterized according to their temperature and electron density. For example, one type of plasma can be a “microwave-generated plasma” (for example, ranging from 5 eV to 15 eV in energy). Such a plasma can be generated by a QWCCR structure, for example.
An example implementation of a QWCCR structure 100 is illustrated in
As illustrated, an electrode 106 can be disposed at a distal end of the inner conductor 104. The electrode 106 can be made of a conductive material as described above (for example, the same conductive material as the inner conductor 104). For example, the electrode 106 can be machined with the inner conductor 104 as a single piece. In some implementations, as illustrated, the base conductor 110, the outer conductor 102, the inner conductor 104, and the electrode can be shorted together. For example, the base conductor 110 can short the outer conductor 102 to the inner conductor 104, in some implementations. When shorted together, these components can be directly electrically coupled to one another such that each of these components is at the same electric potential.
Further, in implementations where the base conductor 110, the outer conductor 102, and the inner conductor 104 (including the electrode 106) are shorted together, the base conductor 110, the outer conductor 102, and the inner conductor 104 (including the electrode 106) can be machined as a single piece. In addition, the electrode 106 can include a concentrator (for example, a tip, a point, or an edge), which can concentrate and enhance the electric field at one or more locations. Such an enhanced electric field can create conditions that promote the excitation of a plasma corona near the concentrator (for example, through a breakdown of a dielectric, such as air, that surrounds the concentrator). The concentrator can be a patterned or shaped portion of the electrode 106, for example. The electrode 106, including the concentrator, can be electromagnetically coupled to the inner conductor 104. In the present disclosure and claims, the electrode 106 and/or the concentrator can be described as being “configured to electromagnetically couple to” the inner conductor 104. This language is to be interpreted broadly as meaning that the electrode 106 and/or the concentrator: are presently electromagnetically coupled to the inner conductor 104, are always electromagnetically coupled to the inner conductor 104, can be selectively electromagnetically coupled to the inner conductor 104 (for example, using a switch), are only electromagnetically coupled to the inner conductor 104 when a power source is connected to the inner conductor 104, and/or are able to be electromagnetically coupled to the inner conductor 104 if one or more components are repositioned relative to one another. For example, the electrode 106 can be “configured to electromagnetically couple to” the inner conductor 104 if the electrode 106 is machined as a single piece with the inner conductor 104, if the electrode 106 is connected to the inner conductor 104 using a wire or other conducting mechanism, or if the electrode 106 is disposed sufficiently close to the inner conductor 104 such that the electrode 106 electromagnetically couples to one or more evanescent waves excited by the inner conductor 104 when the inner conductor 104 is connected to a power source.
As illustrated in
Further, as illustrated in
Plasmas (for example, plasma coronas generated by the QWCCR structure 100) can be used to ignite mixtures of air and fuel (for example, hydrocarbon fuel for use in a combustion process). Plasma-assisted ignition (for example, using a QWCCR structure 100) is fundamentally different from ignition using a gap spark plug. For example, efficient electron-impact excitation, dissociation of molecules, and ionization of atoms, which might not occur in ignition using gap spark plugs, can occur in plasma-assisted ignition. Further, in plasmas, an external electric field can accelerate the electrons and/or ions. Thus, using electric fields, energy within the plasma (for example, thermal energy) can be directed to specific locations (for example, within a combustion chamber).
There are a variety of mechanisms by which plasma can impart the energy necessary to ignite mixtures of air and fuel. For example, electrons can impart energy to molecules during collisions. However, this singular energy exchange might be relatively minor (for example, because an electron's mass is orders of magnitude less than a molecule's mass). So long as the rate at which electrons are imparting energy to the molecules is higher than the rate at which molecules are undergoing relaxation, a population distribution of the molecules (for example, a population distribution that differs from an initial Boltzmann distribution of the molecules) can arise. The molecules having higher energy, along with the dissociation and ionization processes, can emit ultraviolet (UV) radiation (for example, when undergoing relaxation) that affects mixtures of fuel and air. Further, gas heating and an increase in system reactivity can increase the likelihood of ignition and flame propagation. In addition, when the average electron energy within a plasma (for example, within a combustion chamber) exceeds 10 eV, gas ionization can be the predominant mechanism by which plasma is formed (over electron-impact excitation and dissociation of molecules).
Plasma-assisted ignition can have a variety of benefits over ignition using a gap spark plug. For example, in plasma-assisted ignition, a plasma corona that is generated can be physically larger (for example, in length, width, radius, and/or overall volumetric extent) than a typical spark from a gap spark plug. This can allow a more lean fuel mixture (also known as lower fuel-to-air ratio) to be burned once combustion occurs as compared with alternative ignition, for example. Also, because a larger energy can be energized in plasma-assisted ignition, stoichiometric ratio fuels can be combusted more fully, thereby creating fewer regulated pollutants (for example, creating less NOx to be expelled as exhaust) and/or leaving less unspent fuel.
Dielectric breakdown of air or another dielectric material near the electrode 106 of the QWCCR structure 100 can be a mechanism by which a plasma corona is excited near the concentrator of the QWCCR structure 100. Factors that impact the breakdown of a dielectric, such as dielectric breakdown of air, include free-electron population, electron diffusion, electron drift, electron attachment, and electron recombination. Free electrons in the free-electron population can collide with neutral particles or ions during ionization events. Such collisions can create additional free electrons, thereby increasing the likelihood of dielectric breakdown. Oppositely, electron diffusion and attachment can each be mechanisms by which free electrons recombine and are lost, thereby reducing the likelihood of dielectric breakdown.
As presently described, a plasma corona can be provided “proximate to” a distal end of the QWCCR structure 100, the electrode 106, and/or a concentrator of the QWCCR structure 100. In other words, the plasma corona could be described as being provided “nearby” or “at” a distal end of the QWCCR structure 100, the electrode 106, and/or a concentrator of the QWCCR structure 100. Further, this terminology is not to be viewed as limiting. For example, while the plasma corona is provided “proximate to” the QWCCR structure 100, this does not limit the plasma corona from extending away from the QWCCR structure 100 and/or from being moved to other locations that are farther from the QWCCR structure 100 after being provided “proximate to” the QWCCR structure 100.
When used to describe a relationship between a plasma corona and a distal end of the QWCCR structure 100, a relationship between a plasma corona and the electrode 106, a relationship between a plasma corona and a concentrator of the electrode 106, or similar relationships, the term “proximate” can describe the physical separation between the plasma corona and the other component. In various implementations, the physical separation can include different ranges. For example, a plasma corona provided “proximate to” the concentrator can be separated from the concentrator (in other words, can “stand off from” the concentrator) by less than 1.0 nanometer, by 1.0 nanometer to 10.0 nanometers, by 10.0 nanometers to 100.0 nanometers, by 100.0 nanometers to 1.0 micrometer, by 1.0 micrometer to 10.0 micrometers, by 10.0 micrometers to 100.0 micrometers, or by 100.0 micrometers to 1.0 millimeter. Additionally or alternatively, a plasma corona provided “proximate to” the concentrator can be separated from the concentrator by 0.01 times a width of the plasma corona to 0.1 times a width of the plasma corona, by 0.1 times a width of the plasma corona to 1.0 times the width of the plasma corona, or by 1.0 times a width of the plasma corona to 10.0 times a width of the plasma corona. Even further, a plasma corona provided “proximate to” the concentrator can be separated from the concentrator by 0.01 times a radius of the concentrator to 0.1 times a radius of the concentrator, by 0.1 times a radius of the concentrator to 1.0 times a radius of the concentrator, or by 1.0 times a radius of the concentrator to 10.0 times a radius of the concentrator.
It is understood that in various implementations, the plasma corona can emit light entirely within the visible spectrum, partially within the visible spectrum and partially outside the visible spectrum, or completely outside the visible spectrum. In other words, even if the plasma corona is “invisible” to the human eye and/or to optics that only sense light within the visible spectrum, it is not necessarily the case that the plasma corona is not being provided.
In order for dielectric breakdown to occur, an electric field within the dielectric must be greater than or equal to an electric field breakdown threshold. An electric field generated by an alternating current (AC) source can be described by a root-mean-square (rms) value for electric field (Erms). The rms value for electric field (Erms) can be calculated according the following equation:
where T2−T1 represents the period over which the electric field is oscillating (for example, corresponding to the period of the AC source generating the electric field). As described mathematically above, the rms value for electric field (Erms) represents the quadratic mean of the electric field. Using the rms value for electric field, an effective electric field (Eeff) can be calculated that is approximately frequency independent (for example, by removing phase lag effects from the oscillating electric field):
where ω represents the angular frequency of the electric field (for example,
and vc represents the effective momentum collision frequency of the electrons and neutral particles. The angular frequency (ω) of the electric field can correspond to the frequency of an excitation source used to excite the electric field (for example, the QWCCR structure 100). Using this effective electric field (Eeff), DC breakdown voltages for various gases (and potentially other dielectrics) can be related to AC breakdown values for uniform electric fields. For air, vc≈5·109×p, where p represents the pressure (in torr). At atmospheric pressure (for example, around 760 torr) or above and excitation frequencies of below 1 THz, the effective momentum collision frequency of the electrons and neutral particles (vc) will dominate the denominator of the fractional coefficient of Erms2. Therefore, an approximation of the rms breakdown field (Eb) can be used. The rms breakdown field (Eb), in V/cm, of a uniform microwave field in the collision regime can be given by:
where T is the temperature in Kelvin.
An analytical description of the electromagnetics of the QWCCR structure 100 follows.
If fringing electromagnetic fields are assumed to be small, the lowest quarter-wave resonance in a coaxial cavity is a transverse electromagnetic mode (TEM mode) (as opposed to a transverse electric mode (TE mode) or a transverse magnetic mode (TM mode)). The TEM mode is the dominant mode in a coaxial cavity and has no cutoff frequency (ωc). In the TEM mode (as illustrated in
where H is a phasor representing the magnetic field vector, E is a phasor representing the electric field vector, âφ represents a unit vector in the φ direction (labeled in
where λ is the wavelength), I0 represents the maximum current in the cavity, V0 represents the maximum voltage in the cavity, and z represents a distance along the QWCCR structure 100 in the z direction (labeled in
In various implementations, various electromagnetic modes of the QWCCR structure 100 can be excited in order to achieve various electromagnetic properties. In some implementations, for instance, a single electromagnetic mode can be excited, whereas in alternate implementations, a plurality of electromagnetic modes can be excited. For example, in some implementations, the TE01 mode (as illustrated in
Quality factor (Q) can be defined as:
where ω is the angular frequency, U is the time-average energy, and PL is the time-average power loss. Quality factor (Q) can be used to measure goodness of a resonator cavity. Other formulations of goodness measurement can also be used (for example, based on full-width, half-max (FWHM) or a 3 decibel (dB) bandwidth of cavity resonance). In some implementations, the quality factor (Q) can be maximized when the ratio of the inner radius of the outer conductor ‘b’ to the radius of the inner conductor ‘a’ is approximately equal to 4. However, it will be understood that many other ways to adjust and/or maximize quality factor (Q) are possible and contemplated in the present disclosure.
At resonance, the stored energy of the QWCCR structure 100 oscillates between electrical energy (Ue) (within the electric field) and magnetic energy (Um) (within the magnetic field). Time-average stored energy in the QWCCR structure 100 can be calculated using the following:
where μ is magnetic permeability and ε is dielectric permittivity. By inserting the values for electric field and magnetic field from above, and integrating over the entire volume of the QWCCR structure 100, the following expression can be obtained:
where b represents the inner radius of the outer conductor 102 of the QWCCR structure 100 (as illustrated in
Now, by equating the two above expressions for U, the following relationship can be expressed:
Further, in recognizing that
where c is the speed of light;
where η is the impedance of the dielectric between the inner conductor 104 and the outer conductor 102 of the QWCCR structure 100, the following relationship for the peak potential (V0) can be identified:
Given that electric field decays as the distance from the peak potential (V0) increases, the largest value of electric field corresponding to the peak potential (V0) occurs exactly at the surface of the inner conductor (for example, at radius a, as illustrated in
If the above peak value of electric field (Ea) meets or exceeds the above-described rms breakdown field (Eb), a dielectric breakdown can occur. For example, a dielectric breakdown of the air surrounding the tip of the QWCCR structure 100 can result in a plasma corona being excited. As indicated in the above equation for peak electric field (Ea), the smaller the radius a of the inner conductor 104, the smaller the inner radius b of outer conductor 102, the higher the quality factor (Q) of the QWCCR structure 100, and the larger the time-average power loss (PL), the more likely it is that breakdown can occur (for example, because the peak value of electric field (Ea) is larger). A larger excitation power can correspond to a larger time-average power loss (PL) in the QWCCR structure 100, for example.
