The present invention relates generally to generating power in steady state at ambient temperatures by using the new stronger but lighter-weight wind turbines' blade system reacting with air as a working fluid via a steady state power generation process, and more particularly to a method of using slower-speed, balanced wind turbines' blades attached to a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, and a high-ratio gear reducer to increase the high-power DC contacting/grinding generator's speed in a steady way and meet its power generation requirements.
In recent years, the conventional wind turbine engines have demanded higher efficiency, which would have light-weight nylon fabric single-surfaced blades of strong angle strut support structure behind for their higher power production requirements and need more advanced technology.
The conventional wind turbine engine only has low efficiency, and the conventional wind turbines' blades are required to be redesigned to have light-weight nylon fabric single-surfaced blades of stronger angle strut support frame structure behind with more reaction surface area, and run their light-weight generators in a steady state with more efficiency.
The conventional wind turbine engine and blades are also considered to have similar process elements of a power generator, but they are called by different names. The conventional wind turbine engine runs its processes in a low efficiency through those elements of the conventional heavier blade with reversed shape and unstable power generation system. Therefore, the conventional wind power engine process can only generate small portion amount from its available power.
If a wind turbine blade operated with the leading edge reversed such that it becomes the new single stream-line surfaced blade, and putting the pointed tail edge to be its front leading edge of the strong support structure, then its efficiency will be even higher than the conventional wind turbine blade. If the conventional wind turbines' blades had a larger surface area, they would generate more power than they did.
In the inventive process, the slower-speed turbines can take more wind pressure difference, extract more air/blade speed difference, and generate more power. Conventional blades need to be re-designed with more stream-line-like, more stably rotating at a slower speed with less ball-bearing friction wornness. These slower-speed less-fluctuating turbines are connected to a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, and a high ratio gear reducer (1:1,000=1:10×10×10 in three stages) to increase its light-weight high-power DC contacting/grinding generator's rotating speed in a single steady state and meet its power generation requirements, continuously.
These slow-speed, single-surfaced nylon layer with strong support structure behind, and less-fluctuated running turbines connected with a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, and a high ratio gear reducer may extract fluctuated force from fast air stream to generate more useful and stable power, continuously. They minimize the disadvantages of the conventional running turbines in a faster but even less stable way and minimize their ball-bearing wornness.
ΣP.ΔALarge=P.[large blade area×many numbers of blades]=FLarge
If the blade's pitch angle is 45° facing to the attacking wind:
Torque Γ=ΣΔF.r.sin θ=ΣΔF.r.sin 90°=ΣΔF.r
If the blade's pitch angle is 45° facing to the attacking wind:
Find maximum power of desired: d(power)/dR=0; d2(power)/d2R<0.
For d(power)/dR=0; vair=(2π.R [rpm/60 sec])=vblade's tip; vblade's tip=vair;
Another advantage of these light-weight nylon fabric made single-surfaced blades with strong angle strut support frame structure behind makes these less-fluctuated slow-turbines run through the fast air stream and generated maximum power more stably and more efficiently with a pressure stabilizer mounted on the ground, and they are much easier and much cheaper to be built and maintained on the ground.
A wind power device is another example of a device, which absorbs energy at ambient temperature and perpetuates generating power from the solar energy's thermal convection current for lasting.
The present invention utilizes less-fluctuated wind turbine blades and a new light-weight generator together, from which this fluctuating air stream energy can be extracted out into the much more stable electricity through a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, a high-ratio gear reducer, and the new Shiao's generator (an advanced light-weight model to the Van de Graff generator). This process, which uses air as its working fluid will not discharge cooling water out, or generate thermal pollutions, or radioactive pollution (which might be discharged from conventional power plants) into the global environment.
An advantage of the present invention is that its weight is much lighter and it is more stream-lined and efficient than the conventional wind turbines. It just uses wind fluctuating current's energy built from the solar energy, to push the larger air/blades surface-area to generate more electricity in a single steady state.
Another advantage of the present invention is the flexibility of the wind turbines' system process. It may use air (or oxygen and nitrogen) as its working fluid, transfer energy, and extract work from the air/blade reactions, in which the blade can have single-surfaced blade layer with strong angle strut supporting structure from behind. More air/blade reaction surface area, less-fluctuated and slower-rotation-speed, and more stable power-generation states with its higher pressure difference (force) generated are these better designs.
If the blade's pitch angle is 45° facing to the attacking wind: Minimum wind speed for blades starting to rotate: Torque Γ=∫r.dF=∫r.d(mblades.atangential)
and if the blades covered the surface area of 1.414 times of the whole circle:
The present invention is a cyclic process, whose effect can generate power from the ambient temperature of solar-thermal-current fluctuating energy and also can use its stabilization electricity to cool down the surrounding temperature lower than room temperature (as by transferring heat energy into work from solar energy of using air (or oxygen and nitrogen) as its working fluid). That is noted in U.S. Ser. No. 12/035,851 filed on Feb. 22, 2008. It is meant that the surrounding dissipates heat by contacting with the colder working fluid to generate steady power and have the surrounding temperature cooled down to lower than its room temperature (i.e. a new air conditioner runs through taking the solar energy, instead of taking the power from wall).