The power loss (PL) can include ohmic losses (Pσ) on conductive surfaces (for example, the surface of the outer conductor 102, the surface of the inner conductor 104, and/or the surface of the base conductor 110, as illustrated in
where μc is the magnetic permeability of the respective conductor and σc is the conductivity of the respective conductor. The power lost by each conductor can be calculated according to the following:
where H∥ is the magnetic field parallel to the surface of the conductor. Thus, the total power loss in all conductors can be represented by:
Further, if the dielectric 108 is an isotropic, low-loss dielectric, the dielectric 108 can be characterized by its dielectric constant (ε) and its loss tangent (tan(δe)), where the loss tangent (tan(δe)) represents conductivity and alternating molecular dipole losses. Using dielectric constant (ε) and loss tangent (tan(δe)), an effective dielectric conductivity (σe) can be approximately defined as:
σe≈ω·ε·tan(δe)
Based on the above, the power dissipated in the dielectric can be calculated according to the following:
In order to combine all quality factors of the QWCCR structure 100 into a total internal quality factor (Qint), the following relationship can be used:
where Qinner−1, Qouter−1, Qbase−1, and Qσ
Based on the definitions of the individual quality factors above, the individual contribution of the outer conductor quality factor (Qouter) to the internal quality factor (Qint) can be greater than the individual contribution of the inner conductor quality factor (Qinner). Thus, to increase the internal quality factor (Qint), a material with higher conductivity can be used for the inner conductor 104 than is used for the outer conductor 102. Further, the base conductor 110 quality factor (Qbase) and the dielectric 108 quality factor (Qσ
and in terms of
The QWCCR structure 100 can also radiate electromagnetic waves (for example, from a distal, non-closed end opposite the base conductor 110). For example, if the QWCCR structure 100 is being excited by an RF power source (for example, a signal generator oscillating at radio frequencies), the QWCCR structure 100 can radiate microwaves from a distal end (for example, from an aperture of the distal end) of the QWCCR structure 100. Such radiation can lead to power losses, which can be approximated using admittance. Assuming that the transverse dimensions of the QWCCR structure 100 are significantly smaller than the wavelength (λ) being used to excite the QWCCR structure 100 (in other words, a<<λ and b<<λ), the real part (Gr) and imaginary part (Br) of admittance can be represented by:
where E(x) is the complete elliptical integral of the second kind. Namely:
Further, the line integral of the electric field from the inner conductor 104 to the outer conductor 102 can be used to determine the potential difference (Vab) across the shunt admittance corresponding to the electromagnetic waves radiated.
Using the potential difference (Vab) across the shunt admittance corresponding to the electromagnetic waves radiated, the power going to radiation (Prad) can be represented by:
In addition, using the potential difference (Vab) across the shunt admittance corresponding to the electromagnetic waves radiated, the energy stored during radiation (Urad) can be represented by:
Based on the above, the overall quality factor of the QWCCR structure 100 (QQWCCR) can be described by the following:
If the energy stored during radiation (Urad) is small compared with the energy stored in the interior of the QWCCR structure 100 (U), the radiation power (Prad) can be treated similarly to the other losses. Further, the energy stored during radiation (Urad) can be neglected in the above equation:
Still further, the quality factor of the radiation component (Qrad) can be described using the above relationship for quality factors:
Even further, using the above-referenced quality factors, the total quality factor of the QWCCR structure 100 (QQWCCR) can be approximated by:
Based on the above relationships, it can be shown that one method of minimizing losses due to radiation of electromagnetic waves by the QWCCR structure 100 is to minimize the inner radius b of the outer conductor 102 with respect to the excitation wavelength (λ). Another way of minimizing losses due to radiation of electromagnetic waves is to select an inner radius b of the outer conductor 102 that is close in dimension to the radius a of the inner conductor 104.
Various physical quantities and dimensions of the QWCCR structure 100 can be adjusted to modify performance of the QWCCR structure 100. For example, physical quantities and dimensions can be modified to maximize and/or optimize the total quality factor of the QWCCR structure 100 (QQWCCR). In some implementations, different dielectrics can be inserted into the QWCCR structure 100. In one implementation, the dielectric 108 can include a composite of multiple dielectric materials. For example, a half of the dielectric 108 near a proximal end of the QWCCR structure 100 can include alumina ceramic while a half of the dielectric 108 near a distal end of the QWCCR structure 100 can include air. The resonant frequency can be based on the dimensions and the fabrication materials of the QWCCR structure 100. Hence, modification of the dielectric 108 can modify a resonant frequency of the QWCCR structure 100. In some implementations, the resonant frequency can be 2.45 GHz based on the dimensions of the QWCCR structure 100. In other implementations, the resonant frequency of the QWCCR structure 100 could be within an inclusive range between 1 GHz to 100 GHz. In still other implementations, the resonant frequency of the QWCCR structure 100 could be within an inclusive range of 100 MHz to 1 GHz or an inclusive range of 100 GHz to 300 GHz. However, other resonant frequencies are contemplated within the context of the present disclosure.
An RF power source exciting the QWCCR structure 100 can generate a standing electromagnetic wave within the QWCCR structure 100. In some implementations, the resonant frequency of the QWCCR structure 100 can be designed to match the frequency of an RF power source that is exciting the QWCCR structure 100 (for example, to maximize power transferred to the QWCCR structure 100). For example, if a desired excitation frequency corresponds to a wavelength of λ0, dimensions of the QWCCR structure 100 can be modified such that the electrical length of the QWCCR structure 100 is an odd-integer multiple of quarter wavelengths (for example, ¼λ0, ¾λ0, 5/4 λ0, 7/4λ0, 9/4λ0, 11/4λ0, 13/4λ0, etc.). The electrical length is a measure of the length of a resonator in terms of the wavelength of an electromagnetic wave used to excite the resonator. The QWCCR structure 100 can be designed for a given resonant frequency based on the dimensions of the QWCCR structure 100 (for example, adjusting dimensions of the inner conductor 104, the outer conductor 102, or the dielectric 108) or the materials of the QWCCR structure 100 (for example, adjusting materials of the inner conductor 104, the outer conductor 102, or the dielectric 108).
In other implementations, the resonant frequency of the QWCCR structure 100 can be designed or adjusted such that its resonant frequency does not match the frequency of an RF power source that is exciting the QWCCR structure 100 (for example, to reduce power transferred to the QWCCR structure 100). Analogously, the frequency of an RF power source can be de-tuned relative to the resonant frequency of a QWCCR structure 100 that is being excited by the RF power source. Additionally or alternatively, the physical quantities and dimensions of the QWCCR structure 100 can be modified to enhance the amount of energy radiated (for example, from the distal end) in the form of electromagnetic waves (for example, microwaves) from the QWCCR structure 100. As an example, one or more elements of the QWCCR structure 100 could be movable or otherwise adjustable so as to modify the resonant properties of the QWCCR structure 100. Enhancing the amount of energy radiated might be done at the expense of maximizing the electric field at a concentrator of the electrode 106 at the distal end of the inner conductor 104. For example, some implementations can include slots or openings in the outer conductor 102 to increase the amount of radiated energy despite possibly reducing a quality factor of the QWCCR structure 100.
In still other implementations, the physical quantities and dimensions of the QWCCR structure 100 can be designed in such a way so as to enhance the intensity of an electric field at a concentrator of the electrode 106 of the QWCCR structure 100. Enhancing the electric field at a concentrator of the electrode 106 of the QWCCR structure 100 can result in an increase in plasma corona excitation (for example, an increase in dielectric breakdown near the concentrator), when the QWCCR structure 100 is excited with sufficiently high RF power/current. To increase electric field at a concentrator of the electrode 106 of the QWCCR structure 100, a radius of the concentrator can be minimized (for example, configured as a very sharp structure, such as a tip). Additionally or alternatively, to increase the electric field at a tip of the QWCCR structure 100 (for example, thereby increasing the intensity and/or size of an excited plasma corona), the intrinsic impedance (η) of the dielectric 108 can be increased, the power used to excite the QWCCR structure 100 can be increased, and the total quality factor of the QWCCR structure 100 (QQWCCR) can be increased (for example, by increasing the volume energy storage (U) of the cavity or by minimizing the surface and radiation losses).
Further, the shunt capacitance (C) of a circular coaxial cavity (for example, in farads/meter, and neglecting fringing fields) can be expressed as follows:
where ε0 represents the permittivity of free space, εr represents the relative dielectric constant of the dielectric 108 between the inner conductor 104 and the outer conductor 102, b is the inner radius of the outer conductor 102, and a is the radius of the inner conductor 104 (as illustrated in
Similarly, the shunt inductance (L) of a circular coaxial cavity (for example, in henrys/meter) can be expressed as follows:
where μ0 represents the permeability of free space, μr represents the relative permeability of the dielectric 108 between the inner conductor 104 and the outer conductor 102, b is the inner radius of the outer conductor 102, and a is the radius of the inner conductor 104 (as illustrated in
Based on the above, the complex impedance (Z) of a circular coaxial cavity (for example, in ohms, Ω) can be expressed as follows:
where G represents the conductance per unit length of the dielectric between the inner conductor and the outer conductor, R represents the resistance per unit length of the QWCCR structure 100, j represents the imaginary unit (for example, √{square root over (−1)}), co represents the frequency at which the QWCCR structure 100 is being excited, L represents the shunt inductance of the QWCCR structure 100, and C represents the shunt capacitance of the QWCCR structure 100.
At very high frequencies (for example, GHz frequencies) the complex impedance (Z) can be approximated by:
where Z0 represents the characteristic impedance of the QWCCR structure 100 (in other words, the complex impedance (Z) of the QWCCR structure 100 at high frequencies).
As described above, the shunt inductance (L) and the shunt capacitance (C) of the QWCCR structure 100 depend on the relative permeability (μr) and the relative dielectric constant (εr), respectively, of the dielectric 108 between the inner conductor 104 and the outer conductor 102. Thus, any modification to either the relative permeability (μr) or the relative dielectric constant (εr) of the dielectric 108 between the inner conductor 104 and the outer conductor 102 can result in a modification of the characteristic impedance (Z0) of the QWCCR structure 100. Such modifications to impedance can be measured using an impedance measurement device (for example, an oscilloscope, a spectrum analyzer, and/or an AC volt meter).
The above characteristic impedance (Z0) represents an impedance calculated by neglecting fringing fields. In some applications and implementations, the fringing fields can be non-negligible (for example, the fringing fields can significantly impact the impedance of the QWCCR structure 100). Further, in such implementations, the composition of the materials surrounding the QWCCR structure 100 can affect the characteristic impedance (Z0) of the QWCCR structure 100. Measurements of such changes to characteristic impedance (Z0) can provide information regarding the environment (for example, a combustion chamber) surrounding the QWCCR structure 100 (for example, the temperature, pressure, or atomic composition of the environment). A change in the characteristic impedance (Z0) can coincide with a change in the cutoff frequency, resonant frequency, short-circuit condition, open-circuit condition, lumped-circuit model, mode distribution, etc. of the QWCCR structure 100.
As illustrated in
As illustrated, the power of the electromagnetic waves radiated from the distal end of the QWCCR structure 100 decreases exponentially the further the excitation frequency (ω) is from the resonant frequency (ω0). However, the power of the electromagnetic waves is not necessarily zero as soon as you move away from resonance. Hence, it is understood that even when excited near the quarter-wave resonance condition (in other words, proximate to the quarter-wave resonance condition), rather than exactly at the resonance condition, the QWCCR structure 100 can still radiate electromagnetic waves with non-zero power and/or provide a plasma corona, depending on arrangement.
When the QWCCR structure 100 is being excited such that it provides a plasma corona proximate to the distal end (for example, at the electrode 106), a plot with a shape similar to that of
It is understood that when the term “proximate” is used to describe a relationship between a wavelength of a signal (for example, a signal used to excite the QWCCR structure 100) and a resonant wavelength of a resonator (for example, the QWCCR structure 100), the term “proximate” can describe a difference in length. For example, if the wavelength of the signal is “proximate to an odd-integer multiple of one-quarter of the resonant wavelength,” the wavelength of the signal can be equal to, within 0.001% of, within 0.01% of, within 0.1% of, within 1.0% of, within 5.0% of, within 10.0% of, within 15.0% of, within 20.0% of, and/or within 25.0% of one-quarter of the resonant wavelength. Additionally or alternatively, if the wavelength of the signal is “proximate to an odd-integer multiple of one-quarter of the resonant wavelength,” the wavelength of the signal can be within 0.1 nm, within 1.0 nm, within 10.0 nm, within 0.1 micrometers, within 1.0 micrometers, within 10.0 micrometers, within 0.1 millimeters, within 1.0 millimeters, and/or within 1.0 centimeters of one-quarter of the resonant wavelength, depending on context (for example, depending on the resonant wavelength). Still further, if the wavelength of the signal is “proximate to an odd-integer multiple of one-quarter of the resonant wavelength,” the wavelength of the signal can be a multiple of one-quarter of the resonant wavelength that is an odd number plus or minus 0.5, an odd number plus or minus 0.1, an odd number plus or minus 0.01, an odd number plus or minus 0.001, and/or an odd number plus or minus 0.0001.
The quality factor of the QWCCR structure 100 (QQWCCR), described above, can be used to describe the width and/or the sharpness of the resonance (in other words, how quickly the power drops off as you excite the QWCCR structure 100 further and further from the resonance condition). For example, a square root of the quality factor can correspond to the voltage modification experienced at the electrode 106 of the QWCCR structure 100 when the QWCRR structure 100 is excited at the quarter-wave resonant condition. Additionally, the quality factor may be equal to the resonant frequency (ω0) divided by full width at half maximum (FWHM). The FWHM is equal to the width of the curve in terms of frequency between the two points on the curve where the power is equal to 50% of the maximum power, as illustrated). The 50% power maximum point can also be referred to as the −3 decibel (dB) point, because it is the point at which the maximum voltage at the distal end of the QWCCR structure 100 decreases by 3 dB (or 29.29% for voltage) and the maximum power radiated by the QWCCR structure 100 decreases by 3 dB (or 50% for power). In various implementations, the FWHM of the QWCCR structure 100 could have various values. For example, the FWHM could be between 5 MHz and 10 MHz, between 10 MHz and 20 MHz, between 20 MHz and 40 MHz, between 40 MHz and 60 MHz, between 60 MHz and 80 MHz, or between 80 MHz and 100 MHz. Other FWHM values are also possible.
Further, the quality factor of the QWCCR structure 100 (QQWCCR) can also take various values in various implementations. For example, the quality factor could be between 25 and 50, between 50 and 75, between 75 and 100, between 100 and 125, between 125 and 150, between 150 and 175, between 175 and 200, between 200 and 300, between 300 and 400, between 400 and 500, between 500 and 600, between 600 and 700, between 700 and 800, between 800 and 900, between 900 and 1000, or between 1000 and 1100. Other quality factor values are also possible.
It is understood that, in alternate implementations, alternate structures (for example, alternate quarter-wave structures) can be used to emit electromagnetic radiation and/or excite plasma coronas (for example, other structures that concentrate electric field at specific locations using points or tips with sufficiently small radii). For example, other quarter-wave resonant structures, such as a coaxial-cavity resonator (sometimes referred to as a “coaxial resonator”), a dielectric resonator, a crystal resonator, a ceramic resonator, a surface-acoustic-wave resonator, a yttrium-iron-garnet resonator, a rectangular-waveguide cavity resonator, a parallel-plate resonator, a gap-coupled microstrip resonator, etc. can be used to excite a plasma corona.
Further, it is understood that wherever in this disclosure the terms “resonator,” “QWCCR,” “QWCCR structure,” and “coaxial resonator,” are used, any of the structures enumerated in the preceding paragraph could be used, assuming appropriate modifications are made to a corresponding system. In addition, the terms “resonator,” “QWCCR,” “QWCCR structure,” and “coaxial resonator” are not to be construed as inclusive or all-encompassing, but rather as examples of a particular structure that could be included in a particular implementation. Still further, when a “QWCCR structure” is described, the QWCCR structure can correspond to a coaxial resonator, a coaxial resonator with an additional base conductor, a coaxial resonator excited by a signal with a wavelength that corresponds to an odd-integer multiple of one-quarter (¼) of a length of the coaxial resonator, and other structures, in various implementations.
Additionally, whenever any “QWCCR,” “QWCCR structure,” “coaxial resonator,” “resonator,” or any of the specific resonators in this disclosure or in the claims are described as being “configured such that, when the resonator is excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of the resonant wavelength, the resonator provides at least one of a plasma corona or electromagnetic waves,” some or all of the following are contemplated, depending on context. First, the corresponding resonator could be configured to provide a plasma corona when excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of a resonant wavelength of the resonator. Second, the corresponding resonator could be configured to provide electromagnetic waves when excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of a resonant wavelength of the resonator. Third, the corresponding resonator could be configured to provide, when excited by the radio-frequency power source with a signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of a resonant wavelength of the resonator, both a plasma corona and electromagnetic waves.
In some implementations, the coaxial resonator 201 can be used as an antenna (for example, instead of or in addition to generating a plasma corona). As an antenna, the coaxial resonator 201 can radiate electromagnetic waves. The electromagnetic waves can consequently influence charged particles. As illustrated in the system 200 of
The signal generator 202 can be a device that produces periodic waveforms (for example, using an oscillator circuit). In various implementations, the signal generator 202 can produce a sinusoidal waveform, a square waveform, a triangular waveform, a pulsed waveform, or a sawtooth waveform. Further, the signal generator 202 can produce waveforms with various frequencies (for example, frequencies between 1 Hz and 1 THz). The electromagnetic waves radiated from the coaxial resonator 201 can be based on the waveform produced by the signal generator 202. For example, if the waveforms produced by the signal generator 202 are sinusoidal waves having frequencies between 300 MHz and 300 GHz (for example, between 1 GHz and 100 GHz), the electromagnetic waves radiated by coaxial resonator 201 can be microwaves. In various implementations, the signal generator 202 can, itself, be powered by an AC power source or a DC power source.
Depending on the signal used by the signal generator 202 to excite the coaxial resonator 201, the coaxial resonator 201 can additionally excite one or more plasma coronas. For example, if a large enough voltage is used to excite the coaxial resonator 201, a plasma corona can be excited at the distal end of the electrode 106 (for example, at a concentrator of the electrode 106). In some implementations, a voltage step-up device can be electrically coupled between the signal generator 202 and the coaxial resonator 201. In such scenarios, the voltage step-up device can be operable to increase an amplitude of the AC voltage used to excite the coaxial resonator 201.
In some implementations, the signal generator 202 can include one or more of the following: an internal power supply; an oscillator (for example, an RF oscillator, a surface acoustic wave resonator, or a yttrium-iron-garnet resonator); and an amplifier. The oscillator can generate a time-varying current and/or voltage (for example, using an oscillator circuit). The internal power supply can provide power to the oscillator. In some implementations, the internal power supply can include, for example, a DC battery (for example, a marine battery, an automotive battery, an aircraft battery, etc.), an alternator, a generator, a solar cell, and/or a fuel cell. In other implementations, the internal power supply can include a rectified AC power supply (for example, an electrical connection to a wall socket passed through a rectifier). The amplifier can magnify the power that is output by the oscillator (for example, to provide sufficient power to the coaxial resonator 201 to excite plasma coronas). For example, the amplifier can multiply the current and/or the voltage output by the oscillator. Additionally, in some implementations, the signal generator 202 can include a dedicated controller that executes instructions to control the signal generator 202.
Additionally or alternatively, as illustrated in the system 300 of
In some implementations, the DC power source 302 can include a dedicated controller that executes instructions to control the DC power source 302. The DC power source 302 can provide a bias signal (for example, corresponding to a DC bias condition) for the coaxial resonator 201. For example, a DC voltage difference between the inner conductor 104 and the outer conductor 102 of the coaxial resonator 201 in
By providing the coaxial resonator 201 with a bias signal, an increased voltage can be presented at a concentrator of the electrode 106, thereby yielding an increased electric field at the concentrator of the electrode 106. The total electric field at the concentrator can thus be a sum of the electric field from the bias signal of the DC power source 302 and the electric field from the signal generator 202 exciting the coaxial resonator 201 at a resonance condition (for example, exciting the coaxial resonator 201 at a quarter-wave resonance condition so the electric field of the signal from the signal generator 202 reaches a maximum at the distal end of the coaxial resonator 201). Because of this increased total electric field, an excitation of a plasma corona near the concentrator can be more probable.
As an alternative, rather than using a bias signal, the signal generator 202 can simply excite the coaxial resonator 201 using a higher voltage. However, this might use considerably more power than providing a bias signal and augmenting that bias signal with an AC voltage oscillation.
In some implementations, the DC power source 302 can be switchable (for example, can generate the bias signal when switched on and not generate the bias signal when switched off). As such, the DC power source 302 can be switched on when a plasma corona output is desired from coaxial resonator 201 and can be switched off when a plasma corona output is not desired from coaxial resonator 201. For example, the DC power source 302 can be switched on during an ignition sequence (for example, a sequence where fuel is being ignited within a combustion chamber to begin combustion), but switched off during a reforming sequence (for example, a sequence in which electromagnetic radiation is being used to chemically modify fuel). Further, in some implementations, the electric field at the concentrator of the electrode 106 used to initiate the plasma corona can be larger than the electric field at the concentrator used to sustain the plasma corona. Hence, in some implementations, the DC power source 302 can be switched on in order to excite the plasma corona, but switched off while the plasma corona is maintained by the signal from the signal generator 202.
In alternate implementations, the system 200 of
In alternate implementations, the negative terminals of the signal generator 202 and the DC power source 302 can instead be connected to the inner conductor 324 and the positive terminals can be connected to the outer conductor 322. In this way, the signal generator 202 and the DC power source 302 can instead apply a negative voltage (relative to ground) to the electrode 326 and/or inner conductor 324, rather than a positive voltage (relative to ground). Further, in some implementations, the negative terminals of the DC power source 302 and the signal generator 202 and/or the inner conductor 324 might not be grounded.
As stated above, the DC power source 302 can be switchable. In this way a positive bias signal or a negative bias signal can be selectively applied to the inner conductor 324 and/or the electrode 326 relative to the outer conductor 322. When the DC power source 302 is switched on, a bias condition can be present, and when the DC power source 302 is switched off, a bias condition might not be present. A bias signal provided by the DC power source 302 can increase the electric potential, and thus the electric field, at the electrode 326 (for example, at a concentrator of the electrode 106, such as a tip, edge, or blade). By increasing the electric field at the electrode 326, dielectric breakdown and potentially plasma excitation can be more prevalent. Thus, by switching on the DC power source 302, the amount of plasma excited at a plasma corona can be enhanced.
In some implementations, the voltage of the DC power source 302 can range from +1 kV to +100 kV. Alternatively, the voltage of the DC power source 302 can range from −1 kV to −100 kV. Even further, the voltage of the DC power source 302 can be adjustable in some implementations. Furthermore, the voltage of the DC power source 302 can be pulsed, ramped, etc. For example, the voltage can be adjusted by a controller connected to the DC power source 302. In such implementations, the voltage of the DC power source 302 can be adjusted by the controller according to sensor data (for example, sensor data corresponding to temperature, pressure, fuel composition, etc.).