This new high efficient wind turbines power generation process can use air for its working fluid by using (1) less-fluctuated slower-speed turbines attached with a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, and a high ratio gear reducer to increase its light-weight generator's speed in a much more steady way and meet its power generation requirements, continuously, and (2) using the new Shiao's light-weight generator to generate electricity through contacting/grinding reactions into high-power DC electricity.
This new invention provides improvements over the conventional wind turbines' engine processes. And these new larger-surface area blades can generate more power directly into high-power DC electricity through contacting/grinding reactions without using the conventional electromagnetic generator and power transformer. The conventional heavy electromagnetic generators may need more transforming stages to transfer their system power from the low voltage to the high voltage, which may cut down their efficiencies.
This new process can have the wind turbines power generation close to 50% efficiency, and use its electricity to run the air conditioner and refrigerator with higher efficiency, that may only need smaller heat transfer surface area.
This new air/wind turbines power generation process can produce power under temperatures lower than the ambient temperature. This useful wind turbines' power generation process can use air for its working fluid at low temperatures without damaging the environment (no chemical refrigerants leaking, no cooling water discharge, no thermal pollution, and no radioactive or hazardous wastes).
The invention may take physical forms in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
With reference now to
With reference now to
With reference now to
With reference now to
In the event of an emergency, the single-surfaced blade layer, made of nylon fabric, can be easily rolled up to close to the central shaft region to avoid hurricanes or for other safety reasons.
With reference now to
Mass added: Pressure generated: Force generated: Power=Amperage×voltage generated
With reference now to
The high ratio gear reducer (1:1,000=1:10×10×10 in three stages) [61] increases speed to the generator [60]. Turbines are usually used at lower speeds. The high-ratio gear reducer [61] operates the generator [60] at a higher speed. A fluctuation-pressure stabilizer is attached to the water-turbines [68], which steady output allows the water-turbines [68] spin at a single steady speed and in a more continuous fashion. The light-weight generator [60] rotates at a single high speed of 5,000 rpm and more. In one embodiment of the invention, the wind turbines [21] have a variable fluctuating rotation speeds of between approximately 5 rpm (at 10 km/hr wind speed; blade's diameter is around 10 meters) and approximately 30 rpm (at 60 km/hr wind speed). But the fluctuation-pressure stabilizer [52] has a regulator's function, and its output to the water-turbines [53] has a single steady speed, continuously. The gear reducer [61] has a ratio of 1:1,000=1:10×10×10 in three stages. As long as the speed of the generator [60] is affected by the high efficiency lighter but stronger wind-turbines [21], a higher ratio gear reducer [61] can be used. These wind-turbines [21] generate high-efficiency work from the air stream. But there would be the lower efficiency for conventional methods of generating work from three solid propeller style turbines, which had much smaller reaction surface areas:
ΣP.ΔAsmall=P.[small blade area×fewer numbers of blades]=Fsmall. Our turbines [21] are attached to a main pump, a fluctuation-pressure stabilizer, a power generation water-turbines, and the gear reducer [61], which creates a high speed for the light-weight generator [60] to generate work. In
As noted in U.S. Ser. No. 12/035,851, filed on Feb. 22, 2008, the working fluid absorbs heat from the ambient/non-ambient heat sources, and the liquid phase is evaporated into the high pressure saturated vapor. This higher pressure saturated vapor is used to generate power through two-phase turbines, whose blades are designed to be durable and balanced to rotate at a slow speed with better stability and less ball-bearing friction. These slow turbines are attached to a high ratio gear reducer to increase its generator's speed and meet its power generation requirements.
After the saturated vapor stream has gone through the turbines, work is extracted from this higher pressure stream. Because work has already been extracted out from this saturated vapor stream, this stream's pressure and temperature will be dropped and become into a condensed two-phase stream. Then, these partially condensed-phase streams flow into a phase separator. This cycle function (generating power at lower temperatures) without using the cooling condenser at a lower temperature is the best example and a new way for conserving these renewable power generations.
The foregoing descriptions of specific innovations of the present invention are presented for purposes of illustration and applications. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above disclosure. It is intended that the scope of the invention is defined by the claims appended hereto and their equivalents. Therefore, the scope of the invention is to be limited only by the following claims.
Having thus described the invention, it is now claimed:
This patent application is a continuation-in-part of U.S. Ser. No. 12/035,851 entitled HIGH EFFICIENT HEAT ENGINE PROCESS USING EITHER WATER OR LIQUEFIED GASES FOR ITS WORKING FLUID AT LOW TEMPERATURES, filed on Feb. 22, 2008, and is also a continuation-in-part of U.S. Ser. No. 11/472,517 entitled DUAL-PLASMA-FUSION JET THRUSTERS USING DC TURBO-CONTACTING GENERATOR AS ITS ELECTRICAL POWER SOURCE, filed on Jun. 12, 2006, the content of which are hereby incorporated by reference.
| Number | Date | Country | |
|---|---|---|---|
| Parent | 12035851 | Feb 2008 | US |
| Child | 12195623 | US | |
| Parent | 11472517 | Jun 2006 | US |
| Child | 12035851 | US |