As illustrated in
Further, a “communicative coupling,” as presently disclosed, is understood to cover a broad variety of connections between components, based on context. “Communicative couplings” can include direct and/or indirect couplings between components in various implementations. In some implementations, for example, a “communicative coupling” can include an electrical coupling between two (or more) components (for example, a physical connection between the two (or more) components that allows for electrical interaction, such as a direct wired connection used to read a sensor value from a sensor). Additionally or alternatively, a “communicative coupling” can include an electromagnetic coupling between two (or more) components (for example, a connection between the two (or more) components that allows for electromagnetic interaction, such as a wireless interaction based on optical coupling, inductive coupling, capacitive coupling, or coupling though evanescent electric and/or magnetic fields). In addition, a “communicative coupling” can include a connection (for example, over the public internet) in which one or more of the coupled components can transmit signals/data to and/or receive signals/data from one or more of the other coupled components. In various implementations, the “communicative coupling” can be unidirectional (in other words, one component sends signals and another component receives the signals) or bidirectional (in other words, both components send and receive signals). Other directionality combinations are also possible for communicative couplings involving more than two components. One example of a communicative coupling could be the controller 402 communicatively coupled to the coaxial resonator 201, where the controller 402 reads a voltage and/or current value from the resonator directly. Another example of a communicative coupling could be the controller 402 communicating with a remote server over the public Internet to access a look-up table. Additional communicative couplings are also contemplated in the present disclosure.
In some implementations, the controller 402 can control one or more settings of the signal generator 202 (for example, waveform shape, output frequency, output power amplitude, output current amplitude, or output voltage amplitude) or the DC power source 302 (for example, switching on or off or adjusting the level of the bias signal). For example, the controller 402 can control the bias signal of the DC power source 302 (for example, a voltage of the bias signal) based on a calculated voltage used to excite a plasma corona (for example, based on conditions within a combustion chamber). The calculated voltage can account for the voltage amplitude being output by the signal generator 202, in some implementations. The calculated voltage can ensure, for example, that the bias signal has a small effect on any standing electromagnetic wave formed within the coaxial resonator 201 based on an output of the signal generator 202.
The controller 402 can be located nearby the signal generator 202, the DC power source 302, the impedance sensor 404, and/or the one or more other sensors 406. For example, the controller 402 may be connected by a wire connection to the signal generator 202, the DC power source 302, the impedance sensor 404, and/or the one or more other sensors 406. Alternatively, the controller 402 can be remotely located relative to the signal generator 202, the DC power source 302, the impedance sensor 404, and/or the one or more other sensors 406. For example, the controller 402 can communicate with the signal generator 202, the DC power source 302, the impedance sensor 404, and/or the one or more other sensors 406 over BLUETOOTH®, over BLUETOOTH LOW ENERGY (BLE)®, over the public Internet, over WIFI® (IEEE 802.11 standards), over a wireless wide area network (WWAN), etc.
In some implementations, the controller 402 can be communicatively coupled to fewer components within the system 400 (for example, only communicatively coupled to the DC power source 302). Further, in implementations that include fewer components than illustrated in the system 400 (for example, in implementations, having only the coaxial resonator 201, the signal generator 202, and the controller 402), the controller 402 can interact with fewer components of the system 400. For instance, the controller can interact only with the signal generator 202.
The impedance sensor 404 can be connected to the coaxial resonator 201 (for example, one lead to the inner conductor 324 of the coaxial resonator 201 and one lead to the outer conductor 322 of the coaxial resonator 201) to measure an impedance of the coaxial resonator 201. In some implementations, the impedance sensor 404 can include an oscilloscope, a spectrum analyzer, and/or an AC volt meter. The impedance measured by the impedance sensor 404 can be transmitted to the controller 402 (for example, as a digital signal or an analog signal). In some implementations, the impedance sensor 404 can be integrated with the controller 402 or connected to the controller 402 through a printed circuit board (PCB) or other mechanism. The impedance data can be used by the controller 402 to perform calculations and to adjust control of the signal generator 202 and/or the DC power source 302.
Similarly, the other sensors 406 can also transmit data to the controller 402. Analogous to the impedance sensor 404, in some implementations, the other sensors 406 can be integrated with the controller 402 or connected to the controller 402 through a PCB or other mechanism. The other sensors 406 can include a variety of sensors, such as one or more of: a fuel gauge, a tachometer (for example, to measure revolutions per minute (RPM)), an altimeter, a barometer, a thermometer, a sensor that measures fuel composition, a gas chromatograph, a sensor measuring fuel-to-air ratio in a given fuel/air mixture, an anemometer, a torque sensor, a vibrometer, an accelerometer, or a load cell.
In some implementations, the controller 402 can be powered by the DC power source 302. In other implementations, the controller 402 can be independently powered by a separate DC power source or an AC power source (for example, rectified within the controller 402).
As an example, a possible implementation of the controller 402 is illustrated in
The processor 452 can include one or more central processing units (CPUs), such as one or more general purpose processors and/or one or more dedicated processors (for example, application-specific integrated circuits (ASICs), digital signal processors (DSPs), or network processors). The processor 452 can be configured to execute instructions (for example, instructions stored within the memory 454) to perform various actions. Rather than a processor 452, some implementations can include hardware logic (for example, one or more resistor-inductor-capacitor (RLC) circuits, flip-flops, latches, etc.) that performs actions (for example, based on the inputs from the impedance sensor 404 or the other sensors 406).
The memory 454 can store instructions that are executable by the processor 452 to carry out the various methods, processes, or operations presently disclosed. Alternatively, the method, processes, or operations can be defined by hardware, firmware, or any combination of hardware, firmware, or software. Further, the memory 454 can store data related to the signal generator 202 (for example, control signals), the DC power source 302 (for example, switching signals), the impedance sensor 404 (for example, look-up tables related to changes in impedance and/or a characteristic impedance of the coaxial resonator 201 based on certain environmental factors), and/or the other sensors 406 (for example, a look-up table of typical wind speeds based on elevation).
The memory 454 can include non-volatile memory. For example, the memory 454 can include a read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), a hard drive (for example, hard disk), and/or a solid-state drive (SSD). Additionally or alternatively, the memory 454 can include volatile memory. For example, the memory 454 can include a random-access memory (RAM), flash memory, dynamic random-access memory (DRAM), and/or static random-access memory (SRAM). In some implementations, the memory 454 can be partially or wholly integrated with the processor 452.
The network interface 456 can enable the controller 402 to communicate with the other components of the system 400 and/or with outside computing device(s). The network interface 456 can include one or more ports (for example, serial ports) and/or an independent network interface controller (for example, an Ethernet controller). In some implementations, the network interface 456 can be communicatively coupled to the impedance sensor 404 or one or more of the other sensors 406. Additionally or alternatively, the network interface 456 can be communicatively coupled to the signal generator 202, the DC power source 302, or an outside computing device (for example, a user device). Communicative couplings between the network interface 456 and other components can be wireless (for example, over WIFI®, BLUETOOTH®, BLUETOOTH LOW ENERGY (BLE)®, or a WWAN) or wireline (for example, over token ring, t-carrier connection, Ethernet, a trace in a PCB, or a wire connection).
In some implementations, the controller 402 can also include a user-input device (not shown). For example, the user-input device can include a keyboard, a mouse, a touch screen, etc. Further, in some implementations, the controller 402 can include a display or other user-feedback device (for example, one or more status lights, a speaker, a printer, etc.) (not shown). That status of the controller 402 can alternatively be provided to a user device through the network interface 456. For example, a user device such as a personal computer or a mobile computing device can communicate with the controller 402 through the network interface 456 to retrieve the values of one or more of the other sensors 406 (for example, to be displayed on a display of the user device).
As illustrated in
In some implementations, the fuel conduit 506 can inject fuel (for example, into a combustion chamber) at one or more outlets 508 defined within the electrode 106 (for example, within a concentrator of the electrode 106). By conveying fuel through the fuel conduit 506 and out one or more outlets 508, fuel can be introduced proximate to a source of ignition energy (for example, proximate to a plasma corona generated near a concentrator of the electrode 106), which can allow for efficient combustion and ignition. In alternate implementations, one or more outlets can be defined with other locations of the fuel conduit 506 (for example, so as not to interfere with the electric field at the concentrator of the electrode 106).
In some implementations, the fuel conduit 506 can act, at least in part, as a Faraday cage (for example, by encapsulating the fuel within a conductor that makes up the fuel conduit 506) to prevent electromagnetic radiation in the QWCCR structure 100 from interacting with the fuel while the fuel is transiting the fuel conduit 506. In other structures, the fuel conduit 506 can allow electromagnetic radiation to interact with (for example, reform) the fuel within the fuel conduit 506.
In some implementations, the QWCCR structure 100 can include multiple fuel conduits 506 (for example, multiple fuel conduits running from the proximal end of the QWCCR structure 100 to the distal end of the QWCCR structure 100). Additionally or alternatively, one or more fuel conduits 506 can be positioned within the dielectric 108 or within the outer conductor 102. As described above, the outlet(s) 508 of the fuel conduit(s) 506 can be oriented in such as a way as to expel fuel toward concentrators (for example, tips, edges, or points) of one or more electrodes 106 (for example, toward regions where plasma coronas are likely to be excited).
The first resonator 602 and the second resonator 604 are defined by a common outer conductor wall structure 608. The outer conductor wall structure 608 includes a first cylindrical wall 610 and a second cylindrical wall 612 centered on the longitudinal axis 606. The first cylindrical wall 610 is constructed of a conducting material and surrounds a first cylindrical cavity 614 centered on the longitudinal axis 606. The first cylindrical cavity 614 is filled with a dielectric 616 having a relative dielectric constant approximately equal to four (εr≈4), for example.
In the example implementation of
The second cylindrical wall 612 is constructed of a conducting material and surrounds a second cylindrical cavity 620 that is also centered on the longitudinal axis 606. The second cylindrical cavity 620 is coaxial with the first cylindrical cavity 614, but can have a greater physical length. The second cylindrical wall 612 provides the second cylindrical cavity 620 with a distal end 622 spaced along the longitudinal axis 606 from a proximal end 624 of the second cylindrical cavity 620.
A center conductor structure 626 is supported within the conductor wall structure 608 of the coaxial resonator 600 by the dielectric 616. The center conductor structure 626 includes a first center conductor 628, a second center conductor 630, and a radial conductor 632.
The first center conductor 628 reaches within the first cylindrical cavity 614 along the longitudinal axis 606. In the example implementation shown in
The second center conductor 630 has a proximal end 642 at the distal end 638 of the first center conductor 628. The second center conductor 630 projects along the longitudinal axis 606 to a distal end 644 configured as an electrode tip located at or in close proximity to the distal end 622 of the second cylindrical cavity 620.
To reduce any mismatch in impedances between the first resonator 602 and the second resonator 604, the relative radial thicknesses between both the cylindrical walls 610, 612 and the respective center conductors 628, 630 are defined in relation to the relative dielectric constant of the dielectric 616 and the dielectric constant of the air or gas that fills the second cylindrical cavity 620. In the example implementation of
In example implementations, any gaps between any of the center conductors 628, 630 and any outer conductor could be filled with a dielectric and/or the gap (for example, the second cylindrical cavity 620) could be large enough to reduce arcing (in other words, large enough such that the electric field is not of sufficient intensity to result in a dielectric breakdown of air or the intervening dielectric). As further shown in
In the illustrated example, a DC power source 646 is connected to the center conductor structure 626 through the radial conductor 632 connected adjacent to a virtual short-circuit point of the DC power source 646.
An RF control component, specifically, an RF frequency cancellation resonator assembly 648 is disposed between the radial conductor 632 and the DC power source 646 to restrict RF power from reaching the DC power source 646. The RF frequency cancellation resonator assembly 648 is an additional resonator assembly having a center conductor 650. The center conductor 650 has a first portion 652 and a second portion 654, each of which has the same electrical length “X” illustrated in
In an example implementation, the electrical length “X” depicted in
The RF frequency cancellation resonator assembly 648 also has a short outer conducting wall 656 and a long outer conducting wall 658. The short outer conducting wall 656 has first and second ends on opposite ends of the RF frequency cancellation resonator assembly 648. The long outer conducting wall 658 also has first and second ends on opposite ends of the RF frequency cancellation resonator assembly 648. The first and second ends of the short outer conducting wall 656 are each on the opposite side of the RF frequency cancellation resonator assembly 648 from the corresponding first and second ends of the long outer conducting wall 658.
In an example implementation, the difference in electrical length between the short outer conducting wall 656 and the long outer conducting wall 658 is substantially equal to the combined electrical length of the first portion 652 and the second portion 654. In this example, the combined electrical length of the first portion 652 and the second portion 654 is substantially equal to twice the electrical length of the first center conductor 628.
In an example implementation, the short outer conducting wall 656 and the long outer conducting wall 658 surround a cavity 660 filled with a dielectric. In operation, with this example implementation, electric current running along the outer conductor of the RF frequency cancellation resonator assembly 648 primarily follows the shortest path and run along the short outer conducting wall 656. Accordingly, electric current on the outer conductor of the RF frequency cancellation resonator assembly 648 travels two fewer quarter-wavelengths than current running along the center conductor 650 of the RF frequency cancellation resonator assembly 648.
In examples, the RF frequency cancellation resonator assembly 648 can also have an internal conducting ground plane 662 disposed within the cavity 660 and between the first portion 652 and the second portion 654 of the center conductor 650. Based on the geometry of the cancellation resonator assembly 648, this configuration provides a frequency cancellation circuit connected between the DC power source 646 and the radial conductor 632.
Further, in examples, the RF frequency cancellation resonator assembly 648 is configured to shift a voltage supply of RF energy 180 degrees out of phase relative to the ground plane 662 of the coaxial resonator 600 due to the difference in electrical length between the short outer conducting wall 656 and the center conductor 650 of the RF frequency cancellation resonator assembly 648.
As depicted in
An annular edge 718 of the first cylindrical wall portion 710 defines a proximal end 720 of the first cylindrical cavity 714. A proximal end of the second cylindrical wall portion 712 adjoins a distal end 722 of the first cylindrical cavity 714.
The coaxial resonator 700 further includes a first center conductor portion 724 and a second center conductor portion 726 (the center conductor portions 724, 726 represented by the densest cross-hatching in
The coaxial resonator 700 has an aperture 738 that reaches radially outward through the first cylindrical wall portion 710. A radial conductor 740 extends out through the aperture 738 from the longitudinal axis 706 to be connected to an RF power source (for example, the signal generator 202) by an RF power input line. The end of the radial conductor 740 that is closer to the longitudinal axis 706 connects to a parallel plate capacitor 742 that is in a coupling arrangement to a center conductor structure 744. The parallel plate capacitor 742 is also in a coupling arrangement to an inline folded RF attenuator 746. The spacing between the parallel plate capacitor 742 and the center conductor structure 744 can depend on the materials used for fabrication (for example, the materials used to fabricate the parallel plate capacitor 742, the center conductor structure 744, and/or the dielectric 716).
In an example, the DC power source 646 described above is connected to the center conductor structure 744 at a proximal end 748 of the center conductor structure 744 with a DC power input line. The inline folded RF attenuator 746 is disposed between the second resonator portion 704 and the DC power source 646 to restrict RF power from reaching the DC power source 646.
The inline folded RF attenuator 746 includes an interior center conductor portion 750 having a proximal end 752 and a distal end 754. The inline folded RF attenuator 746 also includes an exterior center conductor portion 756 and a transition center conductor portion 758 that connects or couples the interior center conductor portion 750 and the exterior center conductor portion 756.
The exterior center conductor portion 756 has a proximal end largely in the same plane as the proximal end 752, and a distal end largely in the same plane as the distal end 754. For example, in the cross-sectional illustration of
In this example, the exterior center conductor portion 756 resembles a cylindrical portion of conducting material surrounding the rest of the interior center conductor portion 750. The longitudinal lengths of the interior center conductor portion 750 and the exterior center conductor portion 756 are substantially equal to the longitudinal length of the parallel plate capacitor 742 with which they are in a coupling arrangement. The electrical length between the proximal end 752 to the distal end 754, for both the interior center conductor portion 750 and the exterior center conductor portion 756, is substantially equal to one quarter-wavelength. The second center conductor portion 726 and the second cylindrical wall portion 712 are both configured to have an electrical length of one quarter-wavelength.
The wall structure 708 includes a short outer conducting portion 760 which has a proximal end largely in the same plane as the proximal end 752, and a distal end largely in the same plane as the distal end 754. An outer conducting path runs from the distal end of the wall structure 708 (that is substantially coplanar with the distal end 734 of the second cylindrical cavity 736), along the short outer conducting portion 760, and stops at the proximal end 720 of the first cylindrical wall portion 710. In this example, the outer conducting path has an electrical length of two quarter-wavelengths.
An inner conducting path runs from the concentrator 732 to the proximal end 728 of the second center conductor portion 726, along the outside of the transition center conductor portion 758, then along the outside from the distal end to the proximal end of the exterior center conductor portion 756, then along an interior wall 762 of the exterior center conductor portion 756 from its proximal end to its distal end, then along the interior center conductor portion 750 from its distal end to its proximal end. In this example, the electrical length of this inner conducting path is four quarter-wavelengths, or two half wavelengths. The difference in electrical lengths between the inner conducting path and the outer conducting path is one half wavelength.
With this configuration, the inline folded RF attenuator 746 operates as a radio-frequency control component connected between the DC power source 646 and the voltage supply of RF energy. The inline folded RF attenuator 746 is configured to shift a voltage supply of RF energy 180 degrees out of phase relative to the ground plane of the coaxial resonator 700.
The particular arrangement depicted in
In another example, the arrangement depicted in
In one example, the arrangements described with respect to
The above coaxial resonators could be usefully employed in the context of a power-generation turbine. For example, a coaxial cavity resonator similar to the coaxial resonator 201 illustrated in
An example power-generation turbine includes a compressor coupled to a turbine through a shaft, and the power-generation turbine also includes a combustion chamber or area, called a combustor. It is understood that, as presently described, the terms “power-generation turbine,” “power-generation gas turbine,” and “gas turbine” are used synonymously and/or interchangeably. In operation, atmospheric air flows through a compressor that brings the air to higher pressure. Energy is then added by spraying fuel into the air and igniting it so the combustion generates a high-temperature, high-pressure gas flow. The high-temperature, high-pressure gas enters a turbine, where it expands down to an exhaust pressure, producing a shaft work output at the shaft coupled to the turbine in the process.
The shaft work output is used to drive the compressor and other devices (for example, an electric generator) that can be coupled to the shaft. The energy that is not used for shaft work comes out in the exhaust gases that can include a high temperature and/or a high velocity. Gas turbines can be utilized to power aircraft, trains, ships, electrical generators, pumps, gas compressors, and tanks, among other machines.
An example gas turbine includes an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber or area, called a combustor, in between the compressor and the turbine. In operation, atmospheric air flows through a compressor that brings the air to higher pressure. Energy is then added by spraying fuel into the air and igniting it so the combustion generates a high-temperature high pressure gas flow. The high-temperature high-pressure gas enters a turbine, where it expands down to the exhaust pressure, producing a shaft work output in the process. In a power-generation turbine, the shaft work is used to drive the compressor and an electric generator that can be coupled to the shaft.
Fuel is mixed with the compressed air exiting the compressor 804, and the fuel-compressed air mixture is burned in a combustor 806, generating a flow of hot, high pressure gas. The hot, high pressure air exiting the combustor 806 is then passed through a first turbine 808. The first turbine 808 extracts energy from a flow of gas by making blades of the first turbine 808 spin in the flow. The first turbine 808 can include several stages, and the energy extracted by the first turbine 808 is used to turn the compressor 804 by linking or coupling the compressor 804 and the first turbine 808 by a central shaft 810.
The above-mentioned components of the power-generation turbine 800 can be referred to collectively as the gas generator. The power-generation turbine 800 further includes a power section having a second turbine 812 and an output shaft 814. The output shaft 814 can be coupled to an electric generator. Particularly, the output shaft 814 can be connected to a rod or shaft of the electric generator that turns one or more magnets surrounded by coils of copper wire. The fast-revolving generator magnet creates a powerful magnetic field that lines up the electrons around the copper coils and causes them to move, providing an electrical current, and thereby generating electricity.
In examples, the gas generator and power section of the power-generation turbine 800 are mechanically-separate so they can each rotate at different speeds appropriate for the conditions. In other examples, the power-generation turbine 800 might not include two turbines 808, 812 but can have a single turbine driving both the compressor 804 and the output shaft 814. Further, although
One way to boost efficiency of the power-generation turbine 800 is to install a recuperator or to use a heat-recovery steam generator (HRSG) to recover energy from the exhaust of the second turbine 812. If a recuperator is installed, the recuperator captures waste heat in the gases exiting the turbines 808, 812 to preheat the compressed air discharged by the compressor 804 before the compressed air enters the combustor 806. If a HRSG is used, the HRSG generates steam by capturing heat from the gases exiting the turbines 808, 812. High-pressure steam generated by the HSRG can be used to generate additional electric power with steam turbines in a “combined cycle” configuration.
The combustor 806, which can also be referred to as a burner, a combustion chamber, or a flame holder, comprises the area of the power-generation turbine 800 where combustion takes place. The combustor 806 of the power-generation turbine 800 is configured to contain and maintain stable combustion despite high air flow rates. As such, in examples, the combustor 806 is configured to mix the air and fuel, ignite the air-fuel mixture, and then mix in more air to complete the combustion process.
Combustors of power-generation turbines can be classified into several types. For example, a first type of combustor can be referred to as an annular combustor in which the combustor is configured as a continuous chamber that encircles the air in a plane perpendicular to the air flow. A second type of combustor can be referred to as can-annular, which is similar to the annular type but incorporates several can-shaped combustion chambers rather than a single continuous chamber. The can-shaped combustion chambers can be disposed in a radial array about a longitudinal axis of the power-generation turbine. The can-shaped combustion chambers could be disposed perpendicular to the longitudinal axis, parallel to the longitudinal axis, or at a particular angle relative to the longitudinal axis. A third type of combustor can be referred to as a can or silo combustor that can include one or more self-contained combustion chambers mounted externally to the power-generation turbine.
The combustor 900 includes a case 902 that is configured as an outer shell of the combustor 900. The case 902 can be protected from thermal loads by the air flowing in it, and can operate as a pressure vessel configured to withstand the difference between the high pressures inside the combustor 900 and the lower pressure outside.
The combustor 900 further includes a liner 904 that could be slot-cooled and configured to contain the combustion process. The liner 904 is configured to withstand extended high temperature cycles, and therefore can be made from superalloys. Furthermore, the liner 904 is cooled with air flow. In some example implementations, in addition to air cooling, the combustor 900 can include thermal barrier coatings to further cool the liner 904.
A portion of the compressed discharge air, referred to as dilution air 914, is injected through dilution air holes in the liner 904 at the end of the combustion zone 912 to help cool the air before it reaches the first turbine 808. The dilution air 914 can be used to produce the uniform temperature profile desired in the combustor 900.
Further, a portion of the compressed discharge air, referred to as cooling air 916, is injected through cooling air holes in the liner 904 to generate a layer (film) of cool air to protect the liner 904 from the high combustion temperatures. The combustor 900 can be configured such that the cooling air 916 does not directly interact with the combustion air 910 and the combustion process.
The combustor 900 further includes a fuel injector 918 configured to introduce fuel to the combustion zone 912 for mixing the fuel with the combustion air 910. The fuel injector 918 can be configured as any of several types of fuel injectors, including without limitation: pressure-atomizing, air blast, vaporizing, and premix/prevaporizing injectors.
Pressure-atomizing fuel injectors utilize high fuel pressures (as much as 500 pounds per square inch (psi)) to atomize the fuel. When using this type of fuel injector, the fuel system is configured to be sufficiently robust to withstand such high pressures. The fuel tends to be heterogeneously atomized, resulting in incomplete or uneven combustion, which generates pollutants and smoke.
The air blast fuel injector can include a port 920 configured to receive atomizing air. The air blast injector “blasts” fuel with a stream of air received through the port 920, atomizing the fuel into homogeneous droplets, and can cause the combustor 900 to be smokeless. The air blast fuel injector can operate at lower fuel pressures than the pressure atomizing fuel injector.
The vaporizing fuel injector is similar to the air blast injector in that the combustion air 910 is mixed with the fuel as it is injected into the combustion zone 912. However, with the vaporizing fuel injector, the fuel-air mixture travels through a tube within the combustion zone 912. Heat from the combustion zone 912 is transferred to the fuel-air mixture, vaporizing some of the fuel to enhance the mixing before the mixture is combusted. This way, the fuel is combusted with low thermal radiation, which helps protect the liner 904. However, the vaporizer tube can have low durability because of the low fuel flow rate within it causing the tube to be less protected from the combustion heat.
The premixing/prevaporizing injector is configured to mix or vaporize the fuel before it reaches the combustion zone 912. In such a scenario, the fuel is uniformly mixed with the air, and emissions from the power-generation turbine 800 can be reduced. However, in some cases, fuel can auto-ignite or otherwise combust before the fuel-air mixture reaches the combustion zone 912, and the combustor 900 can thus be damaged. In some example implementations, a resonator could be configured with fuel passages disposed within the resonator, such that the resonator integrates operations of the fuel injector 918 with operations of an igniter described below. In these examples, the resonator could be configured to perform the atomization and vaporization of the fuel in addition to mixing and preparing the fuel for combustion. The fuel would then be passed through a formed plasma to ensure ignition. Further, the presence of the electromagnetic waves radiated by the resonator could be used to energize the air-fuel mixture and stimulate combustion.
In examples, the power-generation turbine 800 could be a dual-fuel turbine. A dual-fuel turbine can run primarily with one type of gas (for example, natural gas) as fuel but can also have a back-up fuel supply system if the gaseous fuel is not available. For instance, the dual-fuel turbine can be configured to also receive liquid fuel and water through a pipe system.
In an example, to accommodate different types of fuel, the fuel injector 918 could be configured as a dual-fuel nozzle assembly configured to receive two types of fuel. For instance, the fuel injector 918 can have a gas-fuel port 922 configured to be fluidly coupled to a source of gaseous fuel, and can also have a liquid-fuel port 924 configured to be fluidly coupled to a source of liquid fuel.
Example fuels that could be provided to the power-generation turbine 800 include, without limitation: Arabian Extra Light Crude Oil (AXL), Arabian Super Light (ASL), Biodiesel Condensate or Natural Gas Liquids (NGL), Dimethyl Ether (DME), Distillate Oil #2 (DO2), Ethane (C2), Heavy Crude Oil, Heavy Fuel Oil (HFO), High H2, Hydrogen Blends, Kerosene (Jet A or Jet A-1), Lean Methane, Light Crude Oil (LCO), Liquid Natural Gas (LNG), Liquefied Propane Gas (LPG), Medium Crude Oil, Methanol/Ethanol (Alcohol), Naphtha, Natural Gas (NG), Sour Gas (H2S), Steel Mill Gases, and Syngas.
Each of these fuels can have a particular air-to-fuel mixture ratio (or desirable mixture ratio range) at which the fuel is burnt. Under some conditions, if the air-fuel mixture has an air-to-fuel ratio that is less than the particular air-to-fuel ratio, combustion might not occur. Further, each fuel can have different combustion characteristics. The resonators disclosed in the present disclosure may enable gas turbines to operate on a wide variety of gaseous and liquid fuels while burning fuels efficiently and without changes to the gas turbines.
The combustor 900 also includes an igniter 926. In examples, the igniter 926 can be configured as an electrical spark igniter, similar to an automotive spark plug. However, there are several disadvantages to such configuration. For instance, a spark plug might not be capable of igniting different types of fuel with different air-to-fuel ratios and combustion characteristics. Further, even if the spark plug is capable of igniting some mixtures, achieving high efficiencies for different types of fuel and air-to-fuel ratios can be difficult.
The igniter 926 can be disposed proximate to the combustion zone 912 where the fuel and air are already mixed. To avoid damage by the combustion itself, the igniter 926 can be located proximate to the combustion zone 912, but upstream from the combustion location. In example implementations, once combustion is initially started by the igniter 926, the combustion can be self-sustaining and the igniter 926 need no longer be used. However, in some examples, it can be desirable to have the igniter 926 configured to facilitate detection of changes in operational characteristics of the gas turbine or the combustion process that could lead to extinguishing combustion, and proactively prevent such extinguishment.
The combustor 900 can further include a transition assembly 928 that couples the combustor 900 to the first turbine 808 such that hot air resulting from the combustion zone 912 flows through the transition assembly 928 to the first turbine 808.
The combustor 900 illustrated in
Additionally, in examples, the combustor 900 can have several combustion stages, including, for example, a pilot stage. The power-generation turbine 800 can be configured to provide fuel to each stage in the combustor 900 through a respective tube. Other example variations are possible.
The combustion taking place at the combustor 900 may affect many of the operating characteristics of the power-generation turbine 800. As examples, combustion may determine fuel efficiency, output power level, and levels of emissions of the power-generation turbine 800. It can thus be desirable to have an ignition system that prepares the fuel for efficient and thorough combustion regardless of the type of fuel, reduces emissions, and that facilitates starting and sustaining ignition regardless of air-to-fuel ratio and the type of fuel.
As noted above, efficient and thorough combustion of fuel in a power-generation turbine may improve various operating characteristics of the turbine, including fuel efficiency, output power levels, and emissions. One way to help achieve such efficient and thorough combustion is to guide the combustion of the fuel in the combustor of the power-generation turbine.
As depicted in
When the combustible fuel/air mixture in the combustor is ignited, combustion of the fuel/air mixture can propagate along a flame path throughout the mixture. For instance, the igniter can ignite a portion of the fuel/air mixture that is proximate to the igniter, and the ignited fuel can generate a flame as the fuel heats and expands during combustion. The flame from the combusting fuel can heat nearby portions of the fuel/air mixture, thereby causing those nearby portions to also ignite and combust into a flame. As such, the combustion process can propagate throughout the fuel/air mixture as long as there is nearby combustible fuel/air mixture available to be combusted.
Without guidance, combustion may propagate along a flame path that leaves some unspent fuel in the combustor. For instance, as described above, fuel can be injected into the combustor in various ways to mix the fuel with air that enters the combustor from the compressor. The air from the compressor can enter the combustor at high speeds and can traverse the length of the combustor in a short amount of time. When the fuel is introduced into the air from the compressor, the fuel can also be accelerated to high speeds so that the fuel can also traverse the length of the combustor in a short amount of time. And when the fuel quickly traverses the length of the combustor, the fuel might not reside within the combustor long enough for combustion to propagate to all of the fuel before the fuel exits the combustor through the turbine of the generator.
One way to help address this issue can include guiding the fuel/air mixture along an elongated path so that it may take longer for the fuel to propagate through the combustor, thereby providing more time for combustion to propagate throughout the fuel before any unspent fuel exits the combustor. Examples of such elongated paths include paths that deviate from a straight path along the length of the combustor and/or multiple flame paths that extend along the length of the combustor. As noted above, combustion of the fuel can propagate to wherever there is nearby fuel to combust, so guiding the fuel/air mixture along the elongated path can also guide combustion of the fuel along an elongated flame path that partially or entirely coincides with the elongated path of the fuel/air mixture.
Example structures for guiding combustion along various flame paths will now be described particularly (by way of example) in the context of a cylindrical combustor, by reference to
Referring to
In order to guide combustion of fuel in the combustion zone 1004, the combustor 1000 further includes a number of fins 1006a-f that protrude radially inward into the combustion zone 1004 toward the center axis 1002 of the combustor 1000. The fins 1006a-f can protrude radially inward from the interior walls of the combustor 1000, or in implementations of the combustor 1000 that include a liner, the fins 1006a-f can protrude radially inward from an interior surface of the liner. To enable the fins 1006a-f to safely protrude into the combustion zone 1004, the fins 1006a-f can be made from materials configured to withstand extended high temperature cycles, including various superalloys. The fins 1006a-f can extend partially or entirely along the length of the combustor 1000 and can be arranged in various patterns as described in more detail below. In each of the present examples, a total of six fins 1006a-f are shown, but other implementations can include additional or fewer fins, perhaps as few as one fin.
The fins 1006a-f can guide the fuel, and thus combustion of the fuel, by controlling a flow path for air that enters the combustor, such as by controlling a path of air that enters the combustor from the compressor of the power-generation turbine. In particular, the fins 1006a-f define a number of channels between adjacent fins, and when air enters the combustor from the compressor, the fins 1006a-f can deflect the air and force the air into these channels. For instance, fin 1006a is offset from fin 1006b along a circumference of the combustor 1000 so that fins 1006a and 1006b define a channel between their radially-inward surfaces. And when air enters the combustion zone 1004, fins 1006a and 1006b can deflect at least some of the air into the channel defined between fins 1006a and 1006b. Air can similarly be directed into the remaining channels defined by the fins 1006a-f as well. When fuel is introduced into the combustion zone 1004, the fuel mixes with the air to form a fuel/air mixture. Thus, by directing the flow of air through the combustion zone 1004, the fins 1006a-f can also direct the flow of the fuel through the combustion zone 1004. In particular, the fins 1006a-f can direct the flow of the fuel along the channels defined by the fins 1006a-f. When the fuel is ignited, combustion of the fuel can propagate along the path of the fuel, such that combustion of the fuel can propagate along a flame path that partially or entirely coincides with the channels defined by the fins 1006a-f. In this manner, the channels defined by the fins 1006a-f can act as both a path for guiding fuel through the combustor 1000 and a flame path for guiding combustion of the fuel.
Further, directing portions of the fuel/air mixture along the channels defined by the fins 1006a-f can also cause other portions of the fuel/air mixture, such as portions of the fuel/air mixture closer to the center axis 1002 of the combustor 1000, to travel along a similar path. For instance, when various molecules of fuel or air move through the channels, they can collide with nearby molecules of fuel or air, and the collisions can transfer kinetic energy to those nearby molecules that cause the nearby molecules to move in a similar direction as the molecules in the channels, such as along a path that is approximately parallel to the channels. In some implementations, the fuel/air mixture near the center axis 1002 of the combustor 1000 can be further directed by extending the fins 1006a-f farther into the combustion zone 1004 toward the center axis 1002 of the combustor. Such extension of the fins 1006a-f can increase the cross-sectional areas of the channels defined by the fins 1006a-f, which can increase the amount of the fuel/air mixture that is directed into the channels. In some implementations, the fins 1006a-f can extend completely to the center axis 1002 and be joined at the center axis 1002, so that no other path outside of the channels exists for the fuel/air mixture. In this manner, all of the fuel and air introduced into the combustor 1000 can travel through the channels defined by the fins 1006a-f.
Fuel can be introduced into the combustion zone 1004 in various ways. In some implementations, one or more fuel inlets could be aligned with one or more of the fins 1006a-f and/or at least partially arranged within one or more of the fins 1006a-f. In particular, a fuel inlet could include or be arranged in a conduit through fin 1006a so that fuel passing through the fuel inlet could pass through fin 1006a to be introduced into the combustion zone 1004. In some implementations, the conduit could terminate at a tip of fin 1006a or at a sidewall of fin 1006a toward a channel adjacent to fin 1006a, such as the channel defined between fins 1006a and 1006b. In this manner, the fuel inlet could introduce the fuel proximate to the fins 1006a-f and/or at least partially along the flame path defined by the fins 1006a-f. For instance, the fuel inlet could introduce fuel through a sidewall of fin 1006a into the channel defined between fins 1006a and 1006b, or the fuel inlet could introduce fuel through the tip of fin 1006a toward the center axis 1002 of the combustor.
In line with the discussion above, a coaxial resonator can generate a plasma corona for igniting fuel in a combustor of a power-generation turbine. Sectional view A-A of
In the illustrated examples, at least a portion of the representative coaxial resonator can be coupled to and/or located within and/or proximate to the combustion zone 1004 and used to trigger excitation of a plasma corona within the combustion zone 1004. For instance, as depicted in
In some implementations, various other configurations of the coaxial resonator can be used. For instance, resonator 1008a could be aligned with one or more of the fins 1006a-f and/or at least partially arranged within one or more of the fins 1006a-f. In particular, resonator 1008a could protrude into the combustor 1000 through fin 1006a or through a conduit in fin 1006a so that the electrode of resonator 1008a extends into the combustion zone 1004 from fin 1006a. In some implementations, the electrode of resonator 1008a could protrude from a tip of fin 1006a toward the center axis 1002, or the electrode of resonator 1008a could protrude from a side of fin 1006a toward a channel adjacent to fin 1006a, such as the channel defined between fins 1006a and 1006b. In this manner, resonator 1008a could provide a plasma corona proximate to the fins 1006a-f and/or at least partially along the flame path defined by the fins 1006a-f. For instance, resonator 1008a could provide the plasma corona at or near the tip of fin 1006a or into the channel defined between fins 1006a and 1006b.
Further, in some implementations, the coaxial resonator and/or a fuel inlet can be oriented so as to direct at least a portion of the fuel toward the electrode of the coaxial resonator. For example, a fuel injector can be configured to inject fuel through a fuel inlet in a fuel spray pattern, and the distal end of the electrode of coaxial resonator 1008a can be positioned within the fuel spray pattern. In this manner, when a radio-frequency power source excites coaxial resonator 1008a so as to provide a plasma corona in the combustion zone 1004, the plasma corona can ignite the fuel. For instance, the radio-frequency power source can excite coaxial resonator 1008a so as to provide a plasma corona proximate to the distal end of the electrode.
Further, in some implementations, an electrode of a coaxial resonator can be positioned downstream of a fuel inlet, such that the fuel that is input through the fuel inlet flows by the electrode and is ignited by the plasma corona. For instance, the fuel inlet can be positioned at a first position along the length of the combustor, and the electrode can be positioned at a second position along the length of the combustor, with the second position being closer to the distal end of the combustor than the first position. In addition, with this configuration, the fuel inlet can be positioned at a same or different angular position, relative to the center axis of the combustor, as the electrode.
Moreover, the orientation of a coaxial resonator with respect to a longitudinal axis of the combustor can vary, depending on the desired implementation. In an example, a longitudinal axis of the center conductor of coaxial resonator 1008a can be oblique to the longitudinal center axis 1002 of the combustor 1000, with a distal end of the center conductor being disposed toward a distal end of the combustor 1000. Orienting coaxial resonator 1008a in this manner can help to prevent fuel that is input into the combustor from blowing out the plasma corona. Alternatively, coaxial resonator 1008a can be oriented such that a longitudinal axis of the center conductor is perpendicular to the longitudinal center axis 1002 of the combustor 1000. Other examples are possible as well.
In any case, as described above, a coaxial resonator can provide a plasma corona in the combustion zone in order to ignite the fuel/air mixture and cause the fuel in the combustion zone to combust. As such, a plasma corona provided by coaxial resonator 1008a can ignite the fuel/air mixture in the channel defined between fins 1006a and 1006f. And because fins 1006a and 1006f can guide the fuel/air mixture through the channel defined between fins 1006a and 1006f, combustion of the fuel/air mixture can propagate along a flame path that coincides with the channel defined between fins 1006a and 1006f.
As further noted above, the fuel in the combustor may be combusted more thoroughly by elongating the fuel path and the flame path from combusting the fuel. In order to elongate the fuel path and the flame path, the fins 1006a-f can be arranged in various patterns that affect an overall length of the channels defined between the fins 1006a-f. For instance, in some implementations, the fins 1006a-f can be arranged in a helical or spiral pattern around the inner circumferential surface of the combustor 1000, similar to the rifling on the inside of a rifle barrel. By arranging the fins 1006a-f in a helical or spiral pattern, the channels defined between the fins 1006a-f can also be helical or spiral, and the fuel/air mixture that is deflected into the channels can travel along the helical or spiral paths of the channels. And when the fuel/air mixture in the channels is ignited, combustion can propagate throughout the fuel/air mixture in the channels along the helical or spiral pattern.
Sectional view B-B shows how the fins 1006a-f, when arranged in a helical or spiral pattern, can be rotationally offset from their positions at cross-section A-A at different cross-sections along the length of the combustor 1000. In particular, the fins 1006a-f at cross-section B-B are rotated clockwise by approximately 30-degrees relative to their positions at cross-section A-A. However, in other examples, the fins 1006a-f can be arranged in tighter or looser spiral patterns that result in a greater or lesser extent of rotation between cross-section A-A and cross-section B-B.
As further shown in sectional view B-B, one or more additional coaxial resonators similar to coaxial resonator 1008a can be included at various points along the length of the combustor 1000. For instance, sectional view B-B shows an additional coaxial resonator 1008b that is rotationally offset from coaxial resonator 1008a by approximately 180-degrees around the circumference of the combustor 1000. In line with the discussion above, coaxial resonator 1008b is aligned with and arranged within fin 1006c so that the electrode of resonator 1008b extends from the tip of fin 1006c to provide a plasma corona at or near the tip of fin 1006c. In other examples, coaxial resonator 1008b could be arranged within any of the fins 1006a-f or between any two of the fins 1006a-f and is not limited to being arranged within fin 1006c. In any case, coaxial resonator 1008b can supplement the combustion caused by coaxial resonator 1008a by providing an additional plasma corona to ignite any non-combusted fuel at or near coaxial resonator 1008b.
Further, in some implementations, multiple coaxial resonators similar to coaxial resonator 1008a can be included at various cross-sections along the length of the combustor 1000. For instance, as depicted in
The coaxial resonators 1008a-m can be coupled to the combustor 1000 in various ways. For instance, the coaxial resonators 1008a-m can be coupled to the outer casing of the combustor 1000 and can extend through ports in the outer casing. In implementations where the combustor 1000 includes a liner, the coaxial resonators 1008a-m can be coupled to the liner and can extend through ports in the liner. Further, in some implementations, the coaxial resonators 1008a-m can be suspended within the combustor 1000. For instance, the combustor 1000 can include one or more brackets suspended in the combustor 1000 by one or more struts that extend from the outer casing of the combustor 1000, and the coaxial resonators 1008a-m can be mounted to the suspended brackets. The struts and/or the brackets can include conduits for electrical circuitry in order to electromagnetically couple the coaxial resonators 1008a-m to a radio-frequency power source for exciting the coaxial resonators 1008a-m as described above.
In these examples, any of the coaxial resonators at cross sections A-A and B-B can be selectively excited according to a desired sequence so as to provide plasma coronas at the desired sequence. For instance, each coaxial resonator can be electromagnetically coupled to a respective radio-frequency power source, and a controller can cause the respective radio-frequency power sources to excite the coaxial resonators in the desired sequence. In other examples, multiple coaxial resonators can be electromagnetically coupled to a single radio-frequency power source, and the controller can cause the single radio-frequency power source to selectively excite the coaxial resonators at the desired sequence.
The desired sequence can take various forms. For instance, referring to sectional view A-A in
Further, in some implementations, coaxial resonators at different points along the length of the combustor 1000 can be excited at different times in accordance with the desired sequence. For instance, coaxial resonators at cross section B-B can be excited after coaxial resonators at cross section A-A. This can allow combustion to propagate from coaxial resonators at cross section A-A along the length of the combustor 1000 toward cross section B-B before exciting the coaxial resonators at cross section B-B. In some implementations, excitation of the coaxial resonators at cross section B-B can be delayed by a delay time that causes combustion propagating from coaxial resonators at cross section B-B to reach the distal end of the combustor at approximately the same time as combustion propagating from coaxial resonators at cross section A-A. The amount of delay time between exciting the coaxial resonators at cross section A-A and exciting the coaxial resonators at cross section B-B can depend on a velocity of the combustion propagation, which could depend on the type of fuel being combusted. For instance, for a given fuel, if it takes X milliseconds for combustion to propagate from cross section A-A to the distal end of the combustor and Y milliseconds for combustion to propagate from cross section B-B to the distal end of the combustor, then the coaxial resonators at cross section B-B can be excited Z milliseconds after the coaxial resonators at cross section A-A, where Z=X−Y
With the fins 1006a-f arranged centrally in the combustion zone 1004, the coaxial resonators 1008a-m can provide plasma coronas to ignite and combust the fuel in a similar manner as described above with respect to
In the above examples, the fins 1006a-f are depicted as being triangular in shape. In particular, the fins 1006a-f are depicted as having sidewalls that define the channels between adjacent fins, and the sidewalls converge at the tips of the fins 1006a-f. As shown, the tips of the fins 1006a-f can be rounded or otherwise dulled. In line with the discussions above, high voltages can be applied to the electrodes of the resonators, and these high voltages can generate electric fields between the electrodes and various other conductive elements of the combustor 1000. By rounding the tips of the fins 1006a-f, the magnitude of the electric fields near the tips of the fins 1006a-f can be reduced, which can help reduce arcing between the electrodes and the fins 1006a-f. Further, in some implementations, the fins 1006a-f can take on other shapes. For instance, the fins 1006a-f can be rectangular, semicircular, or any other shape that can protrude into the combustion zone 1004 and define channels for guiding the flow of fuel and air through the combustor 1000.
As depicted in
With these example helical arrangements of fins 1006a-f, when the fuel/air mixture flows through the combustion zone 1004 inside the combustor 1000, the fuel/air mixture can be redirected by the fins 1006a-f along the helical channels defined by the fins 1006a-f, as described above. And when the fuel/air mixture is ignited, for instance using one or more coaxial resonators as described above, combustion of the fuel/air mixture can propagate throughout the fuel/air mixture along the helical channels defined by the fins 1006a-f, thereby forming a helical flame path. The helical flame path defined by the fins 1006a-f has a longer overall length than a linear flame path that extends the length of the combustor 1000. As such, by guiding the fuel along the helical path, it can take longer for the fuel to reach the distal end of the combustor, thereby providing additional time for combustion to propagate throughout the fuel along the helical flame path. This additional time for combustion can result in more thorough combustion of the fuel in the combustor.
In the above examples, redirecting the fuel/air mixture along a helical or other non-linear path can slow the rate at which the fuel/air mixture passes through the combustor, and this can cause a buildup in back-pressure exerted against the compressor as the compressor attempts to pump more air into the combustor. Accordingly, in some implementations, the combustor might not include fins arranged in a helical pattern, but could include fins arranged in other configurations instead.
While a linear arrangement of fins might not increase an overall length of travel for a fuel/air mixture as it passes through the combustor, the linear fins can still help improve the extent and uniformity of combustion in the combustor by providing multiple concurrent linear flame paths along which combustion can propagate. In particular, with respect to
In some implementations, the combustor 1000 can include fin configurations that vary along the length of the combustor 1000. For instance, the combustor 1000 can include inwardly-protruding fins, such as those depicted in
In order to help further improve the extent and uniformity of combustion, the combustor 1000 can also include multiple fuel inlets to help distribute the fuel evenly among the linear channels and multiple igniters to help evenly distribute combustion of the fuel. For instance, multiple respective fuel inlets can be configured to introduce fuel into each respective linear channel defined by fins 1006a-f. Similarly, multiple respective coaxial resonators can be configured to provide a respective plasma corona into each respective linear channel defined by fins 1006a-f. In this manner, the fuel/air mixture can be distributed somewhat uniformly among the linear channels, and each linear channel of the fuel/air mixture can be concurrently ignited using the multiple coaxial resonators. Combustion can then propagate throughout the fuel/air mixture along each of the linear channels, thereby providing multiple concurrent linear flame paths—one for each channel. By concurrently combusting the fuel/air mixture over multiple flame paths, the overall combined length of the flame paths is longer than the length of the combustor 1000 itself, which can allow for more thorough combustion of the fuel/air mixture, as discussed above.
In the above examples, combustion of the fuel is described as being caused by one or more plasma coronas provided by one or more coaxial resonators. However, in some implementations, combustion can be initiated and/or aided by irradiating, and thereby modifying, the fuel to improve a combustibility of the fuel. Such fuel modification can be performed in addition to or in the alternative to exposing the fuel to one or more plasma coronas. Modifying the fuel to improve its combustibility and/or using a plasma corona to ignite the fuel can provide various benefits, such as increasing a speed at which combustion propagates throughout the combustor, such as along the flame paths as described above.
Modifying fuel and/or another substance within a fuel mixture can include ionizing at least one hydrogen atom in a hydrocarbon chain, liberating at least one hydrogen atom from a hydrocarbon chain, exciting a hydrocarbon chain at one or more natural resonant frequencies to break one or more carbon-hydrogen bonds, altering an energy state of the fuel, exciting electrons within a valence band of a hydrocarbon chain to a higher energy level, reorienting water molecules, and/or reorienting polar hydrocarbon chains.
By modifying the fuel and/or fuel mixture according to any of these mechanisms, a combustion and/or ignition process of the fuel and/or the fuel mixture can be improved (for example, by increasing a combustibility of the fuel and/or the fuel mixture). In some implementations, an increased power output (for a given fuel-to-air ratio of the fuel mixture) by a power-generation turbine housing the combustion can be achieved, an amount of fuel within the fuel mixture consumed during combustion can be reduced, a lower energy barrier to ignition/combustion of the fuel and/or the fuel mixture can result, and the fuel and/or the fuel mixture can burn at higher thermal efficiencies and at lower fuel-to-air ratios for a given output power (for example, a “leaner” fuel mixture can be burned for a given amount of power output by a power-generation turbine that houses the combustion).
In various implementations, the modification of the fuel can take place in various locations. For example, in one implementation, the fuel can be modified within a fuel tank (before combustion), before the fuel is injected into a combustion chamber of a jet engine. Alternatively, the fuel can be modified within a fuel conduit (before combustion) as the fuel is transiting from a fuel tank to a combustion chamber (for example, when the fuel is being pumped by a fuel pump within the fuel conduit). In still other implementations, the modification can occur within a treatment chamber. The treatment chamber can be located along a path of the fuel conduit and treatment of the fuel can occur before the fuel is injected into the combustion chamber. Alternatively, the treatment chamber can be located partially or wholly within the combustion chamber, and the fuel and/or air/water in the fuel mixture can be modified within the combustion chamber. Such modifications within the combustion chamber can occur before and/or during combustion. In yet other implementations, the modification can take place within the combustion chamber, but not within a treatment chamber. For example, a coaxial resonator could be oriented such that it is configured to radiate electromagnetic waves into a combustion zone of the combustion chamber in order to modify fuel and/or air/water in a fuel mixture before and/or during combustion. Other examples are possible as well.
In some implementations, multiple resonators can be excited to radiate electromagnetic waves used to modify fuel and/or other substances in a fuel mixture. The resonators can be located in various regions of the combustion chamber, fuel conduit, fuel tank, and/or treatment chamber so as to irradiate different regions of the system. The resonators can be located in other regions, as well. Further, one or more of the resonators could be excited at different excitation frequencies, with different excitation powers, or with different excitation waveforms so as to modify the fuel and/or fuel mixture according to different processes. Each of the resonators can be selectively excited by a controller, in some implementations.
At block 1202, the method includes introducing fuel through at least one fuel inlet into a combustion zone of a combustor of a power-generation turbine, the combustor including at least one fin (i) protruding into the combustion zone and (ii) configured to guide combustion of the fuel along a flame path defined by the at least one fin. In line with the discussion above, the introduced fuel can combine with air from a compressor of the power-generation turbine to form a combustible fuel/air mixture, and when the fuel/air mixture is ignited, combustion can naturally propagate throughout the fuel/air mixture. The fins can be arranged in a pattern to define channels between adjacent fins, and the fuel/air mixture can come into contact with the fins and be deflected by the fins into and along the channels. In this manner, by guiding the fuel/air mixture along the channels, the fins can also guide combustion of the fuel/air mixture along the channels, as the combustion will naturally propagate along the path of the fuel/air mixture.
At block 1204, the method includes exciting a resonator with a radio-frequency signal having a wavelength proximate to an odd-integer multiple of one-quarter (¼) of a resonant wavelength of the resonator. As discussed above, the resonator can include (i) a first conductor, (ii) a second conductor, (iii) a dielectric between the first conductor and the second conductor, and (iv) an electrode electromagnetically coupled to the first conductor, the electrode having a distal end disposed within the combustion zone. As also discussed above, a radio-frequency power source configured to be electromagnetically coupled to the resonator can be further configured to excite the resonator in response to a controller instructing the radio-frequency power source to excite the resonator.
At block 1206, the method includes, in response to exciting the resonator, providing a plasma corona in the combustion zone, thereby causing combustion of the fuel. As discussed above, exciting the resonator can concentrate an electric field at the distal end of the electrode, and the concentrated electric field, if strong enough, can generate the plasma corona. And as further discussed above, exposing the fuel to the plasma corona can cause the fuel to ignite and combust.
At block 1208, the method includes guiding, by the at least one fin, combustion of the fuel along the flame path. As discussed above, the at least one fin can define one or more channels through which a fuel/air mixture can flow, and when the fuel/air mixture is ignited, combustion of the fuel/air mixture can also propagate along the defined channels.
In some implementations, the at least one fin can be arranged in a helical pattern to define a helical flame path, and guiding combustion of the fuel along the flame path can include guiding combustion of the fuel along the helical flame path.
In some implementations, the at least one fin can be arranged in a linear pattern to define a linear flame path, and guiding combustion of the fuel along the flame path can include guiding combustion of the fuel along the linear flame path.
In some implementations, the at least one fin can protrude radially inward toward a center axis of the combustor, and guiding combustion of the fuel along the flame path can include guiding combustion of the fuel along a flame path defined by a radially-inward surface of the at least one fin.
In some implementations, the at least one fin can protrude radially outward from a center axis of the combustor, and guiding combustion of the fuel along the flame path can include guiding combustion of the fuel along a flame path defined by radially-outward surface of the at least one fin.
In some implementations, introducing the fuel through the at least one fuel inlet can include directing a portion of the fuel toward the electrode.
In some implementations, the at least one fuel inlet can be aligned with the at least one fin, and introducing the fuel through the at least one fuel inlet can include introducing the fuel proximate to the one or more fins and at least partially along the flame path.
In some implementations, the resonator can be aligned with at least one of the one or more fins, and providing the plasma corona in the combustion zone can include providing the plasma corona proximate to the one or more fins and at least partially along the flame path.
In some implementations, the method can further include providing, by a direct-current power source, a bias signal between the first conductor and the second conductor of the resonator, and the plasma corona can be provided in the combustion zone in response to a combination of both (i) exciting the resonator and (ii) providing the bias signal between the first conductor and the second conductor.
The particular arrangements shown in the figures should not be viewed as limiting. It should be understood that other implementations can include more or less of each element shown in a given figure. Further, some of the illustrated elements can be combined or omitted. Yet further, an illustrative implementation can include elements that are not illustrated in the figures.
A step or block that represents a processing of information can correspond to circuitry that can be configured to perform the specific logical functions of a method or technique as presently disclosed. Alternatively or additionally, a step or block that represents a processing of information can correspond to a module, a segment, or a portion of program code (including related data). The program code can include one or more instructions executable by a processor for implementing specific logical functions or actions in the method or technique. The program code and/or related data can be stored on any type of computer-readable medium such as a storage device including a disk, hard drive, or other storage medium.
The computer-readable medium can also include non-transitory computer-readable media such as computer-readable media that store data for short periods of time like register memory, processor cache, and random access memory (RAM). The computer-readable media can also include non-transitory computer-readable media that store program code and/or data for longer periods of time. Thus, the computer-readable media can include secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer-readable media can also be any other volatile or non-volatile storage systems. A computer-readable medium can be considered a computer-readable storage medium, for example, or a tangible storage device.
While various examples and implementations have been disclosed, other examples and implementations will be apparent to those skilled in the art. The various disclosed examples and implementations are for purposes of illustration and are not intended to be limiting, with the true scope being indicated by the claims.
The present application hereby incorporates by reference U.S. Pat. Nos. 5,361,737; 7,721,697; 8,783,220; 8,887,683; 9,551,315; 9,624,898; and 9,638,157. The present application also hereby incorporates by reference U.S. Patent Application Pub. Nos. 2009/0194051; 2011/0146607; 2011/0175691; 2014/0283780; 2014/0283781; 2014/0327357; 2015/0287574; 2017/0082083; 2017/0085060; 2017/0175697; and 2017/0175698. In addition, the present application hereby incorporates by reference International Patent Application Pub. Nos. WO 2011/112786; WO 2011/127298; WO 2015/157294; and WO 2015/176073. Further, the present application hereby incorporates by reference the following U.S. patent applications, each filed on the same date as the present application: “Plasma-Distributing Structure in a Resonator System” (identified by attorney docket number 17-1501); “Magnetic Direction of a Plasma Corona Provided Proximate to a Resonator” (identified by attorney docket number 17-1502); “Fuel Injection Using a Dielectric of a Resonator” (identified by attorney docket number 17-1505); “Jet Engine Including Resonator-based Diagnostics” (identified by attorney docket number 17-1506); “Power-generation Turbine Including Resonator-based Diagnostics” (identified by attorney docket number 17-1507); “Electromagnetic Wave Modification of Fuel in a Jet Engine” (identified by attorney docket number 17-1508); “Electromagnetic Wave Modification of Fuel in a Power-generation Turbine” (identified by attorney docket number 17-1509); “Jet Engine with Plasma-assisted Combustion” (identified by attorney docket number 17-1510); “Jet Engine with Fuel Injection Using a Conductor of a Resonator” (identified by attorney docket number 17-1511); “Jet Engine with Fuel Injection Using a Dielectric of a Resonator” (identified by attorney docket number 17-1512); “Jet Engine with Fuel Injection Using a Conductor of At Least One of Multiple Resonators” (identified by attorney docket number 17-1513); “Jet Engine with Fuel Injection Using a Dielectric of At Least One of Multiple Resonators” (identified by attorney docket number 17-1514); “Plasma-Distributing Structure in a Jet Engine” (identified by attorney docket number 17-1515); “Power-generation Gas Turbine with Plasma-assisted Combustion” (identified by attorney docket number 17-1516); “Power-generation Gas Turbine with Fuel Injection Using a Conductor of a Resonator” (identified by attorney docket number 17-1517); “Power-generation Gas Turbine with Fuel Injection Using a Dielectric of a Resonator” (identified by attorney docket number 17-1518); “Power-generation Gas Turbine with Plasma-assisted Combustion Using Multiple Resonators” (identified by attorney docket number 17-1519); “Power-generation Gas Turbine with Fuel Injection Using a Conductor of At Least One of Multiple Resonators” (identified by attorney docket number 17-1520); “Power-generation Gas Turbine with Fuel Injection Using a Dielectric of At Least One of Multiple Resonators” (identified by attorney docket number 17-1521); “Plasma-Distributing Structure in a Power Generation Turbine” (identified by attorney docket number 17-1522); “Jet Engine with Plasma-assisted Combustion and Directed Flame Path” (identified by attorney docket number 17-1523); “Jet Engine with Plasma-assisted Combustion Using Multiple Resonators and a Directed Flame Path” (identified by attorney docket number 17-1524); “Plasma-Distributing Structure and Directed Flame Path in a Jet Engine” (identified by attorney docket number 17-1525); “Power-generation Gas Turbine with Plasma-assisted Combustion Using Multiple Resonators and a Directed Flame Path” (identified by attorney docket number 17-1527); “Plasma-Distributing Structure and Directed Flame Path in a Power Generation Turbine” (identified by attorney docket number 17-1528); “Jet engine with plasma-assisted afterburner” (identified by attorney docket number 17-1529); “Jet engine with plasma-assisted afterburner having Resonator with Fuel Conduit” (identified by attorney docket number 17-1530); “Jet engine with plasma-assisted afterburner having Resonator with Fuel Conduit in Dielectric” (identified by attorney docket number 17-1531); “Jet engine with plasma-assisted afterburner having Ring of Resonators” (identified by attorney docket number 17-1532); “Jet engine with plasma-assisted afterburner having Ring of Resonators and Resonator with Fuel Conduit” (identified by attorney docket number 17-1533); “Jet engine with plasma-assisted afterburner having Ring of Resonators and Resonator with Fuel Conduit in Dielectric” (identified by attorney docket number 17-1534); and “Plasma-Distributing Structure in an Afterburner of a Jet Engine” (identified by attorney docket number 17-1535